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Abstract

Multi-Object Tracking (MOT) is most often approached

in the tracking-by-detection paradigm, where object detec-

tions are associated through time. The association step nat-

urally leads to discrete optimization problems. As these

optimization problems are often NP-hard, they can only

be solved exactly for small instances on current hard-

ware. Adiabatic quantum computing (AQC) offers a solu-

tion for this, as it has the potential to provide a consid-

erable speedup on a range of NP-hard optimization prob-

lems in the near future. However, current MOT formulations

are unsuitable for quantum computing due to their scaling

properties. In this work, we therefore propose the first MOT

formulation designed to be solved with AQC. We employ an

Ising model that represents the quantum mechanical sys-

tem implemented on the AQC. We show that our approach

is competitive compared with state-of-the-art optimization-

based approaches, even when using of-the-shelf integer pro-

gramming solvers. Finally, we demonstrate that our MOT

problem is already solvable on the current generation of

real quantum computers for small examples, and analyze

the properties of the measured solutions.

1. Introduction

Multi-Object Tracking (MOT) is a task in computer

vision that requires solving NP-hard assignment prob-

lems [29,30,50]. To make this feasible, the community pro-

posed a range of different approaches: work on the problem

formulation using domain knowledge helps to make it an

easier to solve problem [29,50], approximate solvers extend

the feasible problem size [30], and the combination of deep

learning with simple heuristics can be seen as a data-driven

approach to the problem [8, 12]. Nevertheless, integer as-

signment problems remain hard optimization tasks for any

available solver. With the recent progress in quantum com-

puting, a new way of solving such optimization problems

becomes feasible in the near future [1, 36, 51].

Instead of iteratively exploring possible solutions, e.g.

Figure 1. The proposed approach to MOT states the assignment

problem between detections and a set of tracks as a quadratic un-

constrained binary optimization task. We then represent the op-

timization problem as a quantum mechanical system that can be

implemented on an AQC. Via quantum annealing, a minimum en-

ergy state is found that represent the best assignment.

via branch and bound, the problem is mapped to a quan-

tum mechanical system, whose energy is equivalent to the

cost of the optimization problem. Therefore, if it is possi-

ble to measure the lowest energy state of the system, a so-

lution to the corresponding optimization problem is found.

This is done with an adiabatic quantum computer (AQC),

which implements a quantum mechanical system made

from qubits and can be described by the Ising model [31].

Using this approach, a quantum speedup, which further
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scales with system size and temperature, has already been

shown for applications in physics [35, 36].

While there is a range of advantages that quantum com-

puting can provide in the future, mapping a problem to an

AQC is not trivial and often requires reformulating the prob-

lem from scratch, even for well investigated tasks [4,6]. On

the one hand, the problem needs to be matched to the Ising

model, on the other hand, real quantum computers have a

very limited number of qubits and are still prone to noise,

which requires tuning of the model to handle the limitations.

In this work we present the first quantum computing

approach to MOT. The number of required qubits in our

formulation grows linearly in the number of detections,

tracks and timesteps and only requires entanglement be-

tween qubits to model long-term relations. Our overall con-

tributions are the following:

• A quantum computing formulation of MOT that is

competitive with state-of-the-art methods.

• A method using few problem measurements to find La-

grange multipliers that considerably improve solution

probability.

• Extensive MOT experiments on synthetic as well as

real data using a D-wave AQC.

The remaining paper is structured as follows: After pre-

senting related work, the basics of quantum computing are

introduced. This is followed by our MOT formulation that

is optimized to run on an AQC. We then show the changes

required to make the problem solvable also with the classi-

cal computing paradigm. Finally, experiments on a D-wave

quantum computer are presented together with results on

larger problem instances.

2. Related Work

Quantum computing applications have recently started

to emerge across a range of fields that rely on discrete op-

timization, as adiabatic quantum computers have become

accessible. The applications include examples such as

gene engineering [21], interaction reconstruction in parti-

cle physics [13], traffic flow optimization [44], or route se-

lection in robotics [45]. In computer vision, discrete opti-

mization is a ubiquitous part of many applications. While

these applications frequently rely on heuristics today, quan-

tum computing has the potential to provide an efficient way

of directly solving them. In the area of 3D vision, quan-

tum computing has been used by Feld et al. [19] for opti-

mizing geometry compression. Benkner et al. [3] use adia-

batic quantum computing to match 3D shapes and images

with permutation matrices and investigate different con-

straint formulations to optimize the probability of finding

a correct solution. By using an iterative approach, the same

authors are able to scale the approach up to larger problem

instances [4]. Closest to our work is the contribution of

Birdal et al. [6]. They map the permutation synchroniza-

tion task to an optimization problem solvable on a quantum

computer and show results on small problem instances.

Multi-object tracking describes the problem of track-

ing all objects belonging to a predefined set of object types

in 2D [14, 38, 41, 43] or 3D [10, 11, 23]. Most competi-

tive trackers follow a tracking by detection approach, where

a set of detections is given in every frame and the trackers

perform association between frames, interpolation of occlu-

sions, and rejection of false-positive detections. While most

approaches use deep learning to generate appearance fea-

tures [47, 52, 56, 57], two major groups of data assignment

approaches exist. The first one maps the matching step to

a deep learning task [8, 12, 55, 59] and uses simple heuris-

tics to resolve the remaining inconsistencies. This allows

for training the complete pipeline end-to-end, without the

direct requirement to define a cost for data association. The

second group directly performs data association using dis-

crete optimization algorithms [29, 30, 39, 46, 48, 50], which

is stated as a network flow optimization problem in most

cases. These formulations allow to include long-term rela-

tions [29], and prior information about the nature of tracks

in an intuitive and transparent way. Nevertheless, these

properties come at a high computational cost. As most

of the proposed optimization problems are NP-hard [22],

a considerable effort was invested in finding heuristics and

approximate solvers for them [30].

3. Preliminaries on Quantum Computing

Quantum computers are systems operating in a state that

is described by its quantum properties, such as superposi-

tion and entanglement. By exploiting these properties, a

range of problems that quickly grow in complexity on clas-

sical computers and thus, cannot be solved in any reason-

able timeframe, could be solved considerably faster [20]

by a quantum computer. Reaching such a point is widely

referred to as quantum primacy. Even though implemen-

tations of quantum computers are still heavily experimen-

tal, some problems have already been shown to profit from

them, including the sampling of pseudo-random quantum

circuits [2, 53] and Gaussian boson sampling [58].

Qubits are two-state quantum-mechanical systems that

form the basis of quantum computers. Like a bit, a qubit

has two basis states |0⟩ = [1 0]T and |1⟩ = [0 1]T that in

a superposition form the qubit’s state. Qubits can be real-

ized with a wide range of approaches, including supercon-

ducting circuits, ions trapped in an electromagnetic field, or

photons.

Quantum Superposition refers to the property of a quan-

tum system that it is not required to be in one of the basis

states, but rather can be described by a linear combination

of possible basis states. A qubit in a pure state |ψ⟩ can be
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described with its two basis states {|0⟩ , |1⟩} as

|ψ⟩ = c1 |0⟩+ c2 |1⟩ (1)

where c1 and c2 are complex numbers, called probability

amplitudes, with |c1|
2 + |c2|

2 = 1.

Measurement of a qubit state results in one of the basis

states {|0⟩ , |1⟩}. The probability of measuring |0⟩ and |1⟩
evaluates to |c1|

2 and |c2|
2, respectively [28]. As a mea-

surement corresponds to an observation of the qubit it leads

to wave function collapse, which means that the qubit state

is changed irreversibly [24].

Entanglement of qubits is at the very heart of quantum

computing [32]. A system of entangled qubits is repre-

sented by a system state where each qubit cannot be de-

scribed only with its own state but depends on the state of

the remaining system [17,27,37,40,49]. Thus, measuring a

single qubit can collapse the wave function of other entan-

gled qubits, which alters their state and therefore, also their

measurement outcome [24].

3.1. Adiabatic Quantum Computing

Adiabatic quantum computing [18, 51] is an approach

that, instead of using gates as unitary operations on sub-

sets of the available qubits [15], uses a problem Hamilto-

nian ĤP that describes the operation applied on all qubits

simultaneously. The problem Hamiltonian is designed such

that its ground-state, which is the lowest energy configura-

tion of the system, represents the result for a computational

task [1]. In general, a Hamiltonian Ĥ(t) is an operator that

represents the energy of a quantum system and can be used

in the Schrödinger equation to describe the system’s evolu-

tion over time as

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ , (2)

where i is the imaginary unit, and ℏ the reduced Planck con-

stant.

As the ground-state of the problem Hamiltonian is hard

to find, the complete system is initialized with an ini-

tial Hamiltonian ĤB that has an easy to prepare ground-

state [18]. The system’s Hamiltonian is then slowly evolved

over an annealing time T to the problem Hamiltonian in an

adiabatic transition [7, 34]

Ĥ(t) = (1− t/T)ĤB + t/TĤP , (3)

which is a transition where the system stays in its basis state.

This process is called quantum annealing and needs to be

repeated for multiple measurements, as in a noisy system,

not all solutions have the lowest energy. The condition for

a sufficiently slow evolution depends mostly on two fac-

tors, the temperature of the environment and the spectral

gap of the Hamiltonian, i.e. the difference between lowest

and second-lowest energy level or eigenvalue. While the

first is a system property, the second can be influenced by

choosing a suitable Hamiltonian [3].

The Hamiltonian describing current adiabatic quantum

computers such as the D-wave advantage, is based on the

Ising model [33]. The Ising model uses the Hamiltonian

Ĥising =
∑

i,j

Ji,jσiσj +
∑

i

hiσi, (4)

where σ ∈ {−1,+1} corresponds to the spin of a particle,

Ji,j represent the interaction between two particles and hi
is an external magnetic field. In an adiabatic quantum com-

puter, the particles’ spins are represented by the qubit states

and the interactions and external field correspond to the cou-

plings. The lowest energy of the Ising model is equivalent

to solving the associated quadratic unconstrained binary op-

timization (QUBO)

argmin
z

zTQz+ bT z, (5)

which is NP-hard and known to be very challenging for

classical solver. As this task can directly be implemented

on an adiabatic quantum computer, a considerable speedup

for large problem instances is expected in the future.

4. Quantum MOT

Most existing optimization-based approaches to MOT

aim at finding feasible relaxations [30], implement efficient

heuristics in the solution approach [29] or use deep learn-

ing together with post-processing [8] to solve the assign-

ment problem. With the considerable amount of work in-

vested into them, the problem became solvable for growing

instances by now. Nevertheless, the assignment problem

stays an NP-hard task to solve and growth is thus limited.

Quantum computing with the associated speedup on hard

problems can provide a solution to this challenge, even if

the corresponding optimization problem is much harder to

solve with classical approaches at the moment. However,

representing tasks in a form suitable for quantum computing

often requires a completely new formulation of the problem

and MOT is not different in this aspect.

While widely used flow formulations [29,30,39] are suit-

able for exploiting sparsity, they come with a large set of in-

equality constraints, which makes them intractable on near-

future quantum computers that are limited in the number of

qubits. In this context, permutation matrices were shown

to be a powerful tool for synchronization or shape match-

ing [3, 4, 6]. In the following, we therefore propose a for-

mulation based on assignment matrices that grows linearly

in the number of required qubits for detections, tracks and

frames. Furthermore, it allows to model long-term connec-

tions with terms in the cost-matrix that do not require addi-

tional qubits.
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MOT Formulation. We approach the MOT problem fol-

lowing the tracking by detection paradigm and use a fixed

set of available tracks. Given a set of detections in each

frame of a video, appearance features are extracted for

each detection. By using a multi-layer Perceptron, pair-

wise appearance similarities between detections at different

timesteps are computed [30]. Starting with this, the goal of

the tracking algorithm is to assign each detection to a track,

such that the sum of the similarities of detections assigned

to a single track is maximized. In this context, a track is

defined by its track ID t and each detection in a frame f by

its detection ID d.

We formulate the given task of assigning detections to a

joint set of tracks using assignment matrices, which relax

the assumptions of permutation matrices. The binary as-

signment matrix Xf for a frame f maps a vector of detec-

tion indices to a vector of tracks at every frame of a video.

The elements xdt ∈ {0, 1} of the assignment matrix rep-

resent the connections between detections d and tracks t.
Given D − 1 detections and T − 1 tracks, the assignment

matrix assigns a detection to a track if xdt = 1. The re-

quirement that a single detection is assigned to a track at

one timestep, leads to the constraint

D
∑

d=1

xdt = 1 ∀t ∈ {1, ..., T − 1}. (6)

And reversely, Equation 7 asserts that every detection is as-

signed to a single track

T
∑

t=1

xdt = 1 ∀d ∈ {1, ..., D − 1}. (7)

To allow for false-positive detections as well as to han-

dle the case of fewer detections than available tracks, one

dummy-detection and one dummy-track, with the respec-

tive indices D and T , are introduced. A detection assigned

to the dummy-track is treated as a false positive and a track

that got the dummy-detection assigned to it is inactive or

occluded. As the dummy-track and dummy-detection may

be assigned multiple times, constraints 6 and 7 do not ap-

ply to them. To model tracks in a sequence consisting of F
frames, a single assignment matrix Xf is required for each

frame f , mapping the detections to tracks.

Quadratic Form. The basis for optimization-based track-

ers are costs between pairs of detections, where the cost is

accounted for if two detections are connected by a common

track. The goal of the tracker is to find a solution that mini-

mizes the total cost associated with the assignment. Our ap-

proach using assignment matrices leads to a quadratic cost

for a pair of frames i, j that reads

cij =
∑

t

∑

di

∑

dj

xiditqdidj
xjdjt, (8)

with xidit and xjdjt being entries from the assignment ma-

trices Xi and Xj respectively and qdidj
as the correspond-

ing similarity score. It is important to note that only de-

tection pairs assigned to the same track incur a cost, which

results in a single sum over the tracks t.
Equation 8 can be written in matrix form as

cij = vec(Xi)
TQijvec(Xj), (9)

with vec(X) as a row-major vectorization of the corre-

sponding assignment matrices and Qij as the cost matrix

of the frame-pair. The maximum frame gap ∆fmax that is

modeled in our approach depends only on the density of the

cost matrix. To include a connection between frames i and

j, the matrix Qij needs to be filled with the correspond-

ing similarity scores. The cost matrix Qij is sparse, as it

also represents all terms that correspond to detection pairs

matched to different tracks, which add no cost. Further-

more, no cost is associated with the mapping of a frame to

itself, which includes the main diagonal of Q.

A complete sequence consisting of F frames, can be rep-

resented with the stacked assignment matrix

z = [vec(X1)
T , ..., vec(XF )

T ]T . (10)

And the corresponding cost

c =

F
∑

i=1

F
∑

j=1

cij = zTQz, (11)

where Q is a block-matrix made from all Qij .

QUBO form. To solve the proposed MOT assignment

problem with an adiabatic quantum computer it further

needs to be represented as a QUBO task with {−1,+1}
spin states. This consists of two steps, firstly eliminating

the constraints and secondly substituting the variables.

1) Constraints are represented using a Lagrangian multi-

plier λ. As our formulation does not include inequalities,

no additional slack variables with corresponding qubits are

required. Given the original quadratic program with con-

straints

argmin
z

zTQz+ bT z s.t. Gz = d, (12)

a QUBO can be formulated as

argmin
z

zTQ′z+ b′T z (13)

with

Q′ = Q+ λGTG (14)

b′ = −2λGTb. (15)
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2) Variables are substituted by replacing the optimization

variables z ∈ {0, 1} with s ∈ {−1, 1} by using z = 1/2(s+
1) the resulting optimization problem reads

argmin
s

sTQs+b′T s with b′T = 2(bT +1TQ). (16)

Lagrangian Optimization. Solving the Lagrangian

would require solving a problem in both discrete and

continuous optimization variables (assignment, and La-

grangian multipliers, respectively). To solve the problem

using AQC, we presented a constant penalty reformulation

in the previous paragraph, which fixes the Lagrangian

multipliers λ. In such an approach, if λ is large enough,

constraint satisfaction is guaranteed. More precisely, a

quadratic equality constraint reformulation of the form

λ||Gz− d||2
2
, (17)

is used in Equations 14 and 15, which allows to only con-

sider positive Lagrangian multipliers λ. Even though λ
needs to be just large enough from a theoretical perspective,

in practice it should be as small as possible. This is espe-

cially relevant for AQC, as with a high λ the conditioning

of the corresponding Hamiltonian in the AQC gets worse.

This should be avoided as it results in a lower probability of

finding the correct solution in each measurement.

Thus, in practice a problem dependent bound for the

minimum penalty term λmin should be used. One approach

to reduce the spectral gap is to estimate an individual λi
for each constraint Gix = di using upper bounds. While

such bounds can be computed, they are not tight in many

cases. We, therefore, propose a heuristic to estimate the

Lagrangian multipliers λi that closely match their minimal

value λi,min. Each multiplier is modeled by

λi = λb + λ′i + λoff, (18)

where λb is a small base value that resolves the easy to fulfill

constraints, λ′i is estimated during the optimization proce-

dure and λoff is an offset to increase the spectral gap.

Starting with λ′i = 0 and λoff = 0 for all constraints,

the QUBO is solved using annealing. In general, this will

result in a solution zλ that does not fulfill the constraints.

As in our formulation, only positive violations result in a

cost improvement, i.e. Gz ≥ d, the cost reduction of a

constraint violation can be estimated as

ai(zλ) = 2(zTGQzλ −min
j

zTGjQzλ)/v
2

i , (19)

zTG = (Gi ◦ z
T
λ ) (20)

vi(z
0

λ) = Gizλ − di, (21)

where zG are the variables masked with Gi and vi is the

degree of violation. To fulfill the corresponding constraint,

we set

λ′i(zλ) = −ai(zλ)− λb + ϵ, (22)

with a small ϵ to assert that constraint i is fulfilled in the cur-

rent setting. While this can be evaluated for all constraints

simultaneously, the full procedure needs to be performed

iteratively, as not all constraints may be violated in the op-

timal solution. Nevertheless, the set of measurements re-

turned by the AQC can be used to reduce the number of re-

quired iterations. Instead of taking a single best solution, all

solutions zj that are close to the optimal solution are evalu-

ated and merged as λ′i = maxj λ
′

i(zj). In our formulation,

these can be solutions where the track order is permuted.

After estimating the Lagrangian multipliers, the total

cost matrix scale is small, nevertheless, the same also holds

for the spectral gap, as the cost of not fulfilling constraints

is small. Therefore, the additional offset λoff is added to the

Lagrangian multipliers.

Similarity Cost. We use the same approach for cost gen-

eration as AP-lift [30], where multi-layer Perceptrons are

used to regress the similarity score between pairs of detec-

tions. Features used to compute this score are the intersec-

tion over union (IoU) of aligned boxes and the dot-product

between DG-Net [57] appearance features. DG-Net fea-

tures are generated with the network trained on the MOT15

dataset [38] together with [47,52,56]. To generate the MLP

input vector, the features are normalized with a global con-

text [29], which results in a total of 22 features [30]. Fur-

thermore, assigning the dummy-detection to a track incurs

no cost and assigning a detection to the dummy-track, i.e.

labeling it as a false-positive, corresponds to a small nega-

tive value β. This is required to prevent the assignment of

single detections to tracks.

Post Processing. Even in an offline setting, long se-

quences cannot be represented as a single optimization

problem and need to be split into a set of overlapping sub-

problems. We set the overlap to the modeled frame gap,

and match tracks using the common frames. Matching is

stated as a linear sum problem that maximizes the number

of detections that are jointly assigned to tracks in both sub-

problems. As multiple subsequent tracks can be modeled

by a single track ID, tracks that are interrupted longer than

the maximum modeled frame gap ∆fmax are separated.

Problem Scaling. One important aspect when designing

algorithms for current and near-future quantum computers

is the required number of qubits. Many current formula-

tions of MOT grow quickly in size w.r.t. the number of

detections, tracks, frames and the length of the modeled

frame gap. In contrast to this, the number of qubits in our

approach only grows linearly in the number of detections,

tracks and frames. Furthermore, by using a quadratic op-

timization problem, longer frame gaps can be modeled by
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additional entries in the cost matrix, which correspond to

additional couplings between qubits.

While on short sequences the number of possible tracks

needs to be at least as high as the total number of tracks,

long sequences can profit from a saturation of the required

number of tracks. After a track has terminated, there is

no cost associated with assigning new detections if they

have a distance of more than the maximal frame gap ∆fmax

from the previous track. Therefore, multiple subsequent

real tracks can be modeled by a single track ID and easily

be separated in post-processing.

5. Traditional Solvers

While our formulation is advantageous when solved on

an adiabatic quantum computer, publicly available real sys-

tems have not yet reached a scale where large experiments

can be performed. We, therefore, use classical solvers to

show the results of our approach on real-world tasks, even

though a quadratic problem formulation is known to be hard

in this context. A common requirement of solvers to per-

form quadratic binary optimization via branch and bound is

the convexity of the continuous relaxation of the problem.

This corresponds to a positive-definite cost matrix Q, i.e. a

matrix with only positive eigenvalues, which is not fulfilled

for the given cost matrix in most cases.

5.1. Hessian Regularization

A common approach to enforce positive eigenvalues is

adding an identity matrix scaled by ϵ. As this changes the

cost function and thus the optimal solution, small values

need to be used for ϵ, making this approach only suitable

for compensating small negative eigenvalues. Neverthe-

less, investigating the constraints of our formulation leads

to a sparse diagonal matrix E that can be added to the cost

matrix Q without changing the optimal solution. With the

same approach of grouping the total cost matrix into blocks

between frames as in Equation (11), the following definition

of E is provided in blocks between frames. As only diag-

onal elements are relevant, blocks between different frames

are zero matrices Eij = 0|i ̸= j. The blocks on the diag-

onal, which represent the mapping of a frame i to itself Eii

are diagonal matrices defined by the diagonal elements

eidt =

{

e d ∈ {1, ..., D}, t ∈ {1, ..., T − 1}

0 t = T
. (23)

The indices refer to the position on the diagonal that corre-

spond to detection d and track t. Given a block’s assignment

matrix Xi, the total cost of the block after adding the diag-

onal term is

cii = vec(Xi)
T (Qii +Eii)vec(Xi) = e(T − 1), (24)

with Qii = 0 and T tracks in total. The intuition behind

the definition is given in the following and the full proof is

provided in the supplementary material.

Given a binary problem, any diagonal entry adds cost if

a variable is active. In the detection track assignment prob-

lem, this corresponds to adding a constant if a detection is

assigned to a track. As constraint 6 asserts that exactly one

detection (real- or dummy-detection) is assigned to every

real track each time-step, having a cost e for the assignment

adds this cost for each of the T − 1 real tracks. As the con-

straint does not apply for the dummy-track with index T
and an arbitrary number of detections may be assigned to it.

Therefore, the same argument would not hold and we can

not add an additional cost to these entries (eikl = 0|t = T ),

without influencing the total cost function.

6. Experiments and Results

AQC experiments are performed on a D-wave Advantage

4.1 [42]. The system contains at least 5000 qubits and

35,000 couplers implemented as superconducting qubits [9]

and Josephson-junctions [26] respectively. Every qubit of

the D-wave Advantage is connected to 15 other qubits,

which needs to be reflected in the sparsity pattern of the cost

matrix. If a denser matrix is required, chains of qubits are

formed that represent a single state. The actual parameters

can vary due to defective qubits and couplers. All exper-

iments are performed using an annealing time of 1600µs

and an additional delay between measurements to reduce

the inter-sample correlation. In the following, a single mea-

surement refers to the combination of an annealing cycle

and the subsequent measurement.

Simulated annealing is used to evaluate our approach in a

noise-free setting. We use the simulation provided by D-

wave for this purpose.

Classical solvers are used to demonstrate the performance

of the proposed algorithm on the full MOT15 dataset. All

experiments using classical solvers are performed using

Gurobi [25] with CVXPY [16] as a modeling language.

6.1. Lagrangian Multiplier

Fixed Lagrangian multipliers represent the basic approach

to include constraints in the QUBO. We run experiments

with synthetic tracking sequences where object detections

are in random order. The scenarios are defined by their sim-

ilarity scores, which we set to 0.8 for a match and -0.8 for

different objects. Furthermore, we add Gaussian noise with

variance σ2 to the similarity scores and subsequently trun-

cate them to [−1, 1]. In the experiments 3 detections over

5 frames and a noise level between σ = 0.2 to σ = 1.0
is used. The tracking parameters are set to 4 tracks and a

maximal frame-gap of ∆fmax = 3 frames.

Results generated with simulated annealing are shown in

Figure 2, where the top plot shows the solution probabil-
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Figure 2. Solution probability and energy levels using simulated

annealing for different noise levels and changing λ.

ity for different noise levels over an increasing Lagrangian

multiplier. For each λ, 4096 measurements are performed.

The lower plot shows the histogram over the energy of the

returned solutions for a noise level of σ = 0.6. The correct

solution can be seen at an energy level of −38.6.

With increasing noise level, the solution probability for

the best value of λ reduces considerably, which can be ex-

plained by the energy histogram. As described in Section

3.1, a low spectral gap, i.e. the difference between the low-

est and second-lowest energy level, reduces the probability

of the AQC staying in its ground state and thus, the prob-

ability of finding the correct solution. In the energy plot,

the spectral gap is visible as the distance between the en-

ergy band of the correct solution and the next higher energy

band, given a sufficiently high λ, such that the correct solu-

tion has the lowest energy.

Tracking with the D-wave advantage is performed on a

problem with 3 detections over 4 frames and noise levels

σ ∈ {0.0, 0.1, 0.2}. Results using 4000 measurements for

each setting are shown in Figure 3. Solution probabilities

are lower compared to simulated annealing and high energy

solutions are returned more often. This can be explained by

the high noise of current AQCs.

Optimized Lagrangian multipliers are introduced to im-

prove the spectral gap of the normalized cost matrix. We

perform the same tracking tasks as for fixed Lagrangian

multipliers, but evaluate the results w.r.t. the offset term

λoff. Results generated with simulated annealing are shown

in Figure 4. Optimization of the Lagrangian multipliers is

initialized with a base value of λb = 0.5. The probabil-

ity of finding the right solution is increased and stays high

over a large range of λoff compared to only using a single

λ. Furthermore, the best solution probability for each of

the noise levels is better than the optimum for a fixed La-
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Figure 3. Solution probability and energy levels using quantum

annealing for different noise levels and changing λ.
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Figure 4. Solution probability and energy levels using simulated

annealing and optimized λi for different noise levels over λoff.

grangian multiplier. This has two advantages: first, fewer

measurements are needed to find the correct solution and

secondly, less effort needs to be invested to find a good set-

ting for λ. Results for the problem with an optimized La-

grangian multiplier with λb = 1.0 solved on the AQC are

shown in Figure 5. When optimally tuned for σ = 0, our

method returns the best solution in 4.8% of the measure-

ments, compared to 3.5% when using a fixed multiplier.

Furthermore, even without an additional offset λoff = 0,

the best solution is returned in 0.8% of the measurements.

6.2. MOT15

We use the MOT15 dataset [38] to show that our method

performs on par with state-of-the-art tracking methods. For

this dataset, GUROBI [25] is used to find a solution for

the optimization problem. The sequence is evaluated in

segments of 20 frames using a maximum frame gap of

∆fmax = 10. As binary quadratic problems are very hard to
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Figure 5. Solution probability and energy levels using quantum

annealing and optimized λi for different noise levels over λoff.

Method MOTA IDF1 MT ML FP FN IDs

T
es

t

Lif T [29] 52.5 60.0 244 186 6837 21610 730

MPNTrack [8] 51.5 58.6 225 187 7260 21780 375

ApLift [30] 51.1 59.0 284 163 10070 19288 677

MFI TST [54] 49.2 52.4 210 176 8707 21594 912

Tracktor [5] 44.1 46.7 130 189 6477 26577 1318

Ours 49.9 53.5 187 179 5924 24032 1689

X
-v

al AP lift 59.6 67.8 237 133 8897 10150 283

Ours 59.7 67.6 234 134 8720 10214 370

Table 1. Results on MOT15 [38]. X-val refers to results on the

training set using leave-one-out cross validation.

solve with classical approaches, it is not possible to find an

optimum solution for segments that contain a high number

of tracks. In these cases, we terminate the optimization after

900 s on a single segment and use the best solution found.

For comparisons, ApLift [30] is closest to our method,

as it uses the same set of similarity features. On the test set,

we achieve a MOTA-score of 49.9% and perform only 1.2%
below ApLift, even though it models gaps up to 50 frames.

For a comparison under similar settings, we evaluate

our method and ApLift [30] with the same frame gap of

∆fmax = 10. As MOT15 does not contain a validation

set, we use leave one out cross-validation on all samples of

the training set for a fair comparison. In this scenario, our

method improves by 0.2% over ApLift in MOTA score.

An explanation for this is that the MOT15 test set contains

more detections in each frame on average (10.6 vs. 7.3)

than the training set. In this case, there are more sequences

where the classical solver does not find a solution and thus,

generates a non-optimal result.

MOT15 with AQC. To show that tracking with an AQC

already scales to small real-world examples, a part of the

PETS09-S2L1 sequence is used. As the problem size has to

be limited, three tracks that contain two occlusions, are ex-

tracted between frames 121 to 155. We execute our pipeline

Figure 6. Frames from the extracted sequence tracked on the AQC.

0.0

2.5

5.0

7.5

E
E 0

2 4 6 8 10 12 14 16
Segment

0.0

0.1

0.2

p

Figure 7. Energy of measurements returned by performing track-

ing of the PETS09-S2L1 sequence on the D-wave Advantage. The

bar-plot shows the probability of measuring the optimal solution.

on segments of 5 frames with 3 tracks, a maximum frame-

gap of 3, and optimized Lagrangian multipliers. The sub-

problems are solved on the D-wave Advantage with 1600µs

annealing time and 500 measurements per segment. The

most relevant frames that highlight occlusions are shown in

Figure 6. The normalized energy E−E0 levels of the mea-

surements for each subproblem are shown at the top of Fig-

ure 7 and the corresponding probabilities p of measuring the

right solutions are plotted in the lower one. The subprob-

lems 5 and 10 correspond to the two occlusions highlighted

in Figure 6. These are harder to solve problems, as multi-

ple solutions with small differences in their energy exist and

thus, they have a lower solution probability.

7. Conclusion

In this work, we proposed the first quantum computing

formulation of MOT. We demonstrated that current AQCs

can solve small real-world tracking problems, and that our

approach closely matches state-of-the-art MOT methods.

Current limitations stem from the proposed formulation be-

ing optimized to run on an AQC. As QUBO is know to

be hard using classical approaches and as current AQCs

are still at an experimental stage, problems are limited to a

small scale. Nevertheless, quantum computing has the po-

tential to make much larger problems feasible in the future.
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Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen,

R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri,

M. W. Mitchell, M. Markham, D. J. Twitchen, D.

Elkouss, S. Wehner, T. H. Taminiau, and R. Han-

son. Loophole-free Bell inequality violation using

electron spins separated by 1.3 kilometres. Nature,

526(7575):682–686, Oct. 2015.

[28] Alexander S. Holevo. Repeated and Continuous Mea-

surement Processes. In Alexander S. Holevo, ed-

itor, Statistical Structure of Quantum Theory, Lec-

ture Notes in Physics Monographs, pages 97–118.

Springer, Berlin, Heidelberg, 2001.

[29] Andrea Hornakova, Roberto Henschel, Bodo Rosen-

hahn, and Paul Swoboda. Lifted Disjoint Paths with

Application in Multiple Object Tracking. In Pro-

ceedings of the 37th International Conference on Ma-

chine Learning, pages 4364–4375. PMLR, Nov. 2020.

ISSN: 2640-3498.

[30] Andrea Hornakova, Timo Kaiser, Paul Swoboda,

Michal Rolinek, Bodo Rosenhahn, and Roberto Hen-

schel. Making Higher Order MOT Scalable: An Ef-

ficient Approximate Solver for Lifted Disjoint Paths.

In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision (ICCV), page 11, 2021.

[31] Ernst Ising. Beitrag zur Theorie des Ferromag-

netismus. Zeitschrift für Physik, 31(1):253–258, Feb.

1925.

[32] Richard Jozsa and Noah Linden. On the role of en-

tanglement in quantum-computational speed-up. Pro-

ceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences,

459(2036):2011–2032, Aug. 2003. Publisher: Royal

Society.

[33] Tadashi Kadowaki and Hidetoshi Nishimori. Quan-

tum annealing in the transverse Ising model. Physical

Review E, 58(5):5355–5363, Nov. 1998.

[34] Tosio Kato. On the Adiabatic Theorem of Quantum

Mechanics. Journal of the Physical Society of Japan,

5(6):435–439, Nov. 1950. Publisher: The Physical So-

ciety of Japan.

[35] Andrew D. King, Juan Carrasquilla, Jack Raymond,

Isil Ozfidan, Evgeny Andriyash, Andrew Berkley,

Mauricio Reis, Trevor Lanting, Richard Harris, Fabio

Altomare, Kelly Boothby, Paul I. Bunyk, Colin En-

derud, Alexandre Fréchette, Emile Hoskinson, Nico-

las Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre,

Christopher Rich, Yuki Sato, Anatoly Yu Smirnov,

Loren J. Swenson, Mark H. Volkmann, Jed Whittaker,

Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy

Hilton, and Mohammad H. Amin. Observation of

topological phenomena in a programmable lattice of

1,800 qubits. Nature, 560(7719):456–460, Aug. 2018.

[36] Andrew D. King, Jack Raymond, Trevor Lanting,

Sergei V. Isakov, Masoud Mohseni, Gabriel Poulin-

Lamarre, Sara Ejtemaee, William Bernoudy, Isil Ozfi-

dan, Anatoly Yu Smirnov, Mauricio Reis, Fabio Al-

tomare, Michael Babcock, Catia Baron, Andrew J.

Berkley, Kelly Boothby, Paul I. Bunyk, Holly Chris-

8820



tiani, Colin Enderud, Bram Evert, Richard Har-

ris, Emile Hoskinson, Shuiyuan Huang, Kais Jooya,

Ali Khodabandelou, Nicolas Ladizinsky, Ryan Li,

P. Aaron Lott, Allison J. R. MacDonald, Danica

Marsden, Gaelen Marsden, Teresa Medina, Reza

Molavi, Richard Neufeld, Mana Norouzpour, Travis

Oh, Igor Pavlov, Ilya Perminov, Thomas Prescott,

Chris Rich, Yuki Sato, Benjamin Sheldan, George

Sterling, Loren J. Swenson, Nicholas Tsai, Mark H.

Volkmann, Jed D. Whittaker, Warren Wilkinson, Jason

Yao, Hartmut Neven, Jeremy P. Hilton, Eric Ladizin-

sky, Mark W. Johnson, and Mohammad H. Amin.

Scaling advantage over path-integral Monte Carlo in

quantum simulation of geometrically frustrated mag-

nets. Nature Communications, 12(1):1113, Feb. 2021.

[37] Carl A. Kocher and Eugene D. Commins. Polarization

Correlation of Photons Emitted in an Atomic Cascade.

Physical Review Letters, 18(15):575–577, Apr. 1967.

Publisher: American Physical Society.
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