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Abstract

This paper aims to improve panoptic segmentation for
real-world applications in three ways. First, we present a
label policy that unifies four of the most popular panop-
tic segmentation datasets for autonomous driving. We also
clean up label confusion by adding the new vehicle labels
pickup and van. Full relabeling information for the popular
Mapillary Vistas, IDD, and Cityscapes dataset are provided
to add these new labels to existing setups.

Second, we introduce Wilddash2 (WD2), a new dataset
and public benchmark service for panoptic segmentation.
The dataset consists of more than 5000 unique driving
scenes from all over the world with a focus on visually chal-
lenging scenes, such as diverse weather conditions, lighting
situations, and camera characteristics. We showcase ex-
perimental visual hazard classifiers which help to pre-filter
challenging frames during dataset creation.

Finally, to characterize the robustness of algorithms in
out-of-distribution situations, we introduce hazard-aware
and negative testing for panoptic segmentation as well as
statistical significance calculations that increase confidence
for both concepts. Additionally, we present a novel tech-
nique for visualizing panoptic segmentation errors.

Our experiments show the negative impact of visual haz-
ards on panoptic segmentation quality. Additional data
from the WD2 dataset improves performance for visually
challenging scenes and thus robustness in real-world sce-
narios.

1. Introduction
During the last years, the previously separate tasks of se-

mantic scene segmentation (assigning a semantic label like
car, road, street sign to each pixel) and instance segmen-
tation (assigning masks per individual instance) have been
combined into the panoptic segmentation task [15].

Diverse challenges imposed by real-world autonomous
driving applications confront ML systems with data distri-
butions different from those used during training. Their

Figure 1. Diverse driving scenes from Wilddash2; ae0021: mirror-
ing wet road in UAE, ar0006: broad avenue from Argentia, ci0011:
busy market in Côte d’Ivoire, do0007: unusual pickup from Do-
minican Republic, ee0031: night scene from Estonia with a highly
reflective car hood, gr0027: rainy drive in Greece

ability to extrapolate to out-of-distribution (OOD) test cases
is an active but largely unsolved problem. The combi-
nation of multiple datasets promises a partial solution by
combining different advantages and mitigating individual
shortcomings. In this paper, we present both a unifica-
tion method for existing road scene datasets and the new
dataset Wilddash2 based on this principle. Recent work
of Hendrycks et al. [9] shows that while some robustness-
related distribution shifts can be synthetically generated
from data, other factors (e.g. location/scene-specific im-
age content) can only be well represented during the im-
age formation process of dataset creation. Inspired by
this, Wilddash2 is captured at diverse locations (see Fig-
ures 1,2), environment conditions, and includes many po-
tentially performance-reducing factors (called visual haz-
ards [40]) such as: fog, occlusions, overexposure and many
more. Additionally, for benchmarking we add many out-of-
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Figure 2. Visualization of Wilddash2 geographic distribution.
Dots denote 1-9 scenes; small circles 10-50; medium circles: 50-
200; large circles: >200 scenes. Globe courtesy of USGS [35].

domain frames (e.g. a blank frame) to test for false positives
called negative testing.

The most prominent novelties presented in this paper
are: (a) introduction of a unified label policy enclosing
and backward compatible to the popular datasets Mapillary
Vistas (MVD), Cityscapes, Indian Driving Dataset (IDD),
and Wilddash, including two new vehicle labels pickup and
van. (b) a new dataset and benchmark service with a pub-
lic leaderboard for the panoptic segmentation of driving
scenes called Wilddash2 supporting the unified label pol-
icy. (c) methods to improve panoptic segmentation using
hazard-awareness, negative testing, supercategories, and a
new form of visualizing differences between prediction re-
sults and the ground truth (GT). (d) a method to analyze the
statistical significance of the calculated visual hazard im-
pact on output performance. (e) panoptic segmentation ex-
periments using Wilddash2 and learned visual hazard clas-
sifiers to automatically detect visually challenging situa-
tions in camera data.

Section 2 summarizes the current state of the art for
panoptic segmentation datasets. Section 3 presents a new
public panoptic segmentation dataset. Section 4 introduces
multiple tools to improve the evaluation and benchmarking
of panoptic segmentation while Section 5 analyses how to
calculate the statistical significance of hazard-aware testing.
The experimental Section 6 showcases examples of panop-
tic segmentation using the new dataset and results from
classifier experiments to automatically identify visual haz-
ards. All achievements and results are summarized in the
final Section 7.

2. State-of-the-Art
Solutions for accomplishing real-world vision tasks ro-

bustly need to consider the underlying open world assump-
tion: no task specification enclosing all potential variations
is achievable. This requires establishing datasets with vast
diversity, often considering OOD data. Learning unambigu-
ous concepts from ambiguous data needs adequate proto-

cols and metrics to quantify ambiguous image content.
Many datasets have been proposed recently to enhance

situational diversity in terms of imaging conditions (e.g.
weather, visibility). The Raincouver Scene Parsing bench-
mark [34], Dark Zurich dataset [31], ADUULM dataset
[26], the BDD100K dataset [38], the synthetic FoggyC-
ityscapes [30], and the Woodscape dataset [37] present
driving scenes each adding some adverse condition (fog,
rain, daytime, dusk, night). Exclusively Dark (ExDark)
dataset [19] aims at extending object detection towards low-
light situations. The recent Adverse Conditions (ACDC)
dataset [32] provides detailed semantic segmentation, im-
ages depicting both normal and adverse conditions, and
characterizes uncertainties associated with specific viewing
conditions. NVIDIA’s ClearSightNet [25] (part of NVIDIA
DRIVE) calculates per-pixel measures of occlusions and
visibility reductions via a lightweight convolutional neural
network.

Another prevailing scheme to enhance dataset diversity
is the integration of OOD samples. The Lost and Found
dataset [27] proposes an OOD-focused dataset (using the
Cityscapes dataset [4] as their baseline) and the Fishyscapes
Benchmark [1] introduces a public benchmark for seman-
tic segmentation with a special focus on OOD detection.
The A2D2 dataset [7] proposes OOD sample detection and
similarity-based clustering of OOD samples. The Com-
bined Anomalous Object Segmentation (CAOS) benchmark
dataset [8] integrates BDD100K with synthetic OOD ob-
ject overlays. OOD samples at scene-domain level are tar-
geted in the TAS500 dataset [22] which provides semantic
labeling for autonomous driving in unstructured environ-
ments. Synthetic data can also be used to enrich the learning
process and to extend learned representations beyond com-
mon domains. The VIPER [29] dataset and benchmark use
scenes from GTA5 as a baseline to create a driving scenes
dataset. This allows for the generation of large datasets
with low label noise but adds the specific rendering artifacts
and digital asset quality as considerable dataset bias. Apol-
loscapes [11] focuses on sensor fusion and supplies panop-
tic annotated LiDAR data using a simplified label policy.
Panoramic panoptic datasets WildPPS [14], KITTI-360 [17]
provide annotations for fisheye-camera data creating full
360°driving scenes

Nowadays, driven by legal authorities and regulatory
bodies, the standardization community is aware of the aris-
ing importance of scene interpretation in cars (part of sit-
uational awareness). The ISO Central Secretary published
the guideline ISO/PAS 21448:2019 [13] which specifically
addresses the problem of visual hazards (called triggering
events), such as overexposure or weather-related effects.

Despite the various adverse-situation-oriented datasets,
the scientific community has predominantly adopted four
road scene datasets, therefore strongly affecting the scien-
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tific evolution of semantic road scene understanding. These
datasets offer diversity, dataset scale, and annotations cov-
ering the needs of recent vision tasks:

• The Cityscapes dataset [3] in 2016 was the first ex-
tensive dataset for scene understanding supplying 5000
scenes with 35 different classes from 50 cities in Central
Europe. Its benchmark service is still the most used ref-
erence for comparisons and added panoptic segmenta-
tion in 2019. Location, lighting conditions, and weather
are very uniform and controlled. It uses a license similar
to CC-BY-NC 4.0.

• The Mapillary Vistas dataset (MVD) [24], released in
2017, represents a strong increase in size (20k frames
with GT), worldwide scope, and 64 labels (40 with in-
stances). It is predominantly focusing on daytime, clear-
weather scenarios, and is supplied under a CC-BY-NC-
SA 4.0 license.

• The Wilddash [39] dataset and benchmark service in-
troduced two concepts to improve characterization of
algorithms: Hazard-aware testing and use of negative
test cases. It uses the Cityscapes label policy and only
supplies around 220 frames for benchmarking and vali-
dation under a license similar to CC-BY-NC 4.0.

• The Indian Driving Dataset (IDD) [36] from 2019 sup-
plies 10k frames from Indian cities with very dense and
unstructured driving scenarios. Its label policy is largely
oriented on the Cityscapes policy but introduces new
fall-back classes. Mainly composed of clear-weather
daylight footage from only 150 driving sequences1.

3. Dataset Design

We present Wilddash2, a new dataset for robust panoptic
segmentation training and evaluation combining the most
valuable features of the four previously identified panoptic
segmentation datasets.

3.1. Frame Selection

The frame selection for Wilddash2 focuses on the same
principles as the Wilddash [39] dataset: visually challeng-
ing driving scenes from all over the world.

In general, driving datasets consist of scenes limited to a
single regional area (e.g. Cityscapes: Central Europe, IDD:
India). Public dashcam videos from over 150 countries in
the world are used to create Wilddash2 reducing this re-
gional dataset bias. This includes more than 2000 frames
from historically underrepresented areas such as Africa,
Middle Eastern countries, and Oceania. Figure 2 shows
a visual representation of the broad geographic spread of
WD2 frames.

1No clear license text is distributed with IDD; their homepage suggests
a CC-BY-NC-like license.

The collection of videos included targeted searches for
underrepresented regions and difficult scenes. We manu-
ally selected interesting frames and annotated the severity
of potentially degrading performance factors as visual haz-
ards [39]: blur, road-coverage, lens distortion, hood (visi-
bility of car bonnet), occlusions, underexposure, overexpo-
sure, particles (fog, rain, snow), screen (windshield visibil-
ity and interior reflections), and variations (rare variations
of vehicles and attire). The severity level of each visual
hazard was qualitatively annotated using none, low or high
(see [39]). The top of Table 1 shows the percentage of visual
hazards present in the frames of the dataset.

The final list of Wilddash2 frames is selected based on
these annotations to provide a balanced mix of identified
hazards and domain aspects. To limit redundancy, we en-
sured that there is no direct visual or contextual overlap be-
tween frames in the dataset. In terms of quantity, Wild-
dash2 is offering 5032 scenes, comparable to Cityscapes’s
5000 frames and more than 20 times the amount of Wild-
dash. The dataset is distributed freely under the CC-BY-
NC license. To conform to data protection rules, the access
is limited to registered scientific users. This allows WD2
to include all frames in unaltered form to prevent unneces-
sary training and evaluation bias (e.g. training with blurred
faces can mislead the network into classifying blurred blobs
as faces). Wilddash2 includes a separate version with
pseudonymized RGB images for use in publications.

3.2. Label policy

We have created a unified label policy for Wilddash2 that
merges the labels of MVD, Cityscapes, and IDD. This in-
cludes the Wilddash dataset, as its label policy is based en-
tirely on Cityscapes.

Unification involves three operations:
• Union of labels: the union of all base labels from MVD,

Cityscapes, and IDD is used as a starting point. Dupli-
cate labels are merged.

• Splitting of labels: some labels need to be split, other-
wise they cannot be mapped to other datasets. This ap-
plies to conflicts between MVD and Cityscapes labels:
curb can be sidewalk or terrain, bike-lane and manhole
can be sidewalk or road, rail-track can be rail-track or
road. Figure 4 shows examples for each category that
needs to be split.

• Extension: We introduce two new labels not present in
any of the four datasets: pickup and van. This is done to
reduce label confusion as both types appear in several
existing classes (see Section 3.3).

All are conceptually visualized in Figure 3 for clarifica-
tion. This process results in a unified label policy with 80
distinct categories2.

2See supplemental material for a table with all labels and a color legend
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blur coverage distortion hood occlusion overexp. particles screen underexp. variations

Percentage of WD2 frames containing visual hazards (Section 3.1)

low 43.4% 16.0% 9.4% 16.3% 34.0% 6.8% 4.4% 33.3% 5.7% 5.2%
high 6.0% 10.6% 0.1% 18.9% 41.0% 8.2% 1.9% 4.1% 6.7% 0.5%

Impact on PQ / p-value (Section 6.1)

mvd100 -22.6% -46.6% 0.0% -8.8% -3.3% -15.7% -30.0% -28.7% -28.4% -12.3%
0.0028 0.0002 0.0967 0.0694 0.0202 0.0060 0.0007 0.0015 0.0003 0.1502

mix150 -15.5% -21.0% 0.0% -6.3% -2.6% -6.7% -14.8% -26.3% -11.0% -6.1%
0.0588 0.0008 0.0914 0.0191 0.1165 0.0595 0.0595 0.0028 0.0057 0.1115

Hazard Classifier Performance (Section 6.2)

accuracy 53.0% 79.5% 73.5% 93.1% 57.2% 91.4% 80.0% 75.1% 78.5% 94.4%
macro f1 44.2% 61.2% 39.1% 90.4% 57.2% 69.2% 48.0% 65.5% 57.7% 39.1%

Table 1. Statistics and results relating to visual hazards in the Wilddash2 dataset. Top: Percentage of Wilddash2 frames (public and
benchmark) containing specific visual hazards for low and high severity levels, rest none. Middle: Impact of hazards on the average PQ
metric of the panoptic segmentation evaluation on the private WD2 benchmark set using the WD2eval label policy. Bold p-values are below
the 5% confidence interval and are statistically relevant. Bottom: Accuracy and macro f1-score for the ten prototype hazard classifier.

On the public leaderboard of our dataset benchmark,
we use WD2eval, a shortened version of our unified la-
bel policy. WD2eval consists of 26 classes: the original
19 Cityscapes evaluation labels, the vehicle classes ego-
vehicle, pickup, van as well as billboard, streetlight and
road-marking. Only vehicle and person classes are consid-
ered as instance classes. Negative test cases also evaluate
unlabeled areas (see Sec. 4.2) This close alignment with the
Cityscapes benchmark label policies was chosen to lower
the entry barrier for participating users.

3.3. Relabeling

The vehicle classes pickup and van are not found in any
of the four datasets. To extend the MVD, Cityscapes, and
IDD dataset to our label policy, we manually relabeled their
vehicle instances. In addition, the label autorickshaw (in-
spired by the IDD dataset) was also included. Table 2
shows the distribution and source categories for these vehi-
cle classes. The confusion of both vehicle types in category
car and truck was the main motivation to extend the WD2
policy by these new labels.

3.4. Limitations

The new Wilddash2 dataset is specifically designed to
cover many visual hazards, but there are some limitations:

• The public sources did not contain frames with strong
distortion. Wilddash added a few frames with artificial
lens distortion to potentially confuse neural networks.
We decided against this approach to preserve the real-
world aspect of WD2.

• In many still-images of rain there are either no parti-
cles visible or the rain covers the windscreen leading to

Source van pickup autoricks.

MVD car 4202 (2.8%) 2654 (1.8%) 0
MVD other-veh. 0 0 128 (8.2%)
MVD truck 43 (0.5%) 33 (0.4%) 0
Cityscapes car 907 (0.6%) 12 (0.01%) 0
IDD car 419 (1.4%) 10 (0.1%) -
IDD truck 0 18 (0.2%) -

Table 2. Addition of van, pickup and autorickshaw class labels.
Number of instances and % of source class. Note: Cityscapes and
MVD label policies state that pickups should be labelled as truck.

fewer frames in the particles hazard category.
• Out-of-distribution examples for vehicles and people

rarely occur. Thus the low number of frames contain-
ing the variations hazard.

During the development of Wilddash2, the 2.0 update of
MVD [21] was introduced. It offers more detailed semantic
annotations with added categories and depth ordering cues.
However, no new frames were added and no new category
addresses any of the label issues presented in this Section.
Thus, all information in this work refers to MVD v1.2 but
is fully applicable to v2.0 as well.

MSeg [16] scheme targets a similar dataset unification
strategy (including non-driving datasets like COCO) with-
out introducing a new dataset themselves. Their policy only
includes the reassignment of object labels. This misses
cases where outlines of labels need splitting.

Many algorithms use depth data to improve scene under-
standing performance. However, our method of sourcing
frames from public video data does not allow the computa-
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Figure 3. Conceptual depiction of label unification: (top) Organization and combination of disjunct categories and supercategories of two
datasets. (center) merging and splitting of sets in case of label-policy-clashes of two datasets (see Figure 4). (bottom) cleaning up mixed
categories by the introduction of new label categories.

Figure 4. Example frames from WD2 visualizing the need for additional splitting of some labels. Left to right: crop from RGB image,
GT using MVD classes, GT using Cityscapes classes, GT using WD2 classes. From top to bottom: ru0009 10000 (curb vs. curb-terrain),
ga0004 10000 (manhole vs. manhole-sidewalk), de0056 10000 (bike-lane vs. bike-lane-sidewalk as well as rail-track vs. tram-track)

tion and release of reliable depth data. This would require
a dedicated measurement vehicle, which is contrary to our
goal of geographic diversity.

4. Evaluation of Panoptic Segmentation

We base our benchmark on the Wilddash public leader-
board which focuses on hard cases and provides more in-
sights using diverse metrics.

Panoptic segmentation [15] describes the combination of
instance and semantic segmentation into a single segmenta-
tion task. The scene is split into thing and stuff segments,
where stuff describes amorphous regions of similar texture
(e.g. road, building) and thing describes countable objects
(e.g. person or car). Wilddash2 uses COCO panoptic for-
mat [2] for submissions. Panoptic segmentation is evaluated
using the panoptic quality (PQ) metric defined as follow:

PQ =

∑
(p,g)ϵTP IoU(p, g)

|TP |︸ ︷︷ ︸
segmentation quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

recognition quality (RQ)

.

(1)
Let g be a ground truth segment and p a prediction seg-

ment of the same class, IoU(p, g) is the intersection over

union of the segments p (prediction) and g (GT). A pair of
segments (p, g) counts as true positive (TP) if the IoU(p, g)
is larger than 0.5. This way, a ground truth segment can only
match with at most one prediction segment. The segmenta-
tion quality (SQ) is the mean IoU of all TP, the recognition
quality (RQ) penalizes segments without matches, e.g. false
positives (FP) and false negatives (FN).

We apply the concept of hazard-aware testing directly to
panoptic segmentation: all metrics are computed separately
for the frames from each subset of visual hazards. Impacts
per hazard are derived using the method of Zendel et al. [39]
by comparing results from subsets of different severity lev-
els. Legacy support for both semantic segmentation and in-
stance segmentation is provided: our public toolkit allows
the mapping of WD2 into segmentation or instance masks
and additional public leaderboards for both tasks help re-
searchers in their respective fields.

4.1. Supercategory Scores

Like most panoptic labeling policies, Wilddash2 defines
a semantic label on two hierarchical levels:

• an exact identifier that describes the label’s specific type
(e.g. car, truck),

• a broader identifier for label groups (e.g. vehicle).

21355



Figure 5. Visualization method for panoptic segmentation results.
Top: WD2 scene in0090 RGB image and GT; Middle: result of
the MVD-trained model (mvd100) and proposed difference image
(see Section 4.3); Bottom: result of mixed MVD&WD2 model
(mix150) and difference image (in0090 was part of the random
validation split).

Cityscapes uses the terms class and category, whereas
COCO uses category and supercategory. To avoid confu-
sion with the term category, this paper uses the the terms
category and supercategory for the different hierarchical
levels of a semantic label, see Figure 3.

Misclassification of a segment has a negative impact on a
model’s score. Especially classes that are underrepresented
in a model’s training set or are annotated differently (e.g.
car instead of truck) are prone to this misclassification. This
can skew panoptic evaluation: instances with perfect out-
lines but wrong category score no points. However, often
the wrongly predicted class label and the ground truth share
the same supercategory. Wilddash2 extends the evaluation
strategy of panoptic segmentation by computing each score
(PQ, RQ, SQ) also per supercategory.

From an application perspective, correct supercategory
assignments are often more important than overall category
correctness. The new supercategory metrics allow addi-
tional differentiation between algorithms at a coarser level.
In contrast to more complex metrics like PQPart [5], this
is achieved without requiring data relabeling or retraining.

4.2. Negative Testing

The Wilddash2 benchmark introduces negative testing to
panoptic segmentation. The goal is to evaluate the robust-
ness of a system operated outside of its specifications. Ex-
amples from WD2 for such frames include drone scenes,
abstract paintings of driving scenes, large-scale image er-
rors, and non-driving scenes (e.g. an indoor volleyball

match). Under such circumstances, the desired behavior of
a robust system is to mark truly unknown regions as invalid.
However, some parts of the image might still contain seg-
ments describable by the label policy and systems may be
able to produce valid segmentation. The Wilddash2 bench-
mark rewards the prediction for negative test frames in two
ways:

• Reward matching instances: A best-effort based on the
label policy is defined also for negative test cases. A
segment p is detected correctly if the IoU(g, p) with a
ground truth segment q of the same thing class is larger
than 0.5. Correct segments are kept, other segments that
overlap with g are set to invalid.

• Reward segments that are flagged as invalid: segment
pixels are set to the best-effort ground truth, thus im-
proving the overall score of the image.

This combined approach rewards both: systems that cre-
ate meaningful results for out-of-distribution frames and
systems which are aware of their result quality. Exist-
ing work on open-set problems (see [12], [23]) focuses on
handling gaps in data while our negative testing evaluates
systems by investigating their behavior in specific out-of-
distribution situations.

Solutions that always “hallucinate” data (i.e. never report
areas as unlabeled) normally have an advantage over more
cautious ones: regular metrics potentially only increase by
guessing a label, since admitting defeat always lowers the
score. Real-world applications are dependent on reliable
systems which can estimate the quality of their predictions.
Wilddash2 negative testing provides an incentive to encour-
age improvements in this area.

4.3. Visualization

Panoptic segmentation combines semantic per-pixel la-
bels and instancing into a single task. Quantifiable metrics
support direct rankings and give a good impression of al-
gorithm performance. Images representing label results can
provide a more detailed insight into the workings of a spe-
cific solution.

The pure label results themselves can be visualized us-
ing standard procedures: false-color mappings represent the
labels (e.g. light blue for pixels labeled as sky) and white
outlines encircle individual instances.

Images highlighting the differences between ground
truth and predictions help visual inspection of label results.
We introduce a novel method to create these “difference im-
ages” that illustrates both: the segmentation quality and the
instancing quality.

Figure 5 shows visualizations of algorithm results using
this method. Segmentation quality is illustrated for pixels
with a correct class in mint green, pixels with the false class
but correct supercategory in yellow, and pixels with false
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MVD Validation WD2 Benchmark

PQ SQ RQ PQvan PQpickup PQ SQ RQ PQvan PQpickup PQneg PQcat

mvd100 35.1% 74.2% 43.9% 26.6% 29.9% 37.6% 75.6% 48.3% 34.0% 38.1% 17.1% 57.7%
mix150 34.1% 73.5% 42.8% 24.7% 29.7% 42.2% 77.5% 53.2% 38.9% 49.2% 21.1% 64.7%

Table 3. Performance of the mvd100 model only trained on MVD for 100 epochs versus mix150 which is additionally fine-tuned for 50
epochs on WD2. Both evaluated on the original MVD validation set and the hidden WD2 benchmark set. Bold entries mark higher scores.

class and false supercategory in dark red. Areas excluded
from comparison receive a black color. The quality of in-
stancing is drawn on top using outlines and hatching. In-
stances that match a ground truth instance (i.e. IoU(p, q) >
0.5) are framed and overlaid with a dark green hatched pat-
tern. Wrongly predicted instances (i.e. false positives) are
framed and overlaid with a grey pattern. Ground truth in-
stances that have no prediction match (i.e. false negatives)
are framed in a dashed red line and no hatching.

5. Statistical Significance

The hazard-aware evaluation method compares perfor-
mance metrics between subsets of identified hazards, e.g.
the performance of an algorithm evaluated at frames marked
as having a high severity of occlusions versus frames with-
out occlusions (of instance labels). The quality of such sub-
set comparison can be estimated using a statistical signif-
icance test. Such tests work in an inverse fashion: a null
hypothesis states that there is no significant difference in
subsets and the test should reject this hypothesis in cases
where a clear distinction can be made. In our case, the
null hypothesis H0 tests that the performance metric is in-
dependent of the subset groupings. The significance tests
shall reject this H0 hypothesis with a high significance, thus
showing that the identified hazard subset is indeed creating
a more challenging subset of frames. Demšar [6] offers a
good overview of possible statistical significance tests. Ini-
tially, no assumption of an underlying distribution of per-
formance metrics can be made. The number of influences
on algorithm performance that are present in test frames
and how they interact is too complex to estimate. Thus,
we chose the non-parametric Mann–Whitney U test [20] to
evaluate the significance of hazard subset impacts due to
three properties: (1) it does not make assumptions about
the underlying distributions (e.g. Gaussian), (2) it does not
rely on a direct pairing between individual values, and (3)
also works if the subsets have different sample sizes. The
test between two subsets for a given metric results in a p-
value which is the probability of samples being drawn from
the same distribution. A low p-value represents a situation
where samples differ strongly and thus the null hypothesis
H0 can be rejected. We use a two-sided confidence interval
of 5%, i.e. all p-values < 0.05 signify that the subsets are

substantially different and calculated performance impacts
can be trusted.

The results in the middle section of Table 1 include the p-
values for each of the visual hazard subsets. The impact of
subsets negative, particles, occlusion, blur, screen, under-
exp, coverage, and overexp show strong significance. While
some hazard evaluations show not enough significance for
average metrics, they contain some categories with high sig-
nificance (e.g. category ego-vehicle for subset hood or car
for occlusion). The impacts of distortion and variations
could not be shown with enough significance.

6. Experiments
6.1. Panoptic Segmentation

The baseline model for panoptic segmentation uses the
Seamless Scene Segmentation model by Porzi et al. [28].
The model mvd100 is trained using the official BSD-3 code-
base [33] on the Mapillary Vistas dataset [24] (including
relabeled van and pickup instances) for 100 epochs after
which the PQ metric no longer improves on the validation
set. The second model mix150 fine-tunes 3 mvd100 for addi-
tional 50 epochs using a mixture of 3618 randomly selected
public Wilddash2 frames (85% of public Wilddash2 frames)
and a random subset of 3618 MVD training frames. The
remaining 638 public Wilddash2 frames are used as WD2
validation frames.

Table 3 shows results for both models evaluated on
the original MVD validation set and the public Wilddash2
benchmark set (776 frames including 144 negative test
cases, GT not public). We show the overall panoptic met-
rics and individual PQ scores for the newly introduced ve-
hicle classes pickup and van as well as PQ scores for nega-
tive testing and supercategory method as introduced in Sec-
tion 4. In general, mix150 is more robust in presence of
visual hazards. This comes at the cost of small performance
losses for the average MVD frame. The performance re-
duction for WD2 evaluation of mvd100 showcases the in-
creased difficulty of WD2.

Table 1 shows the calculated impacts of visual hazards
and statistical significance values for each impact (see Sec-
tion 5). All visual hazards except ”distortion” and ”varia-

3mvd100 & mix150 both use MVD labels, see Supplemental for exper-
iments with WD2, Cityscapes, and IDD

21357



hi
gh lo

w
no
ne

high

low

none

A
ct
u
al

21 25 17

76 232 146

51 184 309

blur

hi
gh lo

w
no
ne

57 27 24

33 61 76

23 34 726

coverage

hi
gh lo

w
no
ne

0 0 0

5 63 43

30 203 717

distortion

hi
gh lo

w
no
ne

187 11 8

13 146 19

1 17 600

hood

hi
gh lo

w
no
ne

Predicted

281 149 38

109 178 72

24 62 148

occlusions

hi
gh lo

w
no
ne

41 22 27

7 34 23

8 4 895

overexposure

hi
gh lo

w
no
ne

11 11 1

9 35 10

45 136 803

particles

hi
gh lo

w
no
ne

27 20 2

19 268 53

23 147 501

screen

hi
gh lo

w
no
ne

46 21 1

31 45 5

31 139 740

underexposure

hi
gh lo

w
no
ne

high

low

none

0 1 3

0 7 53

0 2 995

variations

Figure 6. Confusion matrices for each prototype hazard classifiers.

tions” show clearly significant impacts on performance for
mvd100. As expected, mix150 suffers a lower performance
loss than mvd100, proving it to be generally more robust.
The confidence for the significance of impact measurements
also decreases (higher p-values) for mix150 signifying a
stronger generalization even on hard test cases.

Figure 5 visualizes the output quality of both models for
the same frame (used for validation during fine-tuning, i.e.
not a training frame).

6.2. Visual Hazard Classifiers

The identification of relevant Wilddash2 frames contain-
ing visual hazards requires considerable manual effort. Au-
tomated hazard classifiers can significantly reduce this work
by pre-filtering existing data. Classifiers can potentially
also improve the safety of autonomous driving by providing
confidence measures for camera-based sensors. First pro-
totypes using the per-image visual hazard meta-labels for
each WD2 frame are trained using the fastai [10] PyTorch
framework. Default augmentations are used to create in-
dividual multi-class classifiers per visual hazard based on
pre-trained ResNet50 networks. The input resolution of
768x432 and a batch size of 64 are chosen to allow the
fast classification of large numbers of video frames. Fo-
cal Loss [18] is used to counteract the imbalance of visual
hazards subsets and the WD2 full dataset (both public and
benchmarking frames) is used to maximize the number of
hazards frames. The frames are randomly split into 80%
training frames and 20% validation frames The bottom of
Table 1 summarizes the classifier performance and Figure 6
shows the respective confusion matrices for all validation
frames. The relative low performance of the classifiers dis-
tortion, particles, or variations can be accounted to the rel-
ative low number of critical cases.

The 5000 frames of WD2 provide sufficient statistical
power to identify performance problems for panoptic seg-
mentation but are insufficient to reliably identify visual haz-
ards for arbitrary driving frames. The resulting prototype
classifiers successfully perform initial pre-labeling, espe-
cially when taking the confidence of the predicted class into
account. This reduces the effort for identifying interesting
frames by a factor of approx. 10 for the hazards coverage,
hood, occlusion, overexposure, screen, and underexposure.

7. Conclusion
Panoptic segmentation combines semantic information

and individual instancing delivering useful representations
for autonomous driving. This work presents the new dataset
Wilddash2 which combines the best aspects of four pub-
lic semantic scene understanding datasets: MVD v1.2,
Cityscapes, IDD, and Wilddash. The focus on diverse and
difficult scenes complements existing work and with 5000
frames also delivers enough substance for own experiments.
Our new data policy with 80 labels is the first to combine the
label space of all four datasets and allows precise mapping
of WD2 into other domains. Additionally, we identified two
new vehicle categories which reduce confusion among in-
stance labels and relabeled all vehicles of MVD, IDD, and
Cityscapes. Tools and meta-data for this relabeling are sup-
plied freely under the CC BY-NC-SA 4.0 license thus allow-
ing the inclusion of the new labels in existing frameworks.4

We further introduce the concept of hazard-aware testing
and negative test cases for panoptic segmentation and pro-
vide statistical significance with each performance impact
evaluation. This allows for better comparisons and to pin-
point the most pressing issues per algorithm. A new method
for visualizing the comparison of panoptic segmentation re-
sults helps to quickly understand algorithm characteristics.

Our new public benchmark server with leaderboards al-
lows unbiased comparisons of panoptic segmentation solu-
tions and offers legacy support to evaluate semantic seg-
mentation and instance segmentation as well. The ex-
perimental section presents two baseline models showing
clear benefits of adding WD2 to your training: increased
performance and robustness in visually challenging situa-
tions. First prototypes for visual hazard classifiers are pre-
sented allowing an automated pre-selection of frames dur-
ing dataset design. The Wilddash2 dataset and the bench-
marking service are available for free to researchers at
https://wilddash.cc under CC BY-NC 4.0 license.5

4This research has received funding from Mobility of the Future; a re-
search, technology, and innovation funding program of the Austrian Min-
istry of Climate Action

5The software for remapping and visualizing panoptic
data is released freely under GNU LGPL v2.1 license at
https://github.com/ozendelait/wilddash scripts.
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