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Figure 1: MERLOT Reserve learns multimodal neural script knowledge representations of video – jointly reasoning over
video frames, text, and audio. Our model is pretrained to predict which snippet of text (and audio) might be hidden by the MASK.
This task enables it to perform well on a variety of vision-and-language tasks, in both zero-shot and finetuned settings.

Abstract

As humans, we navigate a multimodal world, building
a holistic understanding from all our senses. We intro-
duce MERLOT Reserve, a model that represents videos
jointly over time – through a new training objective that learns
from audio, subtitles, and video frames. Given a video, we
replace snippets of text and audio with a MASK token; the
model learns by choosing the correct masked-out snippet.
Our objective learns faster than alternatives, and performs
well at scale: we pretrain on 20 million YouTube videos.

Empirical results show that MERLOT Reserve
learns strong multimodal representations. When finetuned,
it sets state-of-the-art on Visual Commonsense Reasoning
(VCR), TVQA, and Kinetics-600; outperforming prior work
by 5%, 7%, and 1.5% respectively. Ablations show that
these tasks benefit from audio pretraining – even VCR, a QA
task centered around images (without sound). Moreover, our
objective enables out-of-the-box prediction, revealing strong
multimodal commonsense understanding. In a fully zero-shot
setting, our model obtains competitive results on four video
tasks, even outperforming supervised approaches on the
recently proposed Situated Reasoning (STAR) benchmark.

We analyze why audio enables better vision-language rep-
resentations, suggesting significant opportunities for future
research. We conclude by discussing ethical and societal
implications of multimodal pretraining.

1. Introduction
The world around us is dynamic. We experience and

learn from it using all of our senses, reasoning over them
temporally through multimodal script knowledge [99, 128].
Consider Figure 1, which depicts someone cooking popcorn.
From the images and dialogue alone, we might be able to
imagine what sounds of the scene are: the process might
begin with raw kernels scattering in an empty, metallic pot,
and end with the dynamic ‘pops’ of popcorn expanding,
along with the jiggling of a metal around the stove.
Predicting this sound is an instance of learning from reen-

try: where time-locked correlations enable one modality to
educate others. Reentry has been hypothesized by develop-
mental psychologists to be crucial for how we as humans
learn visual and world knowledge, much of it without need
for an explicit teacher [89, 35, 20, 100]. Yet, we ask – can
we build machines that likewise learn vision, language, and
sound together? And can this paradigm enable learning neu-
ral script knowledge, that transfers to language-and-vision
tasks, even those without sound?
In this work, we study these questions, and find that the

answers are ‘yes.’ We introduce a new model that learns
self-supervised representations of videos, through all their
modalities (audio, subtitles, vision). We dub our model

MERLOT Reserve1, henceforth Reserve for short.

1Short forMultimodal Event Representation LearningOver Time, with
Re-entrant Supervision of Events.
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Our model differs from past work that learns from audio-
image pairs [54, 71], from subtitled videos [105, 128], or
from static images with literal descriptions [106, 21, 92].
Instead, we learn joint representations from all modalities of
a video, using each modality to teach others. We do this at
scale, training on over 20 million YouTube videos.
We introduce a new contrastive masked span learning

objective to learn script knowledge across modalities. It
generalizes and outperforms a variety of previously proposed
approaches (e.g. [29, 106, 92, 128]), while enabling audio to
be used as signal. The idea is outlined in Figure 1: the model
must figure out which span of text (or audio) was MASKed
out of a video sequence. We combine our objective with a
second contrastive learning approach, tailored to learning
visual recognition from scratch: the model must also match
each video frame to a contextualized representation of the
video’s transcript [128]. Through ablations, we show that our
framework enables rapid pretraining of a model and readily
scales to ‘large’ transformer sizes (of 644M parameters).
Experimental results show that Reserve learns power-

ful representations, useful even for tasks posed over only a few
of the studied modalities. For example, when finetuned on
Visual Commonsense Reasoning [126] (a vision+language
task with no audio), it sets a new state-of-the-art, outperform-
ing models trained on supervised image-caption pairs by over
5%. It does even better on video tasks: fine-tuning without
audio, it outperforms prior work on TVQA [75] by a margin
of over 7% (and given TVQA audio, performance increases
even further). Finally, audio enables 91.1% accuracy on
Kinetics-600 [19]. These performance improvements do not
come at the expense of efficiency: our largest model uses
one-fifths the FLOPs of a VisualBERT.

Reserve also performs well in zero-shot settings. We
evaluate on four diverse benchmarks: Situated Reasoning
(STAR) [119], EPIC-Kitchens [26], LSMDC-FiB [96], and
MSR-VTT QA [120]. These benchmarks require visual
reasoning with respective emphasis on temporality, future
prediction, and both social and physical understanding. With
no fine-tuning or supervision, our model obtains competitive
performance on each. Of note, it nearly doubles [123]’s SoTA
zero-shot accuracy on MSR-VTT QA, and it outperforms
supervised approaches (like ClipBERT [74]) on STAR.
Finally, we investigate why, and on which training in-

stances audio-powered multimodal pretraining particularly
helps. For instance, predicting audio rewards models for
recognizing dynamic state changes (like cooked popcorn)
and human communication dynamics (what are people’s emo-
tions and towards whom). Our model progressively learns
these phenomena as pretraining progresses. These signals
are often orthogonal to what snippets of text provide, which
motivates learning from both modalities.
In summary, our key contributions are the following:

a. Reserve, a model for multimodal script knowledge,

fusing vision, audio, and text.
b. A new contrastive span matching objective, enabling our
model to learn from text and audio self-supervision.

c. Experiments, ablations, and analysis, that demonstrate
strong multimodal video representations.

Overall, the results suggest that learning representations from
all modalities – in a time-locked, reentrant manner – is a
promising direction, and one that has significant space for
future work. We release code and model checkpoints at
rowanzellers.com/merlotreserve.

2. Related Work
Our work brings together two active lines of research.

Joint representations of multiple modalities. Many
language-and-vision tasks benefit from early fusion of the
modalities [6]. A family of ‘VisualBERT’ models have been
proposed for this: typically, these use a supervised object de-
tector image encoder backbone, and pretrain on images paired
with literal captions [106, 77, 81, 21, 124, 74]. Cross-modal
interactions are learned in part through a masked language
modeling (mask LM) objective [29], where subwords are
replaced with ‘MASK’, and models independently predict each
subword conditioned on both images and unmasked tokens.2
Perhaps closest to our work is MERLOT [128], which

learns a joint vision-text model from web videos with au-
tomatic speech recognition (ASR). Through a combination
of objectives (including a variant of mask LM), MERLOT
established strong results on a variety of video QA bench-
marks when finetuned. However, it lacks audio: it is limited
to representing (and learning from) video frames paired with
subtitles. Our proposed Reserve, which represents and
learns from audio, outperforms MERLOT.

Co-supervision between modalities. A common pitfall
when training a joint multimodal model is that complex
inter-modal interactions can be ignored during learning, in
favor of simpler intra-modal interactions [51, 24, 59]. For
example, when using the aforementioned mask LM objective,
models can ignore visual input completely in favor of text-text
interactions [13]; this issue is magnified when training on
videos with noisy ASR text [128].
A line of recent work thus learns independent modality-

specific encoders, using objectives that cannot be shortcutted
with simple intra-modal patterns. Models like CLIP learn
image classification by matching images with their captions,
contrastively [132, 92, 63]. Recent work has explored this
paradigm for matching video frames with their transcripts
[121], with their audio signal [97, 114], or both [3, 2]; these

2Recent papers propose extensions, like generating masked-out spans
[22] or text [78, 116], but it is unclear whether they can outperform the
VisualBerts on vision-language tasks like VCR [126]. Another extension
involves learning from text-to-speech audio in a captioning setting [62, 79] –
yet this lacks key supervision for environmental sounds and emotive speech.
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works likewise perform well on single-modality tasks like
audio classification and activity recognition. These indepen-
dent encoders can be combined through late fusion [97], yet
late fusion is strictly less expressive than our proposed joint
encoding (early fusion) approach.

Our work combines both lines of research. We learn
a model for jointly representing videos, through all their
modalities, and train it using a new learning objective that
enables co-supervision between modalities.

3. Model: Reserve

In this section, we present Reserve, including: our
model architecture (3.1), new pretraining objectives (3.2),
and pretraining video dataset (3.3). At a high level,

Reserve represents a video by fusing its constituent
modalities (vision, audio, and text from transcribed speech)
together, and over time. These representations enable both
finetuned and zero-shot downstream applications.
More formally, we split a video V into a sequence of

non-overlapping segments in time {st}. Each segment has:
a. A frame vt, from the middle of the segment,
b. The ASR tokens wt spoken during the segment,
c. The audio at of the segment.
Segments default to 5 seconds in length; we discuss details

of how we split videos into segments in Appendix C.
As the text wt was automatically transcribed by a model

given audio at, it is reasonable to assume that it contains
strictly less information content.3 Thus, for each segment
st, we provide models with exactly one of text or audio. We
will further mask out portions of the text and audio during
pretraining, to challenge models to recover what is missing.

3.1. Model architecture

An overview of Reserve is shown in Figure 2. We
first pre-encode each modality independently (using a Trans-
former [110] or images/audio; a BPE embedding table for
text). We then learn a joint encoder to fuse all representations,
together and over time.

Image encoder. We use a Vision Transformer (ViT; [34])
to encode each frame independently. We use a patch size
of 16 and apply a 2x2 query-key-value attention pool after
the Transformer, converting an image of sizeH×W into a
H/32×W/32 feature map of dimension dh.

Audio encoder. We split the audio in each segment at

into three equal-sized subsegments, for compatibility with
the lengths at which we mask text (Appendix C). We use an

3Despite being derived from the audio, pretraining with text is still
paramount: 1) in §3.2 we discuss how jointly modeling audio+text prevents
models from shortcutting pretraining objectives via surface correlations;
2) in §4.2 we show that incorporating both transcripts and audio during
fine-tuning improves performance; and 3) a textual interface to the model is
required for downstream vision+language with textual inputs.

inputs for segment t

Image Encoder 
(ViT)

1,1 1,2
H/32,

W/32
…

 MASK
while it pops

Word Embed
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popcorn 
popping* 

at
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Predict MASKed 
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Figure 2: Reserve architecture. We provide sequence-
level representations of video frames, and either words or
audio, to a joint encoder. The joint encoder contextualizes
over modalities and timesteps, to predict what is behind
MASK for audio ât and text ŵt. We supervise these predictions
with independently encoded targets: at from the audio
encoder, and wt from a separate text encoder (not shown).

Audio Spectrogram Transformer to encode each subsegment
independently [47]. The three feature maps are concatenated;
the result is of size 18×dh for every 5 seconds of audio.

Joint encoder. Finally, we jointly encode all modalities
(over all input video segments) using a bidirectional Trans-
former. We use a linear projection of the final layer’s hidden
states for all objectives (e.g. ŵt and ât).

Independently-encoded targets. We will supervise the
joint encoder by simultaneously learning independently-
encoded ‘target’ representations for each modality. Doing
this is straightforward for the image and audio encoders: we
add a CLS to their respective inputs, and extract the final
hidden state vt or at at that position. For text, we learn
a separate bidirectional Transformer span encoder, which
computes targetswt from a CLS and embedded tokens of a
candidate text span. This enables zero-shot prediction (4.4).

Architecture sizes. We consider two model sizes in this
work, which we pretrain from random initialization:
1. Reserve-B, with a hidden size of 768, a 12-layer
ViT-B/16 image encoder, and a 12-layer joint encoder.

2. Reserve-L, with a hidden size of 1024, a 24-layer
ViT-L/16 image encoder, and a 24-layer joint encoder.

We always use a 12-layer audio encoder, and a 4-layer text
span encoder. Details are in Appendix B.

3.2. Contrastive Span Training

We introduce contrastive span training, which enables
learning across and between the three modalities. As shown
in Figure 3, the model is given a sequence of video segments.
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Figure 3: Contrastive span training. Given a video with all
modalities temporally aligned, we MASK out a region of text
and audio. The model must maximize its similarity only to
an independent encoding of the text wt and audio at.

For each one, we include the video frame, and then three ‘sub-
segments’ that are each either text or audio. The subdivided
audio segments are encoded independently by the Audio
Encoder, before being fused by the Joint Encoder. We train
by replacing 25% of these text and audio subsegments with a
special MASK token. The model must match the representation
atop the MASK only with an independent encoding of its span.
Our approach combines past success at matching images

to their captions [92, 63] along with ‘VisualBERT’-style
prediction of independent tokens [106, 21] – though, crucially,
we predict representations at a higher-level semantic unit
than individual tokens. Our approach also enables the
model to learn from both audio and text, while discouraging
memorization of raw perceptual input, or tokens – which can
harm representation quality [112].
Formally, we minimize the cross entropy between the

MASKed prediction ŵt and its corresponding phrase represen-
tation wt, versus others in the batchW:

Lmask→text=
1

|W|
∑

wt∈W

(
log

exp(σŵt ·wt)∑
w∈W exp(σŵt ·w)

)
. (1)

We first L2-normalize w and ŵ, and scale their dot product
with a parameter σ [92].4 We then add this to its trans-
posed version Ltext→mask, giving us our text-based loss Ltext.
Analogously, we define Laudio for audio, between the MASKed
prediction ât and its target at, versus others a in the batch.
In addition to these masked text and audio objectives,

we simultaneously train the model to match video frames
with a contextualized encoding of the transcript.5 Here, the
joint encoder encodes the entire video’s transcript at once,
extracting a single hidden representation per segment v̂t. We
use the same contrastive setup as Equation 1 to maximize the

4Following past work, we optimize σ and clip it at 100, which enables
the model to ‘warm-up’ its emphasis placed on hard negatives [92, 113].

5In MERLOT [128], this objective was found to be critical for learning
visual recognition from self-supervised videos.

similarity of these vectors with the corresponding vt vectors
from the frames, giving us a symmetric frame-based loss
Lframe. The final loss is the sum of the component losses:

L = Ltext + Laudio + Lframe. (2)

Avoiding shortcut learning. Early on, we observed that
training a model to predict a perceptual modality (like audio
or vision) given input from the same modality, led to shortcut
learning – a low training loss, but poor representations. We
hypothesize that this setup encourages models to learn imper-
ceptible features, like the exact model of the microphone, or
the chromatic aberration of the camera lens [33]. We avoid
this, while still using audio as a target, by simultaneously
training on two kinds of masked videos:
i. Audio only as target. We provide only video frames and
subtitles. The model produces representations of both
audio and text that fill in MASKed blanks.

ii. Audio as input. We provide the model video frames, and
subtitles or audio at each segment. Because the model
is given audio as an input somewhere, the model only
produces representations for MASKed text.
Another issue is that YouTube’s captions are not perfectly

time-aligned with the underlying audio. During our initial
exploration, models took ready advantage of this shortcut:
for instance, predicting an audio span based on what adjacent
(overlapping) words sound like. We introduce a masking
algorithm to resolve this; details in Appendix C.

Pretraining setup. We train on TPU v3-512 accelerators;
training takes 5 days for Reserve-B, and 16 days for

Reserve-L. We made pretraining more efficient through
several algorithmic and implementation improvements. Of
note, we simultaneously train on written (web) text, which
enables more text candidates to be used. We use a batch size
of 1024 videos, each with N=16 segments (split into two
groups of 8 segments each). We use AdamW [69, 80] to
minimize Equation 2. More details and hyperparameters are
in Appendix B.

3.3. Pretraining Dataset

Recent prior work on static images that demonstrates
empirical improvements by increasing dataset size – all the
way up to JFT-3B [70, 34, 92, 130]. The same pattern
emerges in videos: prior work that has shown promising
empirical improvements not only by scaling to 6 million
videos/180M frames [128], but also by collecting a diverse
set (i.e., going beyond instructional videos [60]).
To this end, we introduce a new training dataset of 20 mil-

lion English-subtitled YouTube videos, and 1 billion frames,
called YT-Temporal-1B. At the same time, we take steps
to protect user privacy, directing scraping towards public,
large, and monetized channels. We detail our collection,
preprocessing, and release strategy in Appendix E.
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4. Experiments
In this section, we present model ablations (4.1.1), and

show that a finetuned Reserve obtains state-of-the-art
results on VCR (4.1.2), TVQA (4.2), and Kinetics-600 (4.3).
We then show that our model has strong zero-shot capability,
over four challenging zero-shot tasks (4.2).

4.1. Visual Commonsense Reasoning (VCR)

We evaluate Reserve first through finetuning on VCR
[126]. Most competitivemodels forVCR are pretrained exclu-
sively on images paired with captions, often with supervised
visual representations (e.g. from an object detector). To
the best of our knowledge, the only exception is MERLOT
[128], which uses YouTube video frames and text as part of
pretraining; no VCR model to date was pretrained on audio.

VCR Task. A model is given an image from a movie,
and a question. The model must choose the correct answer
given four multiple choice options (Q→A); it then is given
four rationales justifying the answer, and it must choose
the correct one (QA→R). The results are combined with a
Q→ARmetric, where a model must choose the right answer
and then the right rationale, to get the question ‘correct.’

Finetuning approach. We follow [128]’s approach:
‘drawing on’ VCR’s detection tags onto the image, and
jointly finetuning on Q→A and QA→R. For both subprob-
lems, we learn by scoring each Q→A (or QA→R) option
independently. We pool a hidden representation from a
MASK inserted after the text, and pass this through a newly-
initialized linear layer to extract a logit, which we optimize
through cross-entropy (details in Appendix D.1.1.)

4.1.1 Ablations: contrastive learning with audio helps.

While we present our final, state-of-the-art VCR performance
in 4.1.2, we first use the corpus for an ablation study. We use
the same architecture and data throughout, allowing apples-
to-apples comparison between modeling decisions. We start
with a similar configuration to MERLOT [128] and show
that contrastive span training improves further, particularly
when we add audio.

Contrastive Span helps for Vision+Text modeling. We
start by comparing pretraining objectives for learning from
YouTube ASR and video alone:
a. Mask LM. This objective trains a bidirectional model
by having it independently predict masked-out tokens.
We make this baseline as strong as possible by using
SpanBERT-style masking [64], where text spans are
masked out (identical to our contrastive spans). Each
span w is replaced by a MASK token, and we predict each
of its subwords wi independently.6

6Like [64], we concatenate the MASK’s hidden state with a position
embedding for index i, pass the result through a two-layer MLP, and use
tied embedding weights to predict wi.

Configuration
for one epoch of pretraining

VCR
Q→A

val
(%)

V
+T

Mask LM [29, 106, 128] 67.2
VirTex-style [27] 67.8
Contrastive Span 69.7

V
+T
+A

Audio as target 70.4
Audio as input and target 70.7

Audio as input and target, w/o strict localization 70.6

Reserve-B 71.9

Table 1: Ablation study of our contrastive span objective. It
outperforms prior work in a Vision+Text setting, with a 1%
boost when audio is added. Our full setup, adding written
text, improves another 1%. denotes part of our full model.

b. VirTex [27]. In this objective, we likewise mask text
subsegments and extract their hidden states. The dif-
ference is that we sequentially predict tokens wi ∈ w,
using a left-to-right language model (LM) with the same
architecture details as our proposed span encoder.

Results are in Table 1. Versus these approaches, our
contrastive span objective boosts performance by over 2%,
after one epoch of pretraining only on vision and text. We
hypothesize that its faster learning is caused by encouraging
models to learn concept-level span representations; this might
not happen when predicting tokens individually [23].

Audio pretraining helps, even for the audio-less VCR:

d. Audio as target. Here, the model is only given video
frames and ASR text as input. In addition to performing
contrastive-span pretraining over themissing text spans, it
does the same over the (held-out) audio span (Equation 2.
This boosts VCR accuracy by 0.7%.

e. Audio as input and target. The model does the above
(for video+text input sequences), and simultaneously
is given video+text+audio sequences, wherein it must
predict missing text. This boosts accuracy by 1% in total.

f. Sans strict localization. We evaluate the importance
of our strict localization in time. Here, in addition to
correct subsegments at the true position t as a correct
match, we count adjacent MASKed out regions as well. An
extreme version of this was proposed by [49], where a
positive match can be of any two frames in a video. Yet
even in our conservative implementation, performance
drops slightly, suggesting localization helps.

Putting these all together, we find that contrastive span pre-
training outperforms mask LM, with improved performance
when audio is used both as input and target. For our flag-
ship model, we report results in Table 1 on simultaneously
training on web-text sequences as well (Appendix C.4), this
improves performance by an additional 1%.
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Figure 4: Pretraining progress: performance
on contrastive-span pretraining, vs. fine-
tuned VCR validation accuracy. Pretraining

Reserve-B for 9 more epochs boosts per-
formance by 5%; L by 8%.

VCR test (acc; %)

Model Q→A QA→R Q→AR

Ca
pt
io
n/
O
bj
D
et
-b
as
ed ERNIE-ViL-Large [124] 79.2 83.5 66.3

Villa-Large [39] 78.9 83.8 65.7
UNITER-Large [21] 77.3 80.8 62.8
Villa-Base [39] 76.4 79.1 60.6
VilBERT [81] 73.3 74.6 54.8
B2T2 [4] 72.6 75.7 55.0
VisualBERT [77] 71.6 73.2 52.4

V
id
eo
-b
as
ed MERLOT [128] 80.6 80.4 65.1

Reserve-B 79.3 78.7 62.6
Reserve-L 84.0 84.9 72.0

Table 2: Reserve gets state-of-the-art leader-
board performance on VCR. We compare it with
the largest submitted single models, including image-
caption models that utilize heavy manual supervision
(e.g. object detections and captions).

TVQA (acc; %)

Model Val Test
Human [75] – 89.4

Su
bt
itl
es

MERLOT [128] 78.7 78.4
MMFT-BERT [109] 73.5 72.8
Kim et al [68] 76.2 76.1

Reserve-B 82.5 –
Reserve-L 85.9 85.6

A
ud
io Reserve-B 81.3 –

Reserve-L 85.6 84.8

Bo
th Reserve-B 83.1 82.7

Reserve-L 86.5 86.1

Table 3: Reserve gets state-of-the-art
results on TVQA by over 7%, versus prior
work (that cannot make use of audio).

4.1.2 VCR Results
Encouraged by these results, we train our models for 10
epochs on YT-Temporal-1B. Figure 4 demonstrates that fine-
tunedVCRperformance trackswith the number of pretraining
epochs, as well as the validation loss.7
Finally, in Table 2, we compare Reserve against the

largest published models from the VCR leaderboard. Of note,
Reserve-L outperforms all prior work, by over 5% on
Q→ARmetric. It outperforms even large ensembles (e.g. 15
ERNIE-Large’s) submitted by industry [124], though we do
not show these on this table to focus on only single models.

Efficiency. The accuracy increase of Reserve is not
simply due to compute.8 In fact, our Reserve-L re-
quires one-fifth the FLOPs of detector-based systems, like
UNITER-Large [21] (Appendix B.3). Moreover, because

Reserve-L uses a pure ViT backbone versusMERLOT’s
ViT-ResNet hybrid, it uses fewer FLOPs than MERLOT,
while scoring 7% higher. Meanwhile, Reserve-B out-
performs ‘base’ detector-based models, while using less than
one-tenth their FLOPs.
In terms of parameter count, Reserve-B is compa-

rable to prior work. On VCR, including the vision stack,
Reserve-B has 200M finetunable parameters and per-
forms similarly to the 378M parameter UNITER-Large.

Reserve-L has 644M parameters.

4.2. Finetuning on TVQA

Next, we use TVQA [75] to evaluate our model’s capacity
to transfer to multimodal video understanding tasks. In

7The plot suggests that if we pretrained longer, VCR performance might
continue to increase, though a confounding factor might be the learning-rate
schedule. With access to compute beyond our current capacity, future work
would be well-suited to consider this and other pre-training modifications.

8Here, we use FLOPs as our key efficiency metric, as they are a critical
bottleneck in model scaling [66, 34, 130]. On the other hand, we argue
that parameter count can be misleading – for instance, many Transformer
parameters can be tied together with minimal performance loss [72].

TVQA, models are given a video, a question, and five answer
choices. The scenes come from American TV shows, and
depict characters interacting with each other through dialogue
– which past work represents through subtitles.

Audio-Subtitle Finetuning. To evaluate howmuch audio
can help for TVQA,we finetune Reserve jointly between
the ‘Subtitles’ and ‘Audio’ settings. Like on VCR, we
consider one sequence per candidate: each contains video
frame features, the question, the answer candidate, and a
MASK token (from where we pool a hidden representation).
During training, each sequence is duplicated: we provide
one sequence with subtitles from the video, and for the other,
we use audio. This lets us train a single model, and then test
how it will do given subtitles, given audio, or given both (by
averaging the two softmax predictions).

Results. We show TVQA results in Table 3. With
subtitles and video frames alone, our Reserve-B outper-
forms all prior work by over 3%. Combining subtitle-only
and audio-only predictions performs even better, improv-
ing over 4% versus the prior state-of-the-art, MERLOT
(and in turn over other models). The same pattern holds
(with additional performance gains) as model size increases:

Reserve-L improves over prior work by 7.6%.

4.3. Finetuning on Kinetics-600 Activity Recogni-
tion

Next, we use Kinetics-600 [19] to compare our model’s
(finetuned) activity understanding versus prior work, includ-
ing many top-scoring models that do not integrate audio.
The task is to classify a 10-second video clip as one of
600 categories. We finetune Reserve jointly over two
settings: vision only, and vision+audio.

Results. We show Kinetics-600 results on the validation
set, in Table 4. Reserve improves by 1.7% when it can
jointly represent the video’s frames with its sound. This
enables it to outperform other large models, including VATT
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Kinetics-600 (%)

Model Top-1 Top-5

V
isi
on
O
nl
y

VATT-Base[2] 80.5 95.5
VATT-Large [2] 83.6 96.6
TimeSFormer-L [9] 82.2 95.6
Florence [125] 87.8 97.8
MTV-Base [122] 83.6 96.1
MTV-Large [122] 85.4 96.7
MTV-Huge [122] 89.6 98.3

Reserve-B 88.1 95.8
Reserve-L 89.4 96.3

+A
ud
io Reserve-B 89.7 96.6

Reserve-L 91.1 97.1

Table 4: Reserve gets state-of-
the-art results on Kinetics-600 by
1.5% versus standard approaches
(that cannot make use of audio).

Situated Reasoning (STAR)
(test acc; %)

EPIC-Kitchens
(val class-mean R@5; %)

LSMDC
(FiB test %)

MSR-VTT QA
(test acc %)

Model Interaction Sequence Prediction Feasibility Overall Verb Noun Action Acc top1 top5

Supervised SoTA ClipBERT [74] AVT+ [46] MERLOT [128]
39.8 43.6 32.3 31.4 36.7 28.2 32.0 15.9 52.9 43.1

ze
ro
-s
ho
t

Random 25.0 25.0 25.0 25.0 25.0 6.2 2.3 0.1 0.1 0.1 0.5
CLIP (VIT-B/16) [92] 39.8 40.5 35.5 36.0 38.0 16.5 12.8 2.3 2.0 3.0 11.9
CLIP (RN50x16) [92] 39.9 41.7 36.5 37.0 38.7 13.4 14.5 2.1 2.3 2.3 9.7
Just Ask (ZS)[123] 2.9 8.8

Reserve-B 44.4 40.1 38.1 35.0 39.4 17.9 15.6 2.7 26.1 3.7 10.8
Reserve-L 42.6 41.1 37.4 32.2 38.3 15.6 19.3 4.5 26.7 4.4 11.5
Reserve-B (+audio) 44.8 42.4 38.8 36.2 40.5 20.9 17.5 3.7 29.1 4.0 12.0
Reserve-L (+audio) 43.9 42.6 37.6 33.6 39.4 23.2 23.7 4.8 31.0 5.8 13.6

Table 5: Zero shot results. On STAR, Reserve obtains state-of-the-art results, outperforming finetuned
video models. It performs well on EPIC-Kitchens (verb and noun forecasting), along with LSMDC, despite their
long-tail distributions. On MSR-VTT QA, it outperforms past work on weakly-supervised video QA. Further, it
outperforms CLIP (that cannot handle dynamic situations), and benefits from audio when given.

[2] which learns to represent audio independently from
vision (and so cannot early-fuse them), along with the larger
MTV-Huge model [122] by 1.5%.

4.4. Zero-Shot Experiments

Next, we show that our model exhibits strong zero-shot
performance for a variety of downstream tasks. Our zero-shot
interface is enabled by our contrastive span objective. For
QA tasks that require predicting an option from a label space
of short phrases, we encode this label space as vectors, and
predict the closest phrase to a MASKed input. We consider:

i. Situated Reasoning (STAR) [119]. This task requires the
model to reason over short situations in videos, covering
four axes: interaction, sequence, prediction, and feasibil-
ity. The model is given a video, a templated question, and
4 answer choices. We convert templated questions into
literal statements (which are more similar to YouTube
dialogue); the label space is the set of four options.

ii. Action Anticipation in Epic Kitchens [26]. Here, the
goal is to predict future actions given a video clip, which
requires reasoning temporally over an actor’s motivations
and intentions. The dataset has a long tail of rare action
combinations, making zero-shot inference challenging
(since we do not assume access to this prior). As such,
prior work [46, 38] trains on the provided in-domain
training set. To adapt Reserve to this task, we
provide it a single MASK token as text input, and use as our
label space of all combinations of verbs and nouns in the
vocabulary (e.g. ‘cook apple, cook avocado’, etc.).

iii. LSMDC [82, 96]. Models are given a video clip, along
with a video description (with a MASK to be filled in). We
compare it with the vocabulary used in prior work [128].

iv. MSR-VTT QA [120]. This is an open-ended video QA
task about what is literally happening in a web video. We
use GPT3 [16], prompted with a dozen (unlabelled) ques-
tions, to reword the questions into statements with MASKs.
This introduces some errors, but minimizes domain shift.
We use a label space of the top 1k options.

For these tasks, we use N=8 video segments (dilating time
when appropriate), and provide audio input when possible.
Details and prompts are in Appendix D. We compare against
both finetuned and zeroshot models, including running CLIP
[92] on all tasks. CLIP is a strong model for zero-shot
classification, particularly when encyclopedic knowledge
about images is helpful; our comparisons showcase where
multimodal script knowledge helps.

Results. Table 5 shows our model performs competitively:
i. On STAR, it obtains state-of-the-art results, with per-
formance gain when audio is included. Interestingly,

Reserve-B outperforms its larger variant; we hy-
pothesize that this is due to limited prompt searching
around question templates. We qualitatively observed
that Reserve-L sometimes excludes topically correct
options if they sound grammatically strange (to it).

ii. On EPIC-Kitchens, our model obtains strong results at
correctly anticipating the verb and noun - despite the
heavy-tailed nature of both distributions. It is worse on
getting both right (‘action’), we suspect that this might
be due to priors (motifs) between noun and verb [129].
These are easy to learn given access to training data, but
we exclude these as we consider the zero-shot task.

iii.On LSMDC, our model obtains strong results at filling-
in-the-blank, likewise despite a heavy (unseen) frequency
bias. Notably, it outperforms CLIP significantly, with
CLIP often preferring templates that use visually-relevant
words, even if they don’t make sense as a whole. For
instance, given a clip of a mailman, CLIP chooses ‘the
mailman smiles off,’ versus ‘the mailman takes off.’

iv. Finally, our model performs well on MSR-VTT QA,
outperforming past work that directly rewords subtitled
instructional videos into video QA instances [123].

5. Qualitative Analysis: Why does audio help?
What can Reserve learn from both text and audio?

Three validation set examples are shown in Figure 5. The
model is given the displayed text and video frames, and must
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stretch in the calf press 
and push your hands 
into the floor for more 

stretch i know

... ... on the right leg for 
the maximum

left leg bent and place 
on top of right

leg extended 
completely straight and 

heel on the floor

single lick down dog 
where we ... [MASK]

alright shake out your 
arms and your legs if 

you need forth a

because the next one 
is slightly ...

weight on the legs and 
get more stretch in the 

calves in these 45 ...

going to pour these 
over top of ...

that i've melted these 
are just the wilton 

candy melts and i'm

... try it anyway what ...this is a lot of popcorn 
so i don't know how 
this is gonna work

this into a ... ...... so now what ...so that's mainly why i 
turned the burner off ...

[MASK] it quits
      popping i don't 

          want to burn this

... my kids i go oh 
that ...

just i feel like it's so i 
had kids when i was 20 
by the time i was 22 i 

had both

you always want to get 
a better relationship 

with your parents got it 
i

shaking your head like 
there's always room for 
improvement that i like 
even if you're at like the 

best

over [MASK] are youthat that's all i had 
control ...

i ate what i wore i kind 
of embraced ...

hadn't no control over 
but i knew that i could 
control how my room 

looked what

this time we’re holding it with the right leg 

*popcorn popping* and forth every now and then 

*exhausted laugh* why

Figure 5: Exploring MASKed audio self-supervision. Shown are example videos from our validation set, with predictions
from Reserve-B. During pretraining, our model progressively learns to pick up on audio-specific clues. It seems to
recognize physical dynamics of cooking popcorn, matching the first row to its MASKed audio. Likewise, it seems to use social
reasoning to match the second row to its audio. Both of these clues are orthogonal to what the subtitles provide.

match the MASK to the correct missing text and audio span (out
of 48k total in the batch). The plots show Reserve-B’s
probability of correctly identifying the correct audio or text
span, as it progresses through 10 epochs of pretraining.

Audio’s supervisory signal. In the first two rows of
Figure 5, audio provides orthogonal supervision to text:
1. In the first row, the MASKed audio contains the sound of pop-
corn pops slowing. By the final epoch, Reserve-B se-
lects this specific auditory cue with 60% probability, over
others (including from adjacent segments, at different
stages of popping). Here, sound provides signal for joint
vision-text understanding of the situation, as evidenced
by its greater match probability.

2. The second row contains only the text ‘why,’ with the
audio providing greatly more information — a female-
presenting speaker (shown in the next frame) laughs,
astonished that the child (in the frame afterwards) might
want a better relationship with their parents.

3. In the third row, matching performance is similar between
modalities, possibly as the yogi is narrating over a (muted)
video recording, and not adding much information.
Role of text. Text is still a crucial complement to audio, in

terms of the supervision it provides. Consider the second row:
Reserve-B learns to match the audio almost perfectly

(perhaps reasoning that the speaker is shown in the next frame,
and is laughing). In later epochs, its text-match probability
increases: knowing that a ‘why’ question is likely to be asked
is a valid social inference to make about this (tense) situation.

Learning through multimodal reentry. Developmental
psychologists have hypothesized that human children learn
by reentry: learning connections between all senses as
they interact with the world [35, 100]. Using a held-out

modality (like audio) might support learning a better world
representation (from e.g. vision and text), by forcing models
to abstract away from raw perceptual input. Our work
suggests that reentry has potential for machines as well.

6. Conclusion, Limitations, Broader Impact
We introduced Reserve, which learns jointly through

sound, language, and vision, guided through a new pretrain-
ing objective. Our model performs well in both finetuned
and zero-shot settings, yet it has limitations. Our model only
learns from 40-second long videos; relies on ASR models for
subtitles, and can only match (not generate) text and audio.
Still, we foresee broad possible societal impact of this line

of work. Video-pretrained models might someday assist low
vision or d/Deaf users [76, 48]. Yet, the same technology
can have impacts that we authors consider to be negative,
including surveillance, or applications that hegemonize so-
cial biases. We discuss these further in Appendix A: key
dimensions include respecting user privacy during dataset
collection, exploring biases in YouTube data, dual use, and
energy consumption. We discuss our plan to release our
model and data for research use so others can critically study
this approach to learning script knowledge.
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