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Abstract

LiDAR and camera are two common sensors to collect
data in time for 3D object detection under the autonomous
driving context. Though the complementary information
across sensors and time has great potential of benefiting
3D perception, taking full advantage of sequential cross-
sensor data still remains challenging. In this paper, we pro-
pose a novel LiDAR Image Fusion Transformer (LIFT) to
model the mutual interaction relationship of cross-sensor
data over time. LIFT learns to align the input 4D sequential
cross-sensor data to achieve multi-frame multi-modal infor-
mation aggregation. To alleviate computational load, we
project both point clouds and images into the bird-eye-view
maps to compute sparse grid-wise self-attention. LIFT also
benefits from a cross-sensor and cross-time data augmen-
tation scheme. We evaluate the proposed approach on the
challenging nuScenes and Waymo datasets, where our LIFT
performs well over the state-of-the-art and strong baselines.

1. Introduction

3D object detection plays the primary role in scene un-
derstanding for autonomous driving, where cameras and
LiDAR are two standard complementary sensors for au-
tonomous vehicles to perceive environments in time. Cam-
eras provide sequential 2D images with rich texture and
color cues, while LiDAR specializes in distance sensing via
continuous sparse 3D points. Successfully detecting 3D ob-
jects in the environments hinges on the best exploitation
of all available data across sensors and time to cooperate
complementary information. However, we observe that the
cross-sensor information may be misaligned over time, as
illustrated in Figure 1(a). The reasons lie in two aspects.
First, there may exist asynchronous timelines between Li-
DAR and cameras. Second, the different coordinate systems
across sensors introduce spatial misalignment even between
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Figure 1. Illustration of the information interaction between se-
quential cross-sensor data. (a) The misaligned complementary in-
formation cross sensors over time. (b) Information fusion scheme:
(i) Integrating the cross-sensor data at the corresponding times-
tamp, then combining the sequential information within sensor
streams. (ii) Aggregating information from all timestamps in
cross-sensor data streams. Mutual interaction can better connect
misaligned complementary information across sensors and time.

synchronized images and point clouds.

Due to the challenges of jointly processing sequen-
tial cross-sensor data, existing 3D object detection algo-
rithms independently perform information fusion over time
or across sensors. On one hand, a large portion of ap-
proaches attempt to exploit the valuable temporal infor-
mation from multiple frames or a longer sequential in-
put [18,35,41,42]. In addition to the straight-forward point
concatenation [20, 35] to produce denser point cloud, con-
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volution layers [18], recurrent networks [8,42], and object-
centric fusion module [24, 36,4 1] have shown favorable re-
sults on modeling temporal information. On the other hand,
many approaches make use of cross-sensor data, which
contains richer textures and broader context than single-
modal input especially for small objects or instances at far
range. The typical cross-sensor fusion schemes include
proposal-level feature concatenation [!1,22], feature pro-
jection [15,20] and point-wise concatenation [27,31]. How-
ever, existing approaches do not take full advantage of in-
formation fusion across sensors and time simultaneously,
which potentially limits the performance of multi-modal 3D
object detection. Though the very recent work [20] makes
an early trial of learning a 4D network, in fact, it uses a pre-
processing scheme to concatenate points as temporal fusion,
which treats the information interaction as separate parts.
By contrast, as shown in Figure 1(b), we propose to ex-
plicitly model the mutual correlations between cross-sensor
data over time, aiming at the full utilization of misaligned
complementary information.

Recent advances in sequential modeling [, 30, 34] and
audio-visual fusion [7, 29] demonstrates that Transformer,
as an emerging powerful architecture, is very competent
in modeling the information interaction for sequential data
or cross-modal data. That is mainly because that the mu-
tual relationship can be easily encoded by the intrinsic self-
attention module in Transformer. However, it is not feasi-
ble to directly apply the standard Transformer architecture
for sensor-time fusion in 3D object detection, owing to two
facts: 1) The massive amount of 3D points as a sequence in-
put is computationally prohibitive for Transformer. 2) The
mutual interaction across sensors and time is beyond the
scope of Transformer.

To address the above issues, we present a novel LIDAR
Image Fusion Transformer, short for LIFT, to learn the 4D
spatiotemporal information fusion across sensor and time.
Specifically, LIFT contains a grid feature encoder and a
sensor-time 4D attention network. In the grid feature en-
coder, we fetch camera features for corresponding points
and conduct pillar feature extraction to project both LIDAR
points and point-wise camera features into the Bird-Eye-
View (BEV) space. By keeping a relatively small number
of grids, we are able to efficiently compute the inter-grid
mutual interactions and the intra-grid fine-grained attention.
The grid-wise sensor-time relations naturally reside in 4D
and thus can be encoded by an attention network. In more
detail, we design a 4D positional encoding module to locate
the tokens across sensors and time, and further reduce com-
putational overhead by sparse window partition and pyra-
mid context structure with enlarged receptive fields. Ad-
ditionally, we equip our detector with a novel sensor-time
consistent data augmentation scheme.

In brief, our contributions can be summarized as follows:

* To our knowledge, we first propose the Transformer-
based end-to-end 3D detection framework that ex-
plores the integrated utilization of sequential multi-
modal data. The proposed method is capable to align
the 4D spatiotemporal cross-sensor information.

* We propose a simple yet effective data augmentation
technique to preserve both the cross-sensor and cross-
time consistency to facilitate training 3D detectors.

* We conduct extensive experiments on the challenging
large-scale nuScenes and Waymo datasets. The pro-
posed LIFT performs well over the state-of-the-art.

2. Related Work

Point Cloud Object Detection. LiDAR-based 3D detectors
localize and classify objects from point clouds, which can
be broadly grouped into two categories: point-based and
grid-based. The point-based methods [26, 39,40] take raw
points as input and apply PointNet [23] to extract point-wise
features and generate proposals for each point. The grid-
based methods [12, 35, 37, 38, 43, 48] propose to convert
point clouds into regular grids as input. PointPillars [12]
typically transfers point clouds into a BEV pseudo image,
while Voxelization [25, 35, 48] maps point clouds into reg-
ular 3D voxels. Compared to point-based methods, grid-
based methods are computationally efficient, accelerating
the training on large-scale datasets such as nuScenes [2] and
Waymo [28] with state-of-the-art detection performance. In
this work, we follow PointPillars [12] to transfer point cloud
into a BEV feature map.

Temporal Fusion. A straight-forward temporal fusion
scheme is to concatenate points from adjacent frames [2,

, 35], which yields denser point representation but with-
out explicit consideration of temporal correlation. Instead,
some recent approaches [8, 24, 41,42] make further explo-
ration to model the temporal information interaction at the
feature level, including object-centric design [24,36,4 1] and
scene-centric design [8, 18,42]. For the object-centric de-
sign, temporal feature fusion is conducted on top of object
proposals. This helps to aggregate information efficiently
over a long temporal span but depends on the quality of
proposal generation. For the scene-centric design, feature
fusion is performed based on the whole scene. Fast-and-
Furious [18] uses convolution layers to fuse middle-level
features. Furthermore, recurrent networks [8,42] show im-
provements when modeling temporal correlation. How-
ever, the RNN-based methods are computationally inten-
sive given the high dimensional features. In this work, we
propose a novel Transformer-based module to encode the
interaction relationships across frames. Compared to early
works [46], our method explores the spatiotemporal corre-
lation in a unified module. In addition, our network is de-
signed with cross-sensor fusion together.
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Figure 2. Architecture of LIDAR Image Fusion Transformer (LIFT). LIFT takes both sequential LiDAR point clouds and sequential camera
images as input, which are processed into BEV grids by Grid Feature Encoder and fused with Sensor-Time 4D Attention.

Cross-Sensor Fusion. Cross-sensor fusion between cam-
eras and LiDAR has shown great advantages for 3D object
detection. Some approaches perform fusion based on 2D
detection results [22] or object region proposals [3,11]. An-
other line of attempts [14, 15,44] fuse cross-modal features
at the BEV space [15,44]. From a different perspective,
other methods [9,27,31,47] perform fusion at point level.
For example, PointPainting [3 1] and PointAugmenting [32]
respectively fetch segmentation scores and image features
for each LiDAR points by project points into camera im-
ages. Despite the demonstrated success, those projection-
based approaches are easily affected by projection errors,
resulting in ambiguous fusion with misaligned information.
In this work, we build a Transformer-based architecture to
rethink the cross-modal information interaction problem in
the time stream.

Transformer. Transformers were first proposed for the
sequence-to-sequence machine translation task [30]. The
core mechanism of Transformers, self-attention, makes
it particularly suitable for modeling sequential relation-
ship [5, 10, 13, 19]. The self-attention operation also pro-
vides a natural potential for cross-modal information fu-
sion. Examples include fusing audio and visual signals for
audio enhancement [29], speech recognition [7] and video
retrieval [4]. In the context of autonomous driving, several
works apply the attention mechanism to fuse global cross-
modal signals for motion forecasting and planning [21,33].
In this work, we apply the self-attention in sparse 4D win-
dows, considering both the spatiotemporal and cross-sensor
interaction at the same time.

3. LiDAR Image Fusion Transformer

In this work, we present LiDAR Image Fusion Trans-
former (LIFT), an end-to-end single-stage 3D object detec-
tion approach, which takes both sequential point clouds and

images as input and aims at exploiting their mutual inter-
actions. Figure 2 illustrates the overall architecture of our
proposed method, which consists of two main components:
(1) Grid Feature Encoder (Section 3.1) to process the input
sequential cross-sensor data into grid features. (2) Sensor-
Time 4D Attention (Section 3.2) to learn the 4D sensor-time
interaction relations given the grid-wise BEV representa-
tions. Furthermore, we equip our LIFT with sensor-time
data augmentation (Section 3.3).

3.1. Grid Feature Encoder

Compared to a typical point cloud detectors, which
learns to classify and localize objects based on single-frame
LiDAR point cloud, LIFT takes both sequential point clouds
and camera images as input. Specifically, the point clouds
can be presented as a sequence of frames £ = {L;,}1 ;,
where Ly = {l1,...,ln, } consists of N LiDAR points
l; € R? scattered over the 3D coordinate space. Be-
sides, camera images are presented in time stream 7 =
{I,YE | I, € RUXVX3xNe where U and V denotes the
original image size, and N¢ is the number of images per
scan. For sequential data processing, we use the prior of
vehicle pose to remove the effects of ego-motion between
different point clouds, then we process each frame follow-
ing the feature generation pipeline as shown in Figure 3.

Camera Feature Fetching. For perspective alignment
between modalities, we first align the representations for
cross-sensor data input. Specifically, for the camera in-
put, we use the off-the-shelf 2D object detector [45] to ex-
tract image features. Then we project point clouds onto
the image plane by a prior homogeneous transformation
G € R**4 for fetching the corresponding point-wise image
features. There are two benefits. First, the point-level rep-
resentation aligns images and points in the same 3D coor-
dinate, enabling fine-grained interaction across sensor fea-
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Figure 3. Pipeline of Grid Feature Encoder. We fetch the corre-
sponding camera features for LIDAR points and then capture pillar
features for each modality respectively. Besides, point-wise atten-
tion is conducted between two modalities within stacked pillars.
Finally, the pillar features are scattered into 2D BEV grids.

tures. Second, the fetched image feature involves a specific
range of receptive field in the image, which helps to allevi-
ate the projection biases between two modalities.

Pillar Feature Extraction. The number of raw LiDAR
points is huge and directly computing point-wise relations
is a heavy load to bear. In contrast, the number of BEV
grids is small. As such, we encode both point clouds and
camera images into the BEV maps separately. Though the
projection from 3D points to the 2D space yields informa-
tion loss of the height dimension, such a loss hardly affects
the intrinsic geometry of 3D objects in autonomous-driving
scenes. Finally, the point-wise correlations are translated
to grid-wise correlations in the BEV. Also note that the im-
age feature extraction is independent of point cloud feature
extraction, thus the modality differences are well preserved
for further processing.

In more detail, we follow PointPillars [12] to quantize
point clouds into P vertical pillars on fixed-size 2D grids.
Then we perform linear transformation and max-pooling
on each pillar as grid features, which are further scattered
into BEV representation M L ¢ REXWXSL where H
and W denote the BEV map size and fr denotes the fea-
ture dimension. Similarly, we obtain the camera features
MC e RF*WxJc in the BEV as well.

Point-wise Attention. Inside each pillar, we propose to en-
hance the pillar encoding via learning a fine-grained corre-
lation among points. Namely, we use two separate learn-
able linear layers both with Np outputs to learn weights
wi, € RV? and we € RV?. The weights wy, and wc is
learned from the combination of point cloud feature and im-
age feature and followed by the sigmoid activation function.
Then two weights are applied to the point cloud and the im-
age features over the Np points within the pillar, respec-
tively. This allows for dynamic information aggregation

across two modalities at the fine-grained level with negli-
gible extra cost.

3.2. Sensor-Time 4D Attention

To model the mutual correlations of sequential point
clouds and camera features, our key motivation is to exploit
the self-attention mechanism in Transformer to aggregate
complementary information. The classic transformer archi-
tecture [30] takes a sequence as input consisting of discrete
tokens, each represented by a feature vector. In this work,
the input sequence consists of sequential point cloud and
image features. Formally, we assign the grid-wise features
from BEV maps {M/, MZ}L, as input tokens. To adapt
to 3D object detection, we present three critical designs on
top of the classic transformer to model the information in-
teraction across sensors and time, including Sparse Window
Fartition, Pyramid Context, and 4D Positional Encoding.

Sparse Window Partition. Although the number of tokens
has been sufficiently reduced via the grid feature encoder,
a small grid size usually results in a high-resolution map
for favorable performance. Directly computing the token-
wise relations on the whole grip map is still not manage-
able. Thus, can we further reduce the network complex-
ity while maintaining the detection accuracy? Motivated by
the window partition mechanism [16], we constrain the lo-
cal self-attention computation within partitioned windows,
which largely reduces the number of input tokens. Com-
pared to 2D vision tasks that take pixels in images as input,
our BEV map in 3D vision is highly sparse, where the pro-
portion of blank areas without any points is much larger
than that of non-blank areas. To leverage the sparsity, we
drop out the windows that only contain blank areas to fur-
ther alleviate the computational load. Let the window size
be HY x WY, we obtain S[%, %] non-overlapping win-
dows, where S denote the selected sparse non-blank win-
dows. Given the input sequence Fj, € RN7*/ where
Np = HY x W¥ x T x m is the total number of tokens,
T denotes the number of frames and m is the number of
modalities. we use dot-product attention to model the mu-
tual correlations among input tokens. We formally have:

Q = Rana K= Eanw V= EnMva
QKT ey
WV,
Vd
where @), K,V are the query, key and value features ob-
tained by a linear transformation on the input sequence, and
M,, Mg, M,, € R7*4 are the transformation matrix. A non-

linear transformation is applied to the attention weights to
produce the output features:

Fow = MLP(A) + Fin. ()

A(Q, K, V) = softmax(

Therefore the grid features are aggregated over all tokens
with learnable attention weights.
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Figure 4. An illustration of pyramid context structure based on
sparse windows with Ny; = 3. We sparsify the attention win-
dow on BEV maps according to whether the partitioned windows
include only blank areas. Besides, we adapt the map scale in a
pyramid structure, where the down-sampled map provides a larger
receptive field.

Pyramid Context. Another issue with the window-based
attention is that the limited local regions may not be suffi-
cient to cover dynamic objects with large motions in adja-
cent frames. An intuitive solution is to enlarge the size of
local windows. However, this would largely increase the pa-
rameter volume of attention QK 7, yielding heavy compu-
tational load. To enlarge the receptive field with light com-
putation, we consider to resize BEV maps instead, where
smaller resolution corresponds to larger receptive regions
with fixed window size as demonstrated in Figure 4. In par-
ticular, we downsample the original BEV map {M} with
the factor j, and then apply the aforementioned window-

. . icr—1 \Nm
based attention on the packed input {{M};}’ oty
with shared parameters, where N, is the number of scales.
Consequently, the attention computation is adapted to:

4,(Qy. K, V) = softmax( 2Ly,
Vd

Fou = ZUP(MLP(AJ>) + Fh,

J

3)

where the upsample operation Up(-) is used to recover the
original resolution. With linear computing complexity, the
proposed pyramid context is scalable.

4D Positional Encoding. As vanilla self-attention is un-
ordered, it is crucial to encode the locations of tokens in
the input sequence. A common practice of positional en-
coding is to supplement the feature vector with positional
priors. In this work, the candidate tokens in the input se-
quences are across both sensors and time, which requires
4-Dimensional positional encoding. Thus we introduce a
4D relative position encoder B € R(HW)QX(WW)2XT2X7”2,
where the positional matrix is parameterized as B €

REH"=1)x@WT-1)x (2T =1)x(2m=1) and the values in B are
taken from B. Specifically, the relative position along the
spatial dimension lies in the range of [-H™ + 1, HY — 1]
and [-WY 4+ 1,W¥ — 1]. The temporal dimension range
and cross-sensor dimension range are respectively [—7" +
1,7 — 1] and [—=m + 1, m — 1]. Thus the learnable position
encoder contributes to locating each token with a position
embedding, which takes the 4D relative relationship of in-
formation into account.

3.3. Sensor-Time Data Augmentation

GT-Paste [35] currently serves as a popular augmenta-
tion technique for single-frame point cloud detection, which
pastes virtual 3D objects in the forms of point cloud and
its corresponding ground-truth box from other scenes to the
current training frame. This operation largely improves the
performance by alleviating the class imbalance problem and
accelerating convergence. However, the naive GT-paste is
not applicable in our work due to the destruction of data
consistency across sensors and time. To address this issue,
we propose a sensor-time data augmentation scheme that
extends the vanilla augmentation pipeline to preserve both
cross-sensor and cross-time consistency.

As the naive GT-paste scheme randomly picks up the vir-
tual LIDAR object pattern O,/ from its original source scene
Sy and then paste into current training scene S, it treats
the selected object as independent individuals. By con-
trast, we extend those candidates as a temporal consistent
sequence to maintain cross-time consistency for sequential
input. Concretely, with the training sequence of scenes
{Si—at}ai=0,1,..., 7—1, we expand the virtual LiDAR pat-
tern candidate as a sequence {O,/ _,} by searching from
the past scenes { S,/ _ A, }. Notably, it is necessary to main-
tain the relative motion relationship within sequence, which
serves as part of supervisory signal for training. Since the
ego-motion between adjacent frames are different in source
scenes and training scenes, we first transfer the virtual pat-
terns in history source scene S, _ 5, into the original source
scene S, with homogeneous transformation K(t', At)—st's
and then transform them into corresponding history train-
ing scene S;_A; with transformation K;_,;_as). Thus
the pasted sequential patterns preserve its original motion
states. To further maintain the cross-sensor consistency, we
paste the corresponding image patches {Iot,im} into the

training image frames {I;_;}. Following [32], we cal-
culate the occlusion perspective to filter out the occluded
point. Leveraging the above designs, we propose a general-
use augmentation scheme that is feasible to any sequential
cross-sensor training data input.

4. Experiments

We evaluate the proposed method on both the nuScenes
dataset and Waymo datasets, and conduct extensive ablation
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Method | Information [ mAP  NDS [ Car Truck C.V. Bus Trailer Barrier Motor. Bicycle Ped. T.C.
PointPillars [12] L 30.5 453 | 684 23.0 41 282 234 38.9 274 1.1 59.7 30.8
3DVID [42] L+T 454 - 79.7 33.6 181 47.1 43.0 48.8 40.7 7.9 76.5 58.8
PointPainting [31] L+I 464 58.1 | 779 358 158 36.2 37.3 60.2 41.5 24.1 733 624
TCT [46] L+T 50.5 - 832 515 156 637 33.0 53.8 54.0 53.8 749 525
PointAugmenting* [32] L+I 61.5 672 | 8.0 509 264 589 55.8 68.9 64.4 40.7 839 79.0
LIFT (Ours) L+I+T 651 70.2 | 87.7 551 294 624 59.3 69.3 70.8 47.7 86.1 83.2

Table 1. Performance comparisons on the nuScenes test set. We report the overall mAP, NDS and mAP for each detection category, where
L denotes Lidar modality, I denotes Image modality and T denotes Temporal input. *: reproduced results based on PointPillars.

Method Vehicle Pedestrian Cyclist Overall
L1 L2|L1 L2|L1 L2|L1 L2
PointPillars 66.0 613|674 623|628 624|654 620
PointPainting [31] 66.6 619|635 612|635 612|645 614
PointAugmenting® [32] | 68.1 63.3 | 66.9 62.1 | 654 63.0 | 66.8 62.8
LIFT (Ours) 69.0 642 | 699 653 | 69.2 665 | 694 653

Table 2. Performance comparisons on the Waymo validation set.
We report LEVEL_1 and LEVEL_2 mAP(%) for all categories
(L_1 and L_2). All models are built on the PointPillars backbone.

studies to validate our design choices.

4.1. Experimental Setup

Datasets. We apply two widely used auto-driving datasets
including nuScenes [2] and Waymo [28]. The nuScenes
dataset is collected by six cameras and a 32-beam LiDAR,
consisting of 700, 150 and 150 scenes for training, valida-
tion and test respectively. Each scene is 20 seconds long
with 20 Hz frequency. 3D bounding boxes are annotated
at 2 Hz with 10 categories in 360 degree field of view. We
follow the official evaluation protocol [2] and use mAP and
NDS as the evaluation metrics on nuScenes. The Waymo
dataset uses five cameras and five 64-beam LiDAR and con-
tains 798 training scenes and 202 validation scenes. Data
collection and 3D annotation are both at 10 Hz frequency.
We follow the official evaluation metrics mAP and report
two difficulty levels: LEVEL_1 and LEVEL 2.

Network Architecture and Training Details. For the se-
quential cross-sensor input, we use 7' = 2 different key
frames and m = 2 different modalities. For network
design, we use HY = WY = 4 as the window size
and each window takes as input Np = 64 tokens with
feature dimension f = 64. We apply Npy = 3 dif-
ferent scales and set the number of attention heads to 2
in all experiments. We limit the max number of points
within each pillar to 20. For nuScenes data, we set the
detection range to [—51.2m,51.2m] for X and Y axis,
and [—5m, 3m] for the Z axis, which is voxelized with
(0.2m,0.2m,8m) grid size. We utilize 10 sweeps for Li-
DAR enhancement and limit the max number of non-empty
pillars to 30000. For Waymo data, the detection range is set
to [—71.68m, 71.68m] for X and Y axis, [—2m, 4m] for Z
axis, with (0.32m, 0.32m, 6m) grid size. The max number

of non-empty pillars is limited to 32000. Following Cen-
terPoint [43], we use the adamW [17] optimizer with the
one-cycle policy [0]. During training, additional to our pro-
posed sensor-time data augmentation, we use random flip-
ping, global scaling, global rotation and global translation.
Models are trained for 20 epochs on 8 V100 GPUs.

4.2. Main Results

nuScenes Results. We compare our algorithm with
the state-of-the-art approaches as illustrated in Table 1.
For fair comparison, all the presented methods are pillar-
based detectors. In particular, PointPillars [12] is a single-
frame point cloud detector that is used as the baseline of
our model. 3DVID [42] uses a ConvGRU module to ex-
ploit the temporal information from sequential point clouds.
TCT [46] applies a channel-wise transformer network to
integrate the information of multiple point cloud frames.
PointPainting [31] and PointAugmenting [32] are typical
methods that fuse camera features with LiDAR points. Our
method outperforms these approaches by large margins,
boosting the original PointPillars by 34.6% and the cur-
rent best PointAugmenting method by 3.6%. Table 1 shows
that, although 3D object detectors generally benefit from
Cross-sensor or cross-time information fusion, our proposed
method makes the best of all available data across sen-
sors and time by modeling the mutual correlation, and thus
achieves state-of-the-art performance.

Waymo Results. We also make comparisons on the
Waymo dataset in Table 2. We reproduce all models based
on PointPillars as well. Note that the camera configu-
rations in Waymo are different from nuScenes, covering
only around 250 degree field. In contrast to applying two
models on camera FOV and LiDAR FOV separately as in
PointAugmenting [32], we apply a unified model on full
view as adaption to real application. Results show that pre-
vious cross-modal detectors fail to achieve consistent im-
provements on pedestrian and cyclist categories. However,
our method generalizes and scales well, which consistently
outperforms previous methods, especially boosts the origi-
nal LiDAR-only detector on the challenging pedestrian and
cyclist categories by large margins.

Qualitative Results. We qualiatitvely compare with Point-
Pillars and PointAugmenting on the nuScenes dataset in
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Information

Method Scheme L I T AP NDS
v 24.83  40.36

v v | 2674 4297

@D Concat v v 41.59  48.60

v o v v | 4457 5219

v v | 2775 4371

an Self-Attn | vV 4322  49.49
v o v v | 47.04 5440

Table 3. Analysis of information fusion and fusion schemes. Con-
cat: concatenate the grid-wise BEV features between different in-
puts and fuse with convolution layers. Self-Attn: treat grid fea-
tures as separate tokens and fuse with self-attention. Inputs: Lidar
points (L), images (I), and sequential information in time (T).

Length | Ours A | Cat[20] A
T= 24.83 - 24.83 -
T=2 27.75 +2.92 26.60 +1.57
T=3 30.37 +5.54 25.64 +0.81
T=4 30.77 +5.94 25.52 +0.69
T=5 30.97 +6.14 26.07 +1.24

T=2(+Img) | 47.04 +22.21 43.74 +19.91

Table 4. Comparisons of the input sequence lengths. Cat: the point
concatenation scheme [20] for sequential point clouds. Ours: the
proposed fusion method using self-attention.

Figure 5. By introducing the cross-sensor information in
camera features, the 3D detector can better perceive small
objects and eliminate false detections. Besides, our method
can further enhance the 3D perception by exploiting the
complementary information across sensors and time, which
is beneficial to more accurate and stable predictions.

4.3. Ablation Studies

We conduct ablation studies on the nuScenes dataset to
validate each proposed component. For efficiency, we apply
1/8 subset of the training set to train the network and test on
the whole validation set.

Effects of information fusion. We compare different infor-
mation fusion settings and fusion schemes in Table 3. We
summarize the following observations:

(1) Benefits of information fusion (I): Based on a single-
frame point cloud detector (first line), the introduction of
camera feature (second line) and sequential point cloud
(third line) yields considerable improvements of +16.76%
and +1.91% mAP respectively, illustrating the valuable
complementary information from cross-sensor and tempo-
ral data. Furthermore, combining the LiDAR and image
streams together leads to a large gain of +19.74% mAP.
This motivates us to take the full advantage of all available
data across sensors and time.

| Naive Cross I T mAP NDS
(a) 24.83  40.36
(b) e 27.64  43.09
© v 2775 4371
) v v 3211 4751
(e) v v 47.04 5440
() v v v 5178 58.96

Table 5. Effectiveness of data augmentation. Naive [35]: origi-
nal copy-and-paste scheme on point cloud only. cross: our cross-
sensor and cross-time augmentation. T: the sequential input of
point cloud. I+T: the sequential input of both images and points.

| PA PE PC Sparse mAP NDS
@ 1976 57.84
(h) v 50.25 57.95
1) v v 50.50 58.44
G) v v v 51.30 58.51
&) v v v v 51.78 58.96

Table 6. Ablation results on architecture components. PA: the
point-wise attention operation in grid feature encoder. PE: our
proposed 4D relative positional encoding . PC: the pyramid con-
text. Sparse: the sparse window partition for 4D attention.

(2) Benefits of fusion scheme (I, II): On top of the single-
frame point cloud detector, our proposed sensor-time 4D
attention module (last line) achieves an overall +22.21%
performance gain. Besides, the proposed attention fusion
scheme (II) consistently achieves better detection accu-
racy than the simple concatenation fusion scheme (1), i.e.
43.22 vs 41.59 for L+ input and 27.75 vs 26.74 for L+T
input. The information misalignment is a crucial problem
for feature fusion, and cannot be well handled by straight-
forward concatenation. The superior performance demon-
strates the capability of our proposed attention mechanism
to effectively model the information interaction across sen-
sors and time.

In Table 4, we further illustrate the ability of our method
to model temporal correlations. As shown in the last line,
replacing our attention mechanism with the point concate-
nation scheme for temporal fusion [20] yields a 3.3% mAP
drop. Comparing Ours (second column) with Cat (fourth
column), we consistently observe larger discrepancy when
increasing the length of the input sequence, which suggests
the superiority of our method to aggregate information over
a longer time period. Note that we set 7" = 2 throughout
experiments to alleviate computational load.

Effects of sensor-time data augmentation. We validate
the effectiveness of our proposed data augmentation scheme
in Table 5. As illustrated in (a) and (b), the original copy-
and-paste operation yields an improvement of +2.81%
mAP, indicating the importance of data augmentation on

17178



Trailer Pedestrian ~ ——— Bicycle

il

.

I

PointPillar

s [
o0
£
g
]
S B
g
&0
El
<
S
£
S L
I~

P g

== 0
M"‘Wﬂwmmmm Illf

Traffic Cone Motorcycle Car Construction Vehicle

Figure 5. Qualitative results. We compare with LiDAR-only PointPillars [12] and cross-modal PointAugmenting [32]. (a) illustrates the
superiority of temporal fusion, where our method can alleviate false positive detection on human-like objects in t2 to preserve temporal
consistency with ;. In (b), cross-sensor information helps reduce detection errors, and our method consistently detects the traffic cone in
adjacent frames. The night-view images in (c) introduces ambiguous features that result in false negative car detection in PointAugmenting,
while our method successfully utilizes the mutual information across sensors and time to recall the car object. Best viewed in color.

Method | mAP  Image  Fusion Total
LIFT (448 x 800) 5178 151ms 164ms 315ms
LIFT (w/o Sparse) 51.30  151ms 201 ms 352 ms
LIFT (896 x 1600) | 51.83 714ms 164ms 878 ms
LIFT (224 x 400) | 4420 46 ms 167ms 213 ms

Table 7. Run-time comparison on the nuScenes dataset. We report
the runtime for image backbone (Image), encoder and attention
fusion (Fusion) and end-to-end inference (Total).

sequential cross-modal input. By comparing (¢) vs (d) and
(e) vs (f), our augmentation consistently achieves +4.36%
mAP and +4.74% mAP gains on sequential point cloud and
sequential cross-sensor data respectively, showing that our
scheme is capable to preserve the cross-modal and temporal
data consistency.

Effects of architecture designs. We report the ablation re-
sults of the proposed architecture components in Table 6.
Note that all experiments are conducted with the proposed
sensor-time data augmentation scheme. From (g) to (k),
we observe progressive performance gains with the pro-
posed point-wise attention (PA), 4D positional encoding
(PE), pyramid context (PC) and sparse window partition
(Sparse). Comparing (g) and (k), the proposed network
components further improve mAP by 2.02%.

Run-time efficiency. We report the runtime efficiency in
Table 7. As the Transformer design inevitably introduces
extra computational load, our sparse window design can ef-
fectively reduce the Fusion time from 201 ms to 164 ms,

resulting in an end-to-end runtime of 315 ms on par with
the recent state-of-the-art detectors [25, 36]. We also ob-
serve a large runtime jump (i.e. 878 ms) using a larger
896 x 1600 image resolution, and a significant performance
drop (i.e. 44.2 mAP) with a smaller 224 x 400 resolution.
Thus, we choose the final design based on the tradeoffs be-
tween speed and accuracy.

5. Conclusion

We have presented LIFT, a LiDAR Image Fusion Trans-

former that simultaneously aligns the spatiotemporal cross-
sensor 4D information for 3D object detection in real-world
autonomous-driving scenarios. Particularly, we encode
both the LiDAR frames and camera images as sparsely-
located BEV grid features and propose a sensor-time 4D
attention module to effectively and efficiently capture the
mutual correlations. Furthermore, we devise a general yet
simple data augmentation technique to enhance the train-
ing dynamics while persevering the data consistency. With
the proposed end-to-end single-stage 3D object detector, we
improved strong baselines by large margins and achieved
state-of-the-art performance on the challenging nuScenes
and Waymo benchmark datasets.
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