This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Face2Exp: Combating Data Biases for Facial Expression Recognition

Dan Zeng!, Zhiyuan Lin', Xiao Yan!, Yuting Liu?, Fei Wang?, Bo Tang*!

! Research Institue of Trustworthy Autonomous Systems, Southern University of Science and Technology,

Department of Computer Science and Engineering, Southern University of Science and Technology

2 JD.com, Beijing, China; 3 School of Microelectronics, Southern University of Science and Technology

{zengd@ ,12132456@mail., yanx@,wangf@, tangb3@}sustech .edu.cn;lalenaliul7@gmail.com

Abstract

Facial expression recognition (FER) is challenging due
to the class imbalance caused by data collection. Exist-
ing studies tackle the data bias problem using only la-
beled facial expression dataset. Orthogonal to existing
FER methods, we propose to utilize large unlabeled face
recognition (FR) datasets to enhance FER. However, this
raises another data bias problem—the distribution mis-
match between FR and FER data. To combat the mis-
match, we propose the Meta-Face2Exp framework, which
consists of a base network and an adaptation network. The
base network learns prior expression knowledge on class-
balanced FER data while the adaptation network is trained
to fit the pseudo labels of FR data generated by the base
model. To combat the mismatch between FR and FER
data, Meta-Face2Exp uses a circuit feedback mechanism,
which improves the base network with the feedback from
the adaptation network. Experiments show that our Meta-
Face2Exp achieves comparable accuracy to state-of-the-art
FER methods with 10% of the labeled FER data utilized by
the baselines. We also demonstrate that the circuit feedback
mechanism successfully eliminates data bias ".

1. Introduction

Facial expression recognition (FER) has many applica-
tions in human-computer interaction and affective comput-
ing [1,2,7]. However, as shown in Figure 1 (a), exist-
ing FER training datasets are biased towards some major-
ity classes, which leads to poor test accuracy for the mi-
nority classes. The bias is because some facial expres-
sions (e.g., contempt, disgust) are rare in daily life and it
is expensive collect many samples for them. Deep neu-
ral networks (DNNs) trained with biased data tend to favor
majority classes and perform poorly on minority classes.

ICode is available at link:https://github.com/danzeng 1990/Face2Exp.
* Corresponding author.
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Figure 1. (a) The class distribution of FER training data is biased,
resulting in different test accuracy among the classes. (b) The class
distributions of FER and FR data mismatches. We use ResNet50
trained with the entire AffectNet to test FER and FR data.

Early FER methods, such as [9] and [19], train deep neural
network with biased FER data to classify expressions and
observe sharp accuracy drop for minority expression cate-
gories. To tackle the class bias, later methods [32], [10]
use human facial movements (i.e., facial action unit, facial
landmarks) as side information for expression recognition.
However, these methods require datasets with labels besides
expression, which are even more expensive to collect. Some
FER methods [26, 29] improve performance by removing
ambiguous samples from the training set.

To summarize, existing FER methods work on biased
FER datasets with focuses such as model design, side in-
formation and difficult samples. However, it is well-known
that high quality training data is crucial to the performance
of DNN models. Methods [6, 21, 24] enhance FER with
small-scale controlled unlabeled data to improve perfor-
mance. As large-scale class-balanced FER dataset is ex-
pensive to acquire, we propose to use large face recog-
nition (FR) datasets without expression labels to improve
FER. For example, Webface260M [42], MS-Celeb-1M [13]
and VGGFace2 [3] are all million-level FR datasets, which
contain face images with good comprehensive variety (i.e.,
varied pose, identities, varying illumination, and different
expressions). In contrast, the largest public FER dataset
contains only 440K images. However, this inevitably raises
another data bias problem because FER data and FR data
have mismatched distributions as illustrated in Figure 1(b).

To combat the forgoing data biases, we propose the

20291



Meta-Face2Exp framework, which utilizes unlabeled face
data to enhance expression recognition through the meta
optimization framework. The meta-learning objective is
to minimize the loss function of the model predictions on
the challenging facial expressions, conditioned on the bal-
anced FER data. Meta-Face2Exp consists of two networks,
namely a base network and an adaptation network, which
are connected via a circuit feedback paradigm that uses the
feedback from an adaptation network to improve a base
network for de-biased knowledge extraction. We refer to
each full-trained base and adaptation model as a genera-
tion. At each generation, the adaptation network is trained
on large-scale FR data using pseudo labels generated by
the base network in order to distill rich facial expression
knowledge (in meta-train phase). The base network learns
prior facial expression knowledge on de-biased FER data,
which are sampled to ensure class balance. To tackle the
mismatch between FR and FER data, our circuit feedback
paradigm informs the base network how good the pseudo
labels are by using the cognitive difference of the adapta-
tion network on biased FR data and de-biased FER data in
meta-test phase. If their cognitive difference is large, the
base network is punished to use the adverse direction of cur-
rent gradients. Thus, the base network is continuously im-
proved, more convincing pseudo expression labels are gen-
erated for training the adaptation network, and finally the
adaptation network learns de-biased expression knowledge.

To sum up, this paper makes the following contributions:

* We explain two data biases, i.e., class imbalance in
FER data and class distribution mismatch between FR
and FER data, which inspired Meta-Face2Exp, the first
work to utilize large-scale unlabeled FR data to en-
hance FER. We think Meta-Face2Exp provides a gen-
eral framework to utilize large-scale unlabeled FR data
for other face related tasks (e.g., gender/race classifica-
tion, age estimation) that lack high quality data.

* We propose the Meta-Face2Exp framework to extract
de-biased knowledge from auxiliary FR data through
the meta optimization framework. Meta-Face2Exp
provides an cost-effective paradigm for facial expres-
sion recognition.

* We conduct extensive experiments on widely-used
FER benchmarks including AffectNet [22] and RAF-
DB [19] to demonstrates the effectiveness of our Meta-
Face2Exp framework. Specifically, Meta-Face2Exp
obtains comparable results to state-of-the-art FER
methods using the only 10% of labeled FER data.

2. Related Work

In this section, we discuss recent work related to FER
and learning with unlabeled data. We then highlight our key

idea of exploring large-scale unlabeled FR data to enhance
FER which is different from existing methods.

2.1. Facial Expression Recognition

Methods for single-dataset FER can be divided into three
categories, i.e., deep classification network based methods,
human facial movements based methods, and ambiguous
expression annotation based methods.

Deep classification network based methods: They adopt
deep neural network trained with labeled FER data to
preserve local similarity and maximize inter-class scat-
ters for discriminative feature extraction [9, 10, 19, 36].
FaceNet2ExpNet [9] designs a two-stage training algo-
rithm. In the pre-training stage, the face recognition net-
work is used to train the convolutional layer, and then the
expression labels are executed to fully train the network.
However, their results suffer from a sharp drop in the mi-
nority expression categories. DLP-CNN [19] uses a local-
ity preserving loss to pull together the locally neighboring
faces of the same class, and a softmax loss to force differ-
ent classes to be separated. Very recently, DACL [10] has
proposed a new loss to adaptively learn discriminative fea-
tures. TransFER [36] has proposed a new architecture based
on Transformer to learn relation-aware local representation.

Human facial movements based methods: They provide
strong clue of expression movements to help learn discrim-
inative expression features and attention mechanism is usu-
ally explored [10, 30, 32]. RMT-Net [4] establishes the
connection between FER and facial landmark localization
through association learning and residual learning, so that
training data with single-task labels can be used for the
multi-task network. FDRL [25] consists of a feature de-
composition network (FDN) and a feature reconstruction
network (FRN). FDN decomposes the basic features into
a set of facial action-aware latent features based on the fa-
cial action unit. FRN reconstructs the expression feature by
learning intra-feature relation weight and inter-feature rela-
tion weight for each latent feature. However, these methods
usually require the dataset with multi-task label.

Ambiguous expression annotation based methods: They
typically tackle with intractable labeling confusion to en-
hance FER result, which are most close to our work.
IPA2LT [40] is the first work to learn an FER model with
multiple inconsistent annotated data and large-scale unla-
beled data. LDL [5] converts one-hot facial expression la-
bels into label distribution to solve the problem of annota-
tion inconsistency and learns these distributions from auxil-
iary tasks including action unit recognition and facial land-
mark detection. SCN [29] adopts ranking regularization to
weight each training sample and relabel these lowest ranked
group to suppress the uncertainties of FER. DMUE [26] in-
troduces an auxiliary multi-branch learning for latent distri-
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Figure 2. An illustration of the proposed Meta-Face2Exp framework. Meta-Face2Exp consists of an adaptation network and a base
network. In the meta-train phase, the adaptation network is trained on unlabeled FR data with pseudo FR label. In the meta-test phase, the
adaptation network estimates the cognitive differences between biased FR data and de-biased FER data to update the base network as the
feedback. Two networks are connected in a circuit feedback paradigm to extract de-biased knowledge from large-scale FR data.

bution mining and uses pairwise features to estimate uncer-
tainty in order to resolve the ambiguous nature of expres-
sion annotations.

2.2. Learning with Unlabeled Data

In cross-dataset FER, semi-supervised learning has been
extensively studied for learning with unlabeled data. Exist-
ing works [11,12,37,38] transfer the knowledge from the
training set to the target data to jointly learn the optimal
nonlinear discriminative features on both source and target
datasets. In contrast, Ref. [31] uses the target data gener-
ated by GAN to fine-tune the model trained on the source
data to minimize the difference between source and target
expressions. AdaFER [28] uses objective facial action units
to perform auxiliary training of unsupervised domain adap-
tation to relieve the annotation bias between source and tar-
get domains. AGRA [35] combines graph representation
propagation and adversarial learning to fine-grained adap-
tion to local features according to data inconsistency and
bias between different datasets. ECAN [18] learns domain-
invariant and discriminative feature representations by ap-
plying maximum mean discrepancy as re-weighted regular-
ization and class-conditional regularization learning. Com-
pared to cross-data FER, our work focuses on exploring
large-scale unlabeled FR data (i.e., from different applica-
tion) to enhance FER which is more challenging.

Some general methods such as pseudo label [17], noisy
student [34] are proposed to learn with unlabeled data. Fix-
match [27] simplifies the learning process by training the
model with high-confidence pseudo labels. UDA [33] im-
proves semi-supervised learning by incorporating data aug-

mentation [8] to limit the invariance of model predictions
to input noise. Recently, meta learning methods have been
used to purify pseudo labels. MPL [23] enables the teacher
network to adjust based on student’s performance feed-
back on labeled data. CPGML [39] proposes inexactly-
supervised meta-learning. The training samples have only
coarse-grained labels to reduce the need for data annota-
tion. In Meta-Face2Exp, we use meta-learning philosophy
to address data biases including class imbalance and distri-
bution mismatch to enhance FER. Specifically, it can be re-
garded as a bilevel optimization problem [15], which is pri-
marily concerned with networks learned at different levels:
an inner- and an outer-level optimization. Base network,
the outer level optimization, learns knowledge to perform
well on FER validation sets after training. Adaptation net-
work, the inner level optimization, provides the feedback to
improve base network according to its cognitive differences
between biased FR data and de-biased FER data.

3. Meta-Face2Exp

3.1. Framework Overview

As illustrated in Figure 2, the proposed Meta-Face2Exp
framework for facial expression recognition consists of an
adaptation network (A) and a base network (5). These
two networks have the same network architecture with in-
dependent weights and are connected with a circuit feed-
back paradigm. At each generation, the adaptation network
uses generated pseudo labels §pg (i.e., by utilizing the base
network) on unlabeled data zrp for training. The base net-
work learns a prior expression knowledge on the labeled
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data zrgr which are sampled to ensure class balance by the
sampling module Smp(-). With the de-biased mechanism
of Meta-Face2Exp, the base network is gradually improved
based on the feedback of the adaptation network accord-
ing to the cognitive differences between biased FR data and
de-biased FER data. As a result, the base network can pro-
duce better pseudo labels for training the adaptation net-
work in the next generation. For example, as illustrated in
the right part of Figure 2, we estimate the initial adaptation
network (i.e., trained with long-tail FER data) and observe
a severely skewed blue accuracy distribution. Later, we can
observe more and more flattened accuracy distribution (i.e.,
red accuracy distributions) from training step 1 to 7" with
de-biased mechanism. Meanwhile, the predicted FR label is
generally corrected from sad, neutral, to happy expression
based on the feedback on balanced FER data. By design,
the two networks constantly complement each other to ex-
tract de-biased knowledge in the FER task. During training,
the A network and the 5 network are updated alternatively.
In the inference stage, only the adaptation model A is used
for facial expression prediction.

3.2. Adaptation Network (.A)

For the adaptation network, large-scale unlabeled FR
data is exploited to enhance FER because FR data has abun-
dant and comprehensive variety. As illustrated in Figure 2,
Meta-Face2Exp trains the adaptation network by encourag-
ing two networks to predict similar conditional classifica-
tion distribution on unlabeled FR data with loss £,,:

L., = CE(jrr, A(zrr;0.4)). (D

To minimize the cross-entropy loss on pseudo FR label
yrr (i.e., a one-hot target label) which is the expression
with the highest score derived from B(zpg;60g). Unlike
ground-truth labels, pseudo labels change dynamically dur-
ing training. The parameters of the adaptation network 6 4
are updated in the meta-train phase. In the meta-test phase,
the balanced FER dataset (i.e., for training the base net-
work) is used to estimate the cognitive differences between
biased FR data and de-biased FER data.

3.3. Base Network (B)

For the base network, labeled FER images zpgp is used
to train the network and yrgr is used as the ground truth la-
bel. We first adopt a sampling module Smp(+) to ensure the
class distribution of FER data are balanced. Specifically, we
randomly select the same number of samples on each facial
expression class, which ensures balanced classes are gener-
ated for training base network. As illustrated in Figure 2,
three losses of supervised loss, consistency loss, and feed-
back loss are proposed to guide the learning process of base
network which can be expressed as

Figure 3. An illustration of augmented facial images.

Specifically, supervised loss and consistency loss only work
with base network while feedback loss considers the perfor-
mance of meta-test on adaptation network.

Supervised learning with FER data: With loss £, Meta-
Face2Exp trains the base network to minimize the cross-
entropy loss on labeled yet balanced FER data:

Ls = CE(yrer, B(zrer;98)), 3)

where 63 are the parameters for the base network of Meta-
Face2Exp and CE represents the cross-entropy loss.

Consistency learning with FR data: In addition, we apply
augmentation module Aug(-) on large-scale FR data to pay
more attention to expression-sensitive face regions. Meta-
Face2Exp trains the base network to guarantee a consistent
conditional distribution between the original FR data and
the augmented data by utilizing loss L.:

L. = CE(B(zrr;095), B(Aug(zrr); 05)). 4)

We propose an effective yet expression-specific augmen-
tation method Aug(-) for FR data. These augmented im-
ages are not only used for training adaptation network but
also used for consistency learning in base network. As for
consistency learning, base network requires original images
and augmented counterparts to have close class conditional
distribution. There are three types of augmentations for im-
age generation as illustrated in Figure 3 including conven-
tional transformations (randomly crop, rotation, and hor-
izontal flip) for all data on the left box, extensive image
transformation (i.e., rotation, erasing, and pixel-wise image
processing) for FR data on the right box and expression-
specific augmentation on the top box. Considering facial
expression is closely related to facial landmarks, we aug-
ment face images to purify facial expression feature ex-
traction by covering areas unrelated to facial expression.
Specifically, we apply MTCNN [41] to detect five facial
landmarks and empirically determine the patch centered on
landmarks, i.e., 50 x 20 pixels for eyes, 50 x 40 pixels for
nose and mouth, and 224 x 50 pixels for the forehead.

Feedback learning with FR data: In Meta-Face2Exp,
the base network 5 and adaptation network .4 are up-
dated through the circuit feedback paradigm. Specifically,
B — A is linked with pseudo label generation and A — B
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is linked with feedback loss £ . The feedback loss worked
on the base network can be expressed as

Ly = f-CE(Jrr, B(zrr;05)), %)

where f estimates the feedback of cognitive difference be-
tween FR and FER data to help update the parameters of the
base network. The definition of feedback coefficient f can
be expressed as

f=na- (V9S+1)CE(yFERwA($FER§QEE—H)))T'

(6)
Vo.CE(9rr, A(zrr; QS)))%

where f is expressed as a dot product of two terms. The
first term: the gradients of the new adaptation network
on de-biased FER data. The second term: the gradients
of the old adaptation network on biased FR data. If two
terms have the same/different gradient sign, the base net-
work is updated according to the same/adverse of the cur-
rent gradients. The absolute value of the dot product de-
termines the strength of the gradients updates. The adap-
tation network uses pseudo-labeled data to update the pa-

rameters to HSH). In particular, we approximate it with

the parameters obtained from Gfﬁ) by updating the base

network parameters on (Zrg, Jrr), i.€., HE:H) = 03) —
14V, CE(Jrr, A(Trr;0.4)).
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Figure 4. An illustration of De-biased mechanism combating dis-
tribution mismatch bias. FR data and FER data aligns better by
using Meta-Face2Exp (b) than SL model (a).

De-biased Mechanism: Exploring auxiliary FR data to en-
hance FER will inevitably cause mismatched distribution
between the FR and FER data. To verify the de-biased be-
havior of Meta-Face2Exp, we analyze the distribution of fa-
cial expression features between FR and FER data by tSNE.
For FR data, we randomly generate total 415 samples from
Webface260M which is biased distributed. For FER data,
we generate 560 samples from AffectNet and RAF-DB test-
ing set with every expression category 70 facial images, re-

spectively. Figure 4 presents the typical results of our ex-
periment, where purple and blue colors represent FER and
FR data, respectively. The supervised learning (SL) model
is trained with all AffectNet. The SL model shows a se-
vere mismatch between de-biased FER and biased FR data
in Figure 4(a). Specifically, the blue color in Webface260M
and purple color in AffectNet and RAF-DB span the entire
feature space and there is no obvious cluster of two colors
that are well aligned, which motivates our de-biased design.

We show the philosophy of how the de-biased mecha-
nism works. The behavior of new adaptation network on
balanced FER data is used as the measurement. Specifi-
cally, when adaptation network on FR data and new adap-
tation network on FER data have the same cognitive (i.e.,
sign of their gradients), we obtain positive feedback coeffi-
cients (i.e., positive value for £ y), which encourages the up-
date of base network by using the current direction of gradi-
ents. When adaptation network on FR data and new adapta-
tion network on FER data have different cognitive (i.e., sign
of their gradients), feedback coefficients will give a negative
sign, which punishes the update of base network by using
the adverse direction of current gradients. In this way, feed-
back is used as the reward signal that goes back through the
base network, determining how parameters of the base net-
work impact the gradient of the adaptation network for de-
biased feature extraction. As a result, the learning of adap-
tation network on biased FR data will perform de-biased
behavior that is consistent with the evaluation procedure on
balanced FER data. As Figure 4(b) illustrated, we observe
the distribution mismatch has been greatly alleviated with
de-biased mechanism and the feature layout of de-biased
FR data (i.e., Webface260M) is similar to that in balanced
FER data. For example, two distributions overlap at the
center bottom, indicating de-biased knowledge is learned
even in biased FER data. Because FER data contains basic
expressions and FR data has compound expressions as il-
lustrated in Figure 6. This explains their features cannot be
perfectly aligned even with our method.

3.4. Algorithm for Meta-Face2Exp

We listed detailed step-by-step pseudo-code for Meta-
Face2Exp in Algorithm 1. Meta-Face2Exp extracts de-
biased knowledge from auxiliary FR data via a circuit feed-
back paradigm. At each generation, the adaptation network
is firstly updated by minimizing the unsupervised loss £,
illustrated in line 7. As a result, B — A is linked with
pseudo label generation for FR data. The base network is
consequently updated by utilizing three losses (i.e., super-
vised loss L, consistency loss L., and feedback loss L)
illustrated in line 17. Specifically, three losses for guiding
the learning process of base network are illustrated in line
9, line 11, and line 15, respectively. As a result, A — B
is linked with the feedback loss from line 12 to 15. By de-
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Algorithm 1 Training procedure of Meta-Face2Exp

Input: Labeled data D} g and unlabeled data Drp
Outputs: @EL\T)
Initialize: 6’ and 0’

1: Get balanced labeled data: Dppp < Smp(Dygg)

2: fort =0...T —1do

3: TFER, YFER < SampleMiniBatch(DFER)

4 zpR « SampleMiniBatch(Drr)

5: gFR — FOI‘Wﬁ.I'd(iEFR, Gg))
6: Update the adaptation network using pseudo label:
7 9%+1)<—9§) —nAVQACE(QFR,A(Z'FR;QA))
8 Compute the base network’s gradient on FER data:
9

gg,)s < Vo,CE(yrer, B(zrer; 98))

10 Compute the base network’s gradient on FR data:
1 gy, +Vo,CE(B(zrr; 05), B(Aug(zrr); 05))
12: Compute the base network’s feedback coefficients:
13: applying Equation (6)

14: Compute the base network’s gradient via feedback:

155 gy - VesCE(Grr, Blzrr;:05))
16: Update the base network:

170 05V 08 — s (g8 + g5 + a8

18: end for
19: return @f)

sign, the two networks constantly complement each other to
extract de-biased knowledge in the FER task.

To circumvent data biases, the use of circuit feedback is
the key. First, the base network learns a prior expression
knowledge from class balanced FER data, which results in
more de-biased expression prediction during pseudo label
generation (B — A). Second, the adaptation network com-
pares the cognitive differences (i.e., before and after updat-
ing parameters) on de-biased FER data to update the learn-
ing of base network by utilizing the feedback loss, which
explicitly tackles with the class distribution mismatch be-
tween FR and FER data (A — B). In the end, the adap-
tation network is equipped with the de-biased expression
knowledge even without labeling.

4. Experiments

In this section, we first introduce the experiment settings
and compare Meta-Face2Exp with existing state-of-the-art.
We then show our circuit feedback successfully eliminates
data bias. We finally conduct ablation study on loss design.

4.1. Datasets and Metrics

We use AffectNet [22] and RAF-DB [19] as our target
FER dataset for facial expression recognition and choose
Webface260M [42], the newest one as our FR data which
are illustrated in Table 1. AffectNet is by far the most chal-

Neutral S Anger  Contempt

Figure 5. Example expressions on FER data (i.e., RAF-DB, Af-
fectNet) and FR data (i.e., Webface260M). For FR data, manually
select eight facial expressions of three identities for display.

Table 1. Dataset for deep face recognition and deep facial expres-
sion recognition.

Dataset ‘ # Identities ‘ #Exps ‘ # Images ‘ Publications
Webface260M (FR data) 4aM - 260M CVPR’21
RAF-DB (FER data) - 7 30K CVPR’17
AffectNet (FER data) - 8 440K TAC’17

lenging and largest FER dataset, providing expression cat-
egories annotations. By querying expression-related key-
words from three search engines, there are 440,000 im-
ages collected from the Internet. Among them, the 280, 000
training images and 4, 000 testing images are manually an-
notated with eight facial expressions (e.g., neutral, happy,
anger, sad, fear, surprise, disgust, and contempt). It has
an unbalanced training dataset and balanced test dataset.
RAF-DB is another large-scale FER dataset that contains
30,000 facial images with seven basic or compound an-
notations (i.e., neutral, happy, surprise, sad, anger, disgust,
and fear) annotated by about 40 independent taggers. Web-
face260M [42], a million-scale dataset, is by far the largest
public FR dataset which contains noisy 260M faces from
4M identities and 42M clean faces from 2M identities. The
mean class accuracy as well as confusion matrix are used
for measurement. In addition, we also report the standard
deviation (std) among the accuracy of each expression class
to measure the FER bias.

4.2. Implementation Details

Training Details: For AffectNet, we sample 28,608 im-
ages as labeled FER data for training (only 10% of Affect-
Net) and 4, 000 images for testing. For RAF-DB, we use
all 12,270 images with seven basic expression (i.e., with-
out sampling) for training and 3,068 images are used for
testing. We do not apply sampling because the minority ex-
pression only contains 281 images which are too small to
train the network. All training face images are detected and
resized to 256 x 256 pixels, and augmented by random crop-
ping to 224 x 224 pixels. By default, we use ResNet50 [14]
as the backbone for both base network and adaptation net-
work. The learning rate is first initialized (i.e., le-2 for the
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base network, le-3 for the adaptation network) and further
decayed with cosine annealing strategy. Once the training is
completed, we finetune the adaptation network with labeled
dataset by a fixed learning rate of le-5. The batch size is
set to 32. The entire training steps for training AffectNet
and RAF-DB are 180,000 and 30, 000, respectively. It is
trained end-to-end with one Nvidia RTX2080 GPU.

Baselines: We compare Meta-Face2Exp with state-of-the-
art baseline. We include 8 models that train with the en-
tire labeled training dataset, i.e., SL [14], gaCNN [20],
IPA2LT [40], RAN [30], CAKE [16], SCN [29], LDL [5]
and DMUE [26]. Among them, 4 models (i.e., SL, [IPA2LT,
DMUE, SCN) provide both results on AffectNet and RAF-
DB. IPA2LT is a pioneer work to solve the problem of in-
consistent annotations. We also include the CAKE model
that uses 7 classes for training and testing on AffectNet.
All results are from their papers. For SL models, we train
them under our experiment settings (i.e., ResNet50, 100%
labeled data size) and conduct extensive hyper-parameter
tuning for performance optimization.

4.3. Comparison with State-of-the-Art Methods

We report mean class accuracy of Meta-Face2Exp and
the baseline models for comparison. The results in Table 2
show that Meta-Face2Exp outperforms state-of-the-art (i.e.,
CAKE) if model is trained and tested with 7 classes on Af-
fectNet. For 8 facial expression classes, Meta-Face2Exp
can still obtain comparable results (i.e., 60.17%) to state-
of-the-art methods using the only 10% labeled FER data.
According to results in Table 3, we are setting a new
second best records on RAF-DB with mean accuracy of
88.54% and which is also comparable to state-of-the-art
methods (i.e., 88.76%). We believe that an ideal FER sys-
tem should report not only high mean accuracy but also
low std accuracy. Unfortunately, std accuracy is largely ig-
nored by existing methods. We will focus on analyzing and
discussing the std accuracy for FER and show that Meta-
Face2Exp can achieve high mean accuracy with much lower
std accuracy.

Table 2. Comparison on AffectNet. ™ denotes both AffectNet and
RAF-DB are used as the training data. * denotes the method is
trained and tested with 7 classes. Only 10% labeled data is used in
our method.

Methods IPA2LTT | RAN | CAKE(x) | DMUE | SCN SL | Ours(x)

Accuracy(%) 55.71 59.50 61.7 63.11 | 60.23 | 58.37 | 64.23

Table 3. Comparison on RAF-DB. T denotes both AffectNet and
RAF-DB are used as the labeled training data.

| Methods | gaCNN [ IPA2LT+ | LDL* | DMUE [ SCN | SL | Ours |

| Accuracy(%) | 8507 | 8677 | 8553 | 88.76 | 87.03 | 84.16 | 88.54 |

Table 4. Mean and Std accuracy on AffectNet for different models.
All models are trained and tested with 7 expression categories.

Models SL Meta-Face2Exp(Ours)
Labeled Data Size 100% 1% 5% 10%
Mean Accuracy(%)T | 58.37 || 53.54 61.66 64.23

Std Accuracy(%)]. 21.53 || 1441 10.69 10.07

Table 5. Mean and Std accuracy on RAF-DB for different models.

Models SL Meta-Face2Exp(Ours)
Labeled Data Size 100% || 25% 50% 100%
Mean Accuracy(%)T | 84.16 || 80.87 85.04 88.54
Std Accuracy(%)J 1548 || 943 10.70 10.00

4.4. Evaluation on class imbalance

Size of the labeled set: To verify the effectiveness of our
Meta-Face2Exp for class imbalance, we report std accuracy
of different models on AffectNet and RAF-DB in Table 4
and Table 5. Specifically, we use Meta-Face2Exp model
accuracy as a function of the size of labeled dataset. For Af-
fectNet, we use Meta-Face2Exp model accuracy as a func-
tion of 1%, 5%, and 10% balanced data. For RAF-DB, we
do not require balanced data as it is a small-scale dataset
and use 25%, 50%, and 100% of unbalanced labeled data.
As results shown, (1) Meta-Face2Exp significantly reduces
the std accuracy and consistently outperforms the baselines
by a large margin which demonstrate the de-biased behavior
of Meta-Face2Exp. Specifically, we reduce the std accuracy
from 21.53% to 14.41% on AffectNet by using only 1% of
balanced labeled AffectNet. We also reduce the std accu-
racy from 15.48% to 9.43% by using only 25% unbalanced
RAF-DB. (2) We can achieve better mean accuracy than
baselines by training with small size of labeled data (i.e.,
5% labeled AffectNet, and 50% labeled RAF-DB). (3) We
found that larger labeled data size leads to better mean ac-
curacy, but not necessarily leads to lower std accuracy. It
verifies that the circuit feedback can successfully eliminate
data bias and is friendly to the very limited data (i.e., has
nothing to do with the size of labeled training data).

We also compare the std accuracy of Meta-Face2Exp to
other existing method. As SCN is the only open-source
project, we test the std accuracy on RAF-DB by using
the public available model. SCN achieves std accuracy of
15.56%, which is close to SL model with 15.48% but is
around 6% higher than proposed Meta-Face2Exp in Table 5.
This comparison again supports the effectiveness of Meta-
Face2Exp to combat class imbalance.

De-biased behavior during training: We take Meta-
Face2Exp model trained with 10% labeled AffectNet as an
example to show the de-biased behavior during training pro-
cedure. The test accuracy of different training steps as well
as confusion matrix between true and predicted labels are
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Figure 6. An illustration of the de-biased behavior of Meta-
Face2Exp. Blue curves from (a) to (b) show accuracy im-
provement of Meta-Face2Exp by training more steps. (b) Meta-
Face2Exp obtains more balance yet higher accuracy compared to
supervised learning model trained with 100% labeled data.

illustrated in Figure 6. First, we observe that the accuracy
curve of different expressions gradually flatten with train-
ing as illustrated from Figure 6(a) to (b). Second, compare
to SL model, proposed Meta-Face2Exp can greatly alleviate
class imbalance as illustrated in Figure 6(b). For example,
Meta-Face2Exp can achieve 56.4% on disgust expression
while SL can only produce less than 30% of mean accuracy.
Such de-biased behavior is benefit from our circuit feedback
paradigm which continuously improves the mean accuracy
of FER and learns de-biased facial expression knowledge.

Visualization Analysis: To further investigate effective-
ness of our Meta-Face2Exp on FER and FR data, we show
the prediction results of the supervised learning (SL) model
and Meta-Face2Exp on eight expressions of AffectNet. Fig-
ure 7 illustrates some example faces and prediction re-
sults including predicted expression and probability from
different facial expressions. Compared with the baseline
trained with entire AffectNet, Meta-Face2Exp shows bet-
ter recognition results. Specifically, our model predicts a
higher probability of correctly recognizing facial expres-
sions. From the middle two rows, our model can recognize
facial expressions but the SL model cannot. From the bot-
tom two rows, our model predicts a lower probability for
facial expressions cannot be recognized.

4.5. Ablation Study

We explore the effects of Meta-Face2Exp using different
loss functions. The ablation study of performance on Af-
fectNet and RAF-DB is illustrated in Table 6. As results
shown, (1) With four losses together, Meta-Face2Exp can
achieve the best mean accuracy. (2) Unsupervised loss £,
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Figure 7. Comparison of Supervised Learning (SL) and our model.

enhances FER to a large margin, which verifies the effec-
tiveness of pseudo label generation. (3) Consistency loss
L. plays a crucial role to enhance FER. This not only ver-
ifies the effectiveness of the proposed augmentation mod-
ule (i.e., expression-specific cover), but also provides a clue
that we can learn comprehensive knowledge from FR data.
(4) Feedback loss L can further contribute to accuracy im-
provement which shows that de-biased mechanism works.

Table 6. Performance of Meta-Face2Exp on 7 expression cate-
gories of AffectNet and RAF-DB with different loss functions.

Models | Ly | L, | Lc | Ly | AffectNet | RAF-DB
1 v X X X 60.66 84.16
2 v v X X 62.03 86.25
3 AN ¢ 63.60 87.26
4 VIV VY 64.23 88.54

5. Conclusions

In this paper, we propose Meta-Face2Exp for facial ex-
pression recognition, which utilizes unlabeled FR data to
enhance FER through a meta optimization framework. It
is inspired by the observations that FER data is class im-
balanced and FR and FER data have a mismatched distri-
bution. The key component is that the base network and
the adaptation network constantly complement each other
to extract de-biased knowledge through the circuit feedback
paradigm. In particular, the de-biased mechanism can ef-
fectively produce low std and high mean accuracy. Experi-
ments demonstrate that Meta-Face2Exp can obtain compa-
rable results to state-of-the-art methods using the only 10%
labeled FER data.
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