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Abstract

This paper investigates the problem of temporally inter-
polating dynamic 3D point clouds with large non-rigid de-
formation. We formulate the problem as estimation of point-
wise trajectories (i.e., smooth curves) and further reason
that temporal irregularity and under-sampling are two ma-
jor challenges. To tackle the challenges, we propose IDEA-
Net, an end-to-end deep learning framework, which disen-
tangles the problem under the assistance of the explicitly
learned temporal consistency. Specifically, we propose a
temporal consistency learning module to align two consecu-
tive point cloud frames point-wisely, based on which we can
employ linear interpolation to obtain coarse trajectories/in-
between frames. To compensate the high-order nonlin-
ear components of trajectories, we apply aligned fea-
ture embeddings that encode local geometry properties to
regress point-wise increments, which are combined with the
coarse estimations. We demonstrate the effectiveness of our
method on various point cloud sequences and observe large
improvement over state-of-the-art methods both quantita-
tively and visually. Our framework can bring benefits to 3D
motion data acquisition. The source code is publicly avail-
able at https://github.com/ZENGYIMING-EAMON/IDEA-
Net.git.

1. Introduction
Dynamic 3D point clouds, which are sequences of 3D

point cloud frames sampled in the temporal domain for
capturing the changes in geometric details or motion of
scenes/objects, have been widely used in many application
scenarios, such as autopilot [22], immersive communica-
tion [6], computer animation [27], and virtual/augmented
reality [40]. Despite of rapid development in 3D sensing
technology [41], it is still difficult and costly to acquire
3D point cloud sequences with high temporal resolution
(HTR), which hinders to finely represent deformable 3D
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Figure 1. Illustration of the problem considered in this paper. One
can adopt a low-cost 3D sensing device to sample the motion at a
low frequency, leading to an LTR point cloud sequence, then ap-
ply the computational method to interpolate/estimate in-between
point cloud frames to obtain an HTR one for finely representing
the 3D motion of objects (or 3D shapes/objects deforming over
time). We are interested in point cloud sequences with massive
non-rigid deformation. Moreover, in real application scenario, the
point cloud frames of a sequence are independently captured in the
sensor space, thus lacking point-wise temporal consistency.

objects [36]. Instead of relying on hardware development,
we consider computational methods to construct an HTR
point cloud sequence from one with low temporal resolu-
tion (LTR), as illustrated in Fig. 1.

Although the considered problem shares similar proper-
ties with 2D video frame interpolation, both of which aim
to interpolate/predict the in-between frames of any two con-
secutive frames of an LTR sequence, the essentially differ-
ent data modality (i.e., illumination vs. geometry informa-
tion) makes it non-trivial to extend existing 2D video frame
interpolation methods [13,14,21] to 3D point clouds. More-
over, the unordered and irregular nature of 3D point cloud
data in spatial and temporal domains poses great challenges.

Recently, several deep learning-based interpolation
methods for 3D point cloud sequences have been pro-
posed [12,19,29,31]. Nevertheless, for the flow-based Poin-
tINet [19], it is mainly applicable to shapes with nearly rigid
transformation and cannot well generalize to those with
large non-rigid deformation. For the auto-encoder-based
methods like [29,31], which directly interpolate global fea-
tures, since the global features are abstract and insufficient
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(a) (b) (c)
Figure 2. Visual comparisons of (a) our IDEA-Net, (b) PointINet [19], and (c) the ground-truth on the Swing sequence.

to describe the details of motion changes, the interpolated
frames tend to have similar shape appearances and lack tem-
poral continuity, leading to stuck motion sequences. Be-
sides, they are architecturally designed as separate learning
stages, instead of fully end-to-end, which may suffer from
severe information loss. Unlike existing works, we seek to
build an interpretable interpolation framework with a clear
geometric explanation. Moreover, in terms of application
scenarios, we are interested in challenging dynamic point
cloud data with large non-rigid deformation.

Technically, we formulate the problem as estimation of
point-wise trajectories (i.e., smooth curves in 3D Euclidean
space) and reason that the challenges are mainly posed by
temporal irregularity and under-sampling, which motivates
us to disentangle the problem, leading to a two-step learning
process: i) coarse linear interpolation and ii) trajectory com-
pensation. Based on the explicit formulation, we propose
IDEA-Net, an end-to-end deep interpolation framework,
which features a dual-branch structure and consists of three
steps: 1) extracting point-wise high-dimensional features,
2) learning point-wise temporal consistency and deducing
coarse trajectories/in-between frames via linear interpola-
tion, and 3) exploiting temporally regularized features to
compensate the non-linear components of smooth trajecto-
ries. Experiments on both synthetic and real-scanned data
demonstrate our IDEA-Net quantitatively and visually out-
performs state-of-the-art methods to a large extent, as visu-
alized in Fig. 2. We also conduct extensive ablation studies
to validate the rationality of our design.

In summary, we make the following contributions:

• a new formulation for the problem of temporally inter-
polating dynamic 3D point cloud sequences;

• a symmetric and coarse-to-fine network for end-to-end
reconstructing HTR point cloud sequences from LTR
point cloud sequences with large non-rigid deforma-
tion.

2. Related Work

Deep 2D video frame interpolation aims to increase the
frame rate of a video by generating the in-between frames.
The existing methods can be generally classified into two
categories: kernel-based and flow-based. The former
[21,24–26] generates the in-between frames by convolution

over local patches directly. The latter [2, 13, 17, 18, 38]
adopts the estimated flow to guide the warping process of
the input frames. Different from 2D images/videos with the
regular grid structure, 3D point clouds are characterized by
both spatial and temporal irregularity, which impedes the
direct extension of 2D video frame interpolation models.

Deep dynamic 3D point cloud processing. The key
challenges of this task lie in the temporal irregularity and
large deformation in the point cloud sequence. Existing
techniques can be broadly classified into three types. (1)
Voxelize a point cloud sequence into a 4D volumetric grid
[5, 20, 23]. For example, FaF [20] uses 3D CNN to ex-
tract features. MinkowskiNet [5] analyzes the voxelized
4D tensor via a sparse 4D CNN. (2) Adopt some sequential
modules to deal with temporal information. For example,
Yang et al. [8] proposed PointRNN, PointGRU, and PointL-
STM to model dynamic point clouds. (3) Directly perform
sequence processing on raw points [9–11, 16, 19, 28, 32].
For example, [9, 10, 16, 32] perform feature aggregation
by querying neighboring points in spatial and temporal do-
mains. They have been applied to several tasks such as ac-
tion recognition, pose estimation and segmentation. How-
ever, such aggregation is inaccurate, especially for point
cloud sequences with large motions. To address this, Poin-
tINet [19] adopts a scene flow estimator to interpolate two
point clouds. However, PointINet fails to interpolate shapes
with large deformation, e.g., human shapes.

Deep 3D shape interpolation. Inspired by the deep
learning-based methods for 3D point cloud processing [29,
30, 34, 37], a number of works adopting neural networks
for 3D shape interpolation have been proposed [1, 7, 12,
19, 31, 39], which can be roughly divided into two cate-
gories. (1) Auto-Encoder (AE)-based methods. For exam-
ple, [1, 12, 39] directly interpolate global features and feed
the interpolated feature vector into the decoder to regress
in-between point cloud frames. [31] further improves this
kind of methods by introducing an edge AE trained with
3D meshes. However, interpolating global features with-
out considering local region deformations may cause sig-
nificant information loss. [7] adds normal information into
the edgeConv [37] and calculates the geodesic matrices of
remeshed 3D objects to explicitly constrain the learning of
correspondence and shape interpolation for 3D meshes si-
multaneously. However, the required normals and topologi-
cal information are unavailable in raw point clouds, making
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Figure 3. The flowchart of the proposed IDEA-Net for temporally interpolating any two consecutive frames of an LTR point cloud
sequence in an end-to-end manner. Besides, the user can vary the parameter t in the range of (0, 1) for interpolating frames continuously
after training. We refer the readers to Supplementary Material for the detailed configuration of our network.
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Figure 4. Illustration of the point-wise trajectories of typical points
of a point cloud sequence, where the green and red dashed lines
denote the ground-truth and linearly interpolated trajectories, re-
spectively.

it non-trivial to extend the method to dynamic point cloud
interpolation. Moreover, additional post-processing may be
required to align the generated shapes or refine the corre-
spondences [7, 12, 31]. (2) Flow-based methods. Similar to
2D image interpolation, [19] adopts the pre-trained flow es-
timation network for 3D point clouds, i.e., FlowNet3D [15],
to generate the bi-directional 3D flow, which is then used to
warp the input frames to generate in-between estimations.
However, it cannot work well on data with large deforma-
tion due to the limitation of the adopted flow estimation.

3. Proposed Method
3.1. Problem Formulation

Without loss of generality, let P0 ∈ RN×3 and P1 ∈
RN×3 be any two consecutive frames of an LTR point cloud
sequence each with N points1, and pi

0 and pj
1 ∈ R1×3 the

i-th and j-th points of P0 and P1, respectively. Assume
that each point of P0 could be aligned to that of P1, and let
the matrix A ∈ RN×N explicitly encode such point-wise
temporal consistency, i.e., if pi

0 corresponds to pj
1, aij = 1;

otherwise, aij = 0. Let ai ∈ R1×N denote the i-th row of
A. Note that A is unknown.

Obtaining an arbitrary point cloud frame between P0

and P1 is equivalent to estimating the trajectory within each
1Note that the points contained in a point cloud frame are randomly

stacked to form a matrix.

pair of points
{
pi
0, aiP1

}N
i=1

. Generally, the trajectory of
each point is a smooth curve in 3D Euclidean space; more-
over, the fluctuation of the curves corresponding different
points varies due to the articulated structure, non-rigid de-
formation, and other factors, as illustrated in Fig. 4. How-
ever, directly estimating such a curve only with two end-
points may have high uncertainty. Thus, we disentangle this
challenging problem and formulate it as a two-step coarse-
to-fine process. Specifically, we first uniformly approxi-
mate all point-wise trajectories by linear curve fitting, and
accordingly the coarse in-between frame at time ∀t ∈ (0, 1)
denoted as P0→t ∈ RN×3 can be interpolated as

P0→t = (1− t)P0 + tAP1. (1)
Although such a simple linear interpolation process is inac-
curate, it is able to provide rational initialization to reduce
ambiguity to some extent. Then, to further compensate the
high-order nonlinear components of trajectories missed in
Eq. (1) and correct the errors resulted from the inaccurate
estimation of A, we introduce a trajectory compensation
process. Particularly, we can point-wisely map the input
point clouds to a high-dimensional feature space by a typ-
ical nonlinear mapping function φ(·) : R3 → Rd and then
estimate a function f(·) : Rd → Rd to fuse the aligned fea-
tures, which are finally transformed back to the point cloud
space by another nonlinear function ψ(·) : Rd → R3 to
obtain the increments ∆0→t ∈ RN×3 for trajectory com-
pensation:

∆0→t = ψ (f(φ(P0), φ(P1),A, t)) . (2)
We expect that the high-order nonlinear components of the
trajectories could be learned from the cues provided by the
feature representation that can embed both local and global
shape information of P0 and P1, as well as the contrast
between the feature representations of them. The predicted
in-between frame of an HTR sequence is finally obtained as

O0→t = P0→t + ∆0→t. (3)

Moreover, because the transpose of the alignment ma-
trix AT ∈ RN×N also depicts the temporal consistency in-
formation from P1 to P0, the previous formulation can be
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equivalently written as
P1→t = (1− t)ATP0 + tP1, (4)

∆1→t = ψ
(
f(φ(P0), φ(P1),A

T, 1− t)
)
, (5)

O1→t = P1→t + ∆1→t. (6)

Ideally, the two point clouds represented by O0→t and
O1→t are the same. From Eqs. (1)-(6), it can be seen that
the problems of dynamic point cloud interpolation mainly
rely on the learning of the point-wise temporal consistency
and the realization of the trajectory compensation process.

3.2. Overview of our Framework

Based on the above formulation, we propose an end-
to-end deep learning-based framework dubbed IDEA-Net,
a dual-branch network, which mimics the two equivalent
coarse-to-fine processes. As shown in Fig. 3, our IDEA-Net
comprises of three modules: feature representation, learn-
ing point-wise temporal consistency, and trajectory com-
pensation. Specifically, the feature representation module
first embeds 3D coordinates into a high-dimensional feature
space by exploring both the local and global geometry of a
point cloud, leading to the point-wise high-dimensional fea-
tures. Taking the features as input, the temporal consistency
module then predicts a relaxed matrix A with the alignment
effect, which naturally induces the coarse interpolations via
Eqs. (1) and (4). Finally, the trajectory compensation mod-
ule regresses the aligned and interpolated high-dimensional
features with the learned A to generate nonlinear incre-
ments in a residual learning manner for compensating the
high-order components of trajectories. We empirically pick
O0→t if t < 0.5 and O1→t, otherwise as the final interpo-
lated frame. In what follows, we will detail each module.

3.3. Hierarchical Feature Representation

We employ DGCNN [37] as our backbone to map 3D
coordinates of input point clouds into a high-dimensional
feature space, in which both local and global semantics are
progressively embedded through the dynamic graph con-
struction mechanism. Specifically, this module is com-
posed of four layers of EdgeConv, which dynamically se-
lects neighbours to aggregate local information to obtain
point-wise features. Besides, a global feature that is formed
by the adaptive max and average pooling for all point-
wise features is concatenated to each local feature to get
the final point-wise features, denoted as F0 ∈ RN×d and
F1 ∈ RN×d for P0 and P1, respectively. Denote by f i0
and f j1 ∈ R1×d the i-th and j-th rows of F0 and F1, which
encode the high-dimensional features of the i-th and j-th
points of P0 and P1, respectively. We refer the readers
to [37] for more details of DGCNN.

3.4. Learning Point-Wise Temporal Consistency

As aforementioned, in reality, each frame of a point
cloud sequence is captured individually in the camera space,
resulting in temporal irregularity. Hence, we propose a tem-
poral consistency module to explicitly align the pair of in-
put point clouds in point-wise, i.e., learning the matrix A.
However, the matrix A is ideally a binary permutation ma-
trix, making it impossible to directly optimize it in a deep
learning framework. To overcome the challenge, we opti-
mize a relaxed alignment matrix, i.e., aij ≥ 0 and ai1

T = 1
with 1 ∈ R1×N being the vector whose all entries are one.
Note that this module is end-to-end optimized in the IDEA-
Net framework without additional supervision.

Intuitively, a pair of aligned points should have similar
semantic features. Motivated by this observation, we em-
ploy the distance between features to estimate A. Specif-
ically, we first compute Ã ∈ RN×N whose (i, j)-th entry
ãij is

ãij = 1/‖f i0 − f j1‖2, (7)

where ‖ · ‖2 returns the `2-norm of a vector. To further
encourage A to mimic a binary matrix, we normalize the
elements in each row

âij = (ãij − µi)/σi, (8)
where µi and σi are the mean and standard deviation of the
i-th row of Ã. Finally, we apply a softmax operator on Â
row-wisely to fulfill the relaxed constraint, generating

aij = eâij/

N∑
j=1

eâij . (9)

Remark. Due to the non-differentiable characteristic of
strictly binary matrices, our learned matrix A under such
a relaxation process is no longer expected to exactly indi-
cate point-wise temporal consistency relationships. In fact,
as revealed in previous studies [9], since points may flow
in and out across frames, there may not exist a “ground
truth” point-wise consistency in most cases. Hence, we
can interpret that A is functionally generalized to achieve
coarse matching at both point and feature levels, and further
drives the subsequent refinement module. Besides, the er-
rors caused by the inaccurate estimation of A may be fixed
in the subsequent refinement step to some extent. See Sec-
tion 4.4 for the detailed ablation study on this module.

3.5. Trajectory Compensation

With the learned A in Section 3.4, we can naturally ob-
tain coarse interpolations via Eqs. (1) and (4). To simultane-
ously compensate the nonlinear components of trajectories
and fix the interpolation errors caused by the inaccurate A,
we introduce the trajectory compensation module.

Specifically, as the feature embedding process in Section
3.3 can capture both the local and global geometric struc-
tures of the inputs, we employ it to realize the mapping
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function φ(·) in Eq. (2), i.e.
F0 = φ(P0), and F1 = φ(P1). (10)

Considering that the non-linear trajectories could be
deemed linear after being projected into the high-
dimensional feature space via the data-driven manner, we
simply implement the fusion function f(·) in Eq. (2) with a
linear function, i.e.,

F0→t = (1− t)F0 + tAF1,

F1→t = (1− t)ATF0 + tF1.
(11)

Finally, we adopt a shared multi-layer perceptron (MLP) to
implement the mapping ψ(·) for regressing the increments,
i.e.,

∆0→t = ψ(F0→t), and ∆1→t = ψ(F1→t). (12)
Remark. Directly regressing an in-between point cloud
frame via Eqs. (2) and (5) seems to be a feasible solution.
However, such an approach cannot yield satisfactory results
(see the results in Section 4.4) due to the curse of dimen-
sionality. This also validates the necessity and rationality of
the coarse linear interpolation module in Fig. 3.

3.6. Loss Function

We train IDEA-Net end-to-end by simultaneously mini-
mizing the earth mover’s distance (EMD) [33] between the
reconstructed point cloud from each branch and the ground-
truth one Ot

gt:

L =
1

2

(
LEMD

(
O0→t,O

t
gt

)
+ LEMD

(
O1→t,O

t
gt

))
where LEMD(·, ·) computes the EMD between two point
clouds.

Remark. Compared with the single-branch design, the
proposed dual-branch design with shared network param-
eters reconstructs in-between frames from two directions,
which is equivalent to regularizing A during training. Ac-
cordingly, the trained model can generate a more feasible
A and like-wise better reconstruction quality during infer-
ence. Section 4.4 demonstrates the superiority of such a
dual-branch design via extensive evaluation.

4. Experiments
4.1. Experiment Settings

Datasets. We first constructed a dataset named Dynamic
Human Bodies dataset (DHB), containing 10 point cloud
sequences from the MITAMA dataset [35] and 4 from the
8IVFB dataset2. The sequences in DHB record 3D hu-
man motions with large and non-rigid deformation in real
world. Besides, we adopted the commonly-used DFAUST3

2The MITAMA and 8IVFB datasets contain dynamic 3D meshes and
real scanned point clouds, respectively. We uniformly sampled from each
frame 1024 points.

3The DFAUST contains dynamic 3D meshes. Following the same set-
ting as [31], we uniformly sampled from each frame 1000 points.
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Figure 5. Comparisons of the frame-by-frame quality of the re-
constructed in-between frames on Swing of the DHB dataset.

dataset [3], a synthetic 3D human motion dataset used in
Intrinsic Point Cloud Interpolation (PCI) [31] and PointNet
AE [29], to fairly compare with them. For DHB, we used
eight sequences to form the training set, and the remaining
six sequences as the test set. For DFAUST, following [31]
we used eleven action sequences to build the training dataset
and three sequences for testing. We downsampled the ac-
quired sequences in the temporal domain to generate input
LTR point cloud sequences, i.e., we uniformly selected one
frame every ktrain frames during the training phase and ktest
frames during the testing phase. See Supplementary Mate-
rial for more details of the datasets.

Compared methods. We compared the most recent
work named PointINet [19], which is flow-based and de-
signed for temporal interpolation of point cloud sequences
collected by LiDAR. For a fair comparison, we retrained its
official code with the same DHB dataset as ours. We also
compared our method with two state-of-the-art AE-based
methods, i.e., Intrinsic PCI [31] and PointNet AE [29]. We
adopted their pre-trained models on the DFAUST dataset
and trained our method with the same data as [31]. It is also
worth noting that Intrinsic PCI [31] requires the edges of a
template mesh as extra input during training. Besides, we
followed the setting of [31], which adopts the ICP [4] as the
post-processing, to align the interpolated frames from In-
trinsic PCI [31] and PointNet AE [29] with the input frames.
Note that our method does not need a template mesh and
any post-processing.

Evaluation metrics. To quantitatively evaluate the in-
terpolation quality, we provided both the average and the
frame-by-frame Chamfer distance (CD) and EMD between
the interpolated frames and the ground-truth ones of a se-
quence. Besides, we conducted subjective evaluation to
compare different methods comprehensively. See Sec-
tion 4.3 for details.

4.2. Experimental Results

Results on the DHB dataset. Table 1 shows the quan-
titative comparison with PointINet [19], where we set both
ktrain and ktest to 3 to generate LTR sequences for training
and testing. As Table 1 shows, our method outperforms
PointINet to a large extent under EMD metrics. The reason
is that it is difficult for PointINet to explicitly predict accu-
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Figure 6. Comparisons of the frame-by-frame quality of the recon-
structed in-between frames on shake arms of the DFAUST dataset.

Table 1. Quantitative (×10−3) comparison over the DHB dataset.

Methods Swing Longdress
EMD CD EMD CD

PointINet [19] 15.03 1.70 10.09 0.95
Ours 7.07 1.24 5.92 0.88

Table 2. Quantitative (×10−3) comparison over the DFAUST
dataset.

Methods shake arms shake hips shake shoulders
EMD CD EMD CD EMD CD

Intrinsic PCI [31] 103.85 43.74 52.93 22.04 64.70 28.55
PointNet AE [29] 34.23 9.09 40.85 12.35 29.18 11.99

Ours 9.31 1.20 6.85 0.91 9.19 0.95

rate flows on sequences with large deformation, while our
method is free of this operation. Besides, as shown in Fig. 5,
our method achieves lower EMD and CD for most frames
and smaller fluctuations of frame-by-frame EMD and CD.
Fig. 2 and Fig. 7 show the visual comparison, where it can
be seen that our method can generate frames that are closer
to ground-truth ones, whereas PointINet [19] tends to gen-
erate outliers and non-uniformly distributed points.

Results on the DFAUST dataset. Table 2 lists the quan-
titative comparison with Intrinsic PCI [31] and PointNet
AE [29], where we set both ktrain and ktest to 3 to generate
LTR sequences for training and testing. From Table 2, it
can be seen that our method significantly outperforms In-
trinsic and PointNet AE. The reason is that Intrinsic and
PointNet AE adopt separate learning stages to vaguely in-
terpolate global features for generating in-between frames,
resulting in severe loss of spatial information, while our
method is end-to-end and geometrically meaningful. From
Fig. 6, it can be observed that our approach achieves much
lower EMD and CD over almost all frames than Intrinsic
and PointNet AE. Fig. 8 provides visual demonstration of
our method, from which we can see that these two AE-based
methods fail to interpolate correct poses. Moreover, they
cannot faithfully represent the original shapes.

Evaluation of the flexibility. To demonstrate the flexi-
bility of our method, we trained a single network with data
that were generated by setting ktrain to 3 and then evaluated
the network with data that were generated by setting various
ktest ∈ {3, 5, 7, 9, 11}. We also trained PointINet [19] with

Table 3. Quantitative comparisons under different training strate-
gies. (1)-(3): the methods were trained with data that were gen-
erated with ktrain = 3; (4)-(5): the methods were trained with
the mixed data training strategy introduced in Section 4.2; Ex-
cept for (3) where the flow estimation module of PointINet was
pre-trained and fixed, the other networks were end-to-end trained
from scratch. The testing data were generated by setting ktest = 3.

Swing Longdress
EMD CD EMD CD

(1) Ours 7.07 1.24 5.92 0.88
(2) PointINet [19] 15.03 1.70 10.09 0.95
(3) PointINet [19] (pretrained flow) 15.38 1.72 10.63 0.96
(4) Ours (mixed) 6.74 1.21 5.84 0.89
(5) PointINet [19] (mixed) 81.43 14.19 84.49 9.80

the same setting for comparison. As shown in Fig. 9, it can
be seen that with the value of ktest increasing, the interpo-
lation problem becomes more challenging, and thus the re-
construction errors of both our method and PointINet grad-
ually increase. However, our method always outperforms
PointINet to a large extent, and especially the advantage is
more obvious for a relatively larger ktest, demonstrating its
stronger ability.

Evaluation on the mixed data training mechanism. In
the previous experiments, we utilized all the ground-truth
in-between frames for supervision. In this experiment, we
set ktrain = 4 and ktest ∈ {1, 3, 5, 7} to generate training and
testing data, respectively. During training, in each iteration
we randomly selected only one of the in-between frames to-
be-interpolated to optimize. Denote this training strategy as
mixed data training. Such a training manner can speed up
the training process and improve the robustness of the net-
work, owing to the diversity of data in different iterations.
As shown in Fig. 10, the performance of our method im-
proves under this strategy, whereas PointINet [19] suffers
from serious performance degradation (see Table 3). This
observation also demonstrates the advantage of our design.

4.3. Subjective Evaluation

To conduct the subjective evaluation, we displayed the
interpolated sequences by all methods and the correspond-
ing ground-truth ones to 15 volunteers and asked them to
vote for the method whose results they considered are clos-
est to the ground-truth sequences. As shown in Fig. 11, our
IDEA-Net gets the highest number of votes on all the test-
ing sequences, especially compared with the PointINet in
Fig. 11a. Besides, the evaluation results in Fig. 11b indicate
Intrinsic and PointNet-AE also obtain good subjective eval-
uations since these two methods can generate shapes with
uniformly distributed points and few outliers. However, as
illustrated in Fig. 8, these global feature-based methods fail
to generate the correct poses and cannot preserve the faith-
ful shapes. We also refer the readers to the Github page for
video demos.
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(a) (b) (c)

Figure 7. Visual comparison of the interpolated in-between frames by (a) Ours and (b) PointINet [19] on Longdress of the DHB dataset,
and (c) the corresponding ground-truth frames. Points of the interpolated frames by PointINet are non-uniformly distributed.

(a) (b)

(c) (d)

Figure 8. Visual comparison of the interpolated in-between frames by (a) Ours, (b) Intrinsic PCI [31], and (c) PointNet AE [29] on the
sequence of the DFAUST dataset, and (d) the corresponding ground-truth frames. The overall shapes of the interpolated frames by Intrinsic
and PointNet AE obviously deviate from ground-truth ones.
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Figure 9. Flexibility verification on Squat 2 of the DHB dataset.
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Figure 10. Quantitative evaluation of our method trained with the
mixed data training mechanism. The testing sequence is Swing of
the DHB dataset.
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Figure 11. Subjective evaluation on the interpolated sequences by
different methods on (a) DHB dataset and (b) DFAUST dataset.
“SUM” refers to the sum of votes on all testing sequences for each
dataset.

4.4. Ablation Study
To comprehensively and deeply understand the effects

of the core modules and architecture design of IDEA-Net,
we conducted the following ablation studies. For each case,
we retrained the modified network with the same training
stragety as the full network and tested it on the same dataset.

(a)-(b) Point-wise temporal consistency. We replaced
this module with two types of matrices, i.e., a random per-
mutation matrix and a matrix D ∈ RN×N with dij =

1/‖pi
0−pj

1‖2. As shown in Figs. 12a and 12b, without this
module, the resulting in-between frames show more wrong
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Figure 12. Visual comparisons of the results in ablation studies.
(a)-(f) the interpolated frames by our method under the six abla-
tion settings introduced in Section 4.4, and (g) the proposed full
model; (h) the ground-truth in-between frames. We highlighted
the regions with serious shape distortion in red boxes.

Table 4. Quantitative results (×10−3) of the ablation studies on
the DHB dataset. (a)-(f) correspond to the six settings in Sec. 4.4.

Settings Swing Longdress
EMD CD EMD CD

Full model 6.74 1.21 5.84 0.89
(a) 23.46 3.11 17.82 2.22
(b) 25.02 3.26 21.50 2.26
(c) 10.36 2.38 6.33 0.97
(d) 18.28 2.85 24.32 2.57
(e) 11.00 1.78 6.13 1.40
(f) 25.47 9.05 29.85 5.51

points, and the values of both EMD and CD increase sig-
nificantly, demonstrating the effectiveness of this module.
We also refer the readers to Supplementary Material for the
visual illustration of learned A.

(c) Linear interpolation. We omitted the linear interpo-
lation step and directly added P0 and P1 to the increments
∆0→t and ∆1→t, respectively. We report the results in Ta-
ble 4 (c) and Fig. 12c, showing that the loss gets worse and
the generated shapes become less realistic than those of the
full model, e.g., the shapes of the hands and legs.

(d) Directly regress in-between frames from features.
Without employing the linear interpolation to generate
coarse estimation, we directly regressed in-between point
clouds from the interpolated feature derived by Eq. (12).
Table 4 (d) and Fig. 12d provide the quantitative and vi-
sual results, respectively, where it can be seen that the CD
and EMD values increase more than twice, and the resulting
point clouds have considerable artifacts.

(e) Trajectory compensation. In Table 4 (e) and
Fig. 12e, we reported the results of IDEA-Net without the
compensation module, where it can be seen that without this
module, the values of both EMD and CD increase and the
resulting shapes are partially collapsed.

(f) Dual-branch design. To conduct comparisons, we
trained a single-branch network, i.e., the branch predicting
O0→t in IDEA-Net. As shown in Table 4 (f) and Fig. 12f,
the single-branch model produces much larger EMD and
CD than the dual-branch model (i.e., the full model). Be-
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Figure 13. Comparison of the training and testing losses of the
dual- and single-branch designs.

sides, its visual results are noisy and the shapes (e.g., the
legs) deviate from the ground-truth ones, validating the sig-
nificant advantages of the symmetric dual-branch design
with shared modules in terms of the reconstruction quality.
Moreover, we showed the training (solid lines) and testing
(dashed lines) losses for the dual- and single-branch models
in Fig. 13. As can be seen, the dual-branch model can sta-
bilize the training process. Also, it potentially avoids over-
fitting and improves the generalization ability of the model,
i.e., although the training losses of these two designs con-
verge to comparable values, the testing error of the dual-
branch design is much smaller than that of the single-branch
design.

5. Conclusion and Discussion
We proposed IDEA-Net, an end-to-end framework for

temporally interpolating dynamic 3D point cloud sequences
with large non-rigid deformation. We formulated the prob-
lem as estimation of point-wise trajectories which can be
approximated in a coarse-to-fine manner with the aid of the
explicitly learned temporal consistency. By extensive ex-
periments and ablation studies, we demonstrated the sig-
nificant advantages of the proposed IDEA-Net over state-
of-the-art methods in both quantitatively and visually. We
believe our framework can provide novel insights for the ac-
quisition and processing of dynamic point cloud sequences.

Despite this paper reveals essential discoveries on the
problem of dynamic 3D point cloud interpolation, we can
expect to further improve performance by enriching specific
technical roadmap from different aspects. First, we can in-
crease the receptive field of the time domain by feeding a
longer frame group instead of a pair. Second, we can con-
sider introducing sequential modeling framework to jointly
learn temporal correlation across multiple frames. Third,
considering the fact that points move at different speed and
acceleration, we can design higher-order trajectory estima-
tion schemes to empower the whole model. Finally, it is
highly desired to construct a quantitative metric for reliably
evaluating the quality of interpolated point cloud sequences.
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