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Abstract

Multi-modal video similarity evaluation is important
for video recommendation systems such as video de-
duplication, relevance matching, ranking, and diversity
control. However, there still lacks a benchmark dataset that
can support supervised training and accurate evaluation. In
this paper, we propose the Tencent-MVSE dataset, which is
the first benchmark dataset for the multi-modal video simi-
larity evaluation task. The Tencent-MVSE dataset contains
video pairs similarity annotations, and diverse metadata in-
cluding Chinese title, automatic speech recognition (ASR)
text, as well as human-annotated categories/tags. We pro-
vide a simple baseline with a multi-modal Transformer ar-
chitecture to perform supervised multi-modal video simi-
larity evaluation. We also explore pre-training strategies
to make use of the unpaired data. The whole dataset as
well as our baseline will be released to promote the de-
velopment of the multi-modal video similarity evaluation.
The dataset has been released in https://tencent-
mvse.github.io/.

1. Introduction

Recent years have witnessed the rapid development of
online video-sharing platforms. More and more platforms
such as YouTube, Youku, iQIYI, Tencent Video, and Tik-
Tok have emerged to become a crucial part of our daily life.
To satisfy the diverse requirements of users, these platforms
implement complicated video recommendation systems to
perform diverse tasks, including video de-duplication, rel-
evance matching, ranking, diversity control, etc. All of
these applications rely on effective similarity evaluation al-
gorithms that process a thorough understanding of video
contents.

The “similarity” of video content is reflected in multiple
modalities, including visual content and metadata. Figure 1
shows some examples of video pairs that might be “sim-
ilar”. For the first example, the two videos have similar

梅西告诉你，点球不是非要射门，成人之美也是一
种美德！(Messi tells you, we don’t have to shoot when 

playing stop kick, helping others is also a virtue!)

面对这样的门将，连穆勒都无可奈何，足球场上运气
也很重要！(Facing such a goalkeeper, even Muller has 

no alternative, luck is also important on the football field!)

德云社“大小姐”郭麒麟，你这是要出师了么？这么狠
呢(Deyunshe “young madam” Qilin Guo, are you going 

to finish your apprenticeship? So cruel)

德云社，不愧是亲搭档，郭德纲和于谦借着唱戏名义
占高峰便宜！(Deyunshe, be worthy of partners, Degang

and Qian profit at Feng’s expense in the name of singing!)

用了这个灵敏度，不仅能压平底锅，还能压信号枪！
(Using such sensitivity, not only can press pan, but also 

can press flare gun!)

光子，你卖的什么破伞，我要退钱(Guangzi, what 

broken parachute you sell, I want a refund)

Figure 1. Some examples of similar video pairs. The video pairs
in the three rows are similar in their visual contents, titles, and
semantic information.

visual contents about “playing football”. Videos from the
second pair have different visual contents, while they are
both crosstalks acted by the same troupe according to their
titles. For the third example, the two videos have different
visual contents and titles, while they share “similar” visual
and text information related to the same game. Since the
similarity exists in such diverse manners, in real application
scenarios, video similarity should be evaluated by consider-
ing multi-modal information. Inspired by the recent success
in the field of natural language processing and computer vi-
sion, large-scale labeled datasets are mandatory to advance
research progress. However, when creating a video similar-
ity benchmark dataset, the multiple modalities bring signif-
icant challenges for data annotation and evaluation.

Learning video representations for similarity evaluation
requires the supervision of video pairs similarity. Most
existing approaches learn video representations via multi-
label classification by using the semantic tags as supervi-
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sion [1, 19, 33]. The tags summarize the videos from var-
ious semantic levels and perceptions, and thus can briefly
estimate the similarities of video pairs. However, in real
video recommendation systems, these semantic tags can not
satisfy the higher precision requirements. CDML [23] and
GCML [22] try to involve user behaviours to estimate the
video pair similarity. Their idea is conceptually aligned
with collaborative filtering, where many users implicitly
collaborate to filter relevant items. However, user behav-
ior relevance is affected by many factors, not only video
content. What’s worse, user behavior differs in different
platforms. Moreover, there does not exist a video similar-
ity evaluation benchmark in the research community. Such
restrictions greatly limit the development of multi-modal
video similarity evaluation.

In this paper, we propose a large-scale Tencent-MVSE
dataset, which is the first benchmark dataset for the multi-
modal video similarity evaluation task, to promote the de-
velopment of multi-modal video similarity evaluation. We
collect 135, 705 video pairs, and finely annotate their simi-
larity scores. A detailed specification for the similarity an-
notation is provided to make sure that the annotated sim-
ilarity score aligns with the human’s perception. We pro-
vide videos as well as rich metadata including Chinese ti-
tles, automatic speech recognition (ASR) text, and human-
annotated categories and tags to support the evaluation of
the video similarity in a multi-modal manner. The anno-
tated video pairs data is separated into a pairwise split,
a test-dev split, and a test-std split for supervised train-
ing, validation, and final evaluation, respectively. In ad-
dition, we also collect a pointwise split, which contains 1
million individual videos with video frames and metadata.
The collected pointwise split is to encourage researchers
to explore advanced annotation-free approaches by lever-
aging more accessible unlabeled data. Compared with ex-
isting video understanding datasets with language annota-
tions, the Tencent-MVSE dataset has two main character-
istics. First, Tencent-MVSE regards video-text as a whole
item, and annotates the similarity between items, while ex-
isting datasets [29, 39, 42] focus on exploring the relation
between video and text. Second, Tencent-MVSE provides
328 categories and 64, 903 tags, which is much larger than
existing datasets [1, 19, 21, 33]. All the categories and tags
are manually annotated by humans to guarantee high qual-
ity. The Tencent-MVSE dataset has been validated in the
competition of one of the leading international data mining
conferences. It enabled hundreds of participants to imple-
ment innovative methods of measuring.

Except for the collection of the Tencent-MVSE dataset,
we also provide a simple baseline for the multi-modal
video similarity evaluation task. Inspired by the great suc-
cess of vision-language understanding approaches such as
UNITER [6], VL-BERT [34], SOHO [16] and VideoBERT

[36], we adopt the advanced single-stream multi-modal
Transformer (MMT) as the base model architecture. Tak-
ing the concatenation of sentence token embeddings and
video frame features as input, the MMT learns joint video-
text embeddings for the input video-text item by using the
multi-modal attention mechanism. The annotated similar-
ity scores are utilized as the supervision signal to opti-
mize the embedding cosine distance between video pairs
by mean squared error (MSE) loss. The joint video-text
embeddings learned through this method have the rich dis-
criminate ability, and thus can evaluate the video similarity
much preciser. Additionally, inspired by the effective pre-
training strategies of recent works [6, 10, 16, 34, 36], we at-
tempt to leverage the pointwise split to perform multi-modal
pre-training for MMT. We adopt widely-used masked lan-
guage modeling (MLM), masked frame modeling (MFM),
and video-text matching (VTM) pre-training tasks to pre-
train the MMT. Our results show that all the pre-training
strategies can boost the model performance by a large mar-
gin, which reveals the potential of the annotation-free data.

Summarily, the contributions of this paper include:

• We collect and annotate the Tencent-MVSE dataset,
which is the first multi-modal video similarity evalua-
tion benchmark in the research community;

• We build a simple baseline which adopts the advan-
tages Transformer for multi-modal learning, and con-
ducts sufficient ablation experiments to show the effec-
tiveness of each module;

• We adopt the advanced multi-modal pre-training
strategies to mine the potential of the MMT model.
The experiment results demonstrate the effectiveness
of the pre-training strategies on the multi-modal video
similarity evaluation task.

2. Related Work
2.1. Video Understanding Datasets

The development of video understanding research
should be credited with large-scale datasets. HMDB51 [21],
UCF-101 [33], Sport1M [18] and Thumous [17] are early
datasets that provide video-wise tags, and are all widely
used video classification benchmarks. Kinetics [19] is a
much larger dataset that contains over 300K videos clips
and 400 categories. ActivityNet [4] provides segment-level
action annotation, and enables intelligence to perform tem-
poral action detection. The above datasets only focus on hu-
man action and sports scenarios, while the real-world videos
have much richer semantics. YouTube-8M provides 8 mil-
lion videos belonging to 4, 800 classes, and its great scale
and diversity can support robust representation learning.

Later on, researchers find that if we want to perform
more human-like video understanding, we need to bridge
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the gap between video and language. To this end, sev-
eral video datasets with language annotation are proposed.
YouCook [8], MSR-VTT [42], VATEX [39] and STAR [41]
are video datasets with human-written sentences annota-
tions, which can support video captioning and video re-
trieval tasks. HowTo100M [29] is the largest video-text
dataset, which consists of 1.3 million video clips with ASR
text annotation. The authors show that the HowTo100M
[29] can help learn robust video and text embeddings, and
can greatly boost the performance on video retrieval tasks.

Although lots of videos understanding datasets are pro-
posed, there is still no dataset specially designed for the
video similarity evaluation task. Our proposed Tencent-
MVSE dataset is the first video similarity evaluation bench-
mark dataset. With the video pairs similarity annotations,
researchers can perform supervised training and accurate
evaluation. Tencent-MVSE also provides rich metadata for
supporting multi-modal and multi-task learning.

2.2. Vision-Language Pre-training

In these few years, a great number of works try to
explore improving vision-language understanding by self-
supervised pre-training, and achieve great success in a se-
ries of image-text tasks (e.g. VQA [3], VCR [43], NLVR
[35], STAR [41], Image Retrieval [12]) and video-text tasks
(e.g. Video QA [25], Video Captioning [42], Video Re-
trieval [20]). Among these, most works adopt the single-
stream architecture to jointly learn the inter-modal and
intra-modal relation between vision and language domains.
UNITER [6] adopt vision BUTD feature [2] as input, pro-
poses several pre-training tasks, and shows their effective-
ness on several image-text downstream tasks. VL-BERT
[34] attaches the whole BUTD feature extraction network
to the multi-modality model, and makes the whole network
trainable. SOHO [16] breaks out the limitation of bounding
box annotation, uses a simple CNN backbone to produce
grid feature, and shows that the end-to-end training of the
whole network can produce great results.

Except for image-related tasks, VideoBERT [36] stud-
ies the pre-training on video-text tasks, proposes to use dis-
crete tokens to represent video frames by clustering, and ap-
plies mask-predict strategy on video features. HERO [25]
proposes video-subtitle matching and frame order model-
ing pre-training strategies to capture the temporal alignment
between multiple modalities. CLIPBERT [24] explores the
end-to-end training strategy for video-text pre-training and
demonstrates that even using less clips can perform better.

In this paper, we follow the widely used self-supervised
pre-training approaches to pre-train on the Tencent-MVSE
pointwise split, and find that it can bring significant im-
provement to the multi-modal video similarity evaluation
task. Details of the pre-training will be explained in Sec 4.2.

3. The Tencent-MVSE Dataset

To promote the development of multi-modal video sim-
ilarity evaluation research and application, we build the
Tencent-MVSE dataset, which is the first benchmark for the
multi-modal video similarity evaluation task. The Tencent-
MVSE dataset provides similarity scores for video pairs, as
well as rich metadata, including Chinese titles, ASR text,
and human-annotated categories and tags. In this section,
we will introduce how we build this dataset in detail.

3.1. Data Collection

We collect the video data from Tencent Kandian1, which
is a large-scale feeds recommendation platform in China.
Tencent Kandian receives hundreds of thousands of PGC
(Professionally-generated Content) short videos and more
other videos every day. We only select the PGC videos
since their qualities are much better. We first fetch 1 million
short videos on the Tencent Kandian service to construct the
pointwise split. Such an amount of videos can ensure that
the type distribution is consistent with the online system.
Among the fetched videos, short videos less than 60 sec-
onds are mainly selected, since they are popular on mobile
devices. We then fetch another 2 million short videos as a
gallery for pairwise annotation and finally annotate 135, 705
video pairs. The annotation details will be explained in 3.2.
The annotated pairs are separated into a pairwise split, a
test-dev split, and a test-std for supervised training, valida-
tion, and final evaluation, respectively. We ensure there is
no video overlapping among the training and testing splits
to avoid data leaks, and all splits have consistent data distri-
butions.

For each video, we provide rich information, including
Chinese title, ASR text, pre-extracted frame features, and
human-annotated categories and tags. The title is written
by the author of the video, and the ASR text is generated
using Tencent Cloud ASR API2 based on the audio. We ex-
clude categories and tags in the test-dev split and the test-std
split since we do not want to introduce any manual annota-
tion in the testing stage. Limited by the copyright of the
original data, we only provide video id3 as the link to the
corresponding raw videos.

3.2. Data Annotation

3.2.1 Video Category and Tag Annotation

We provide both category and tag annotation for each train-
ing video. The categories summarize the type of videos,
and the tags indicate the concepts of video contents. We

1https://kandian.qq.com/
2https://cloud.tencent.com/document/api/1093/35636
3The video id can be used to build the URL with the pattern

https://kandianshare.html5.qq.com/v3/video/{id}
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Title:大货车体验了一把VIP的待遇！一条船就装一辆车！
(Truck experiences VIP treatment! A ship only holds a truck!)
ASR:大货车体验了一把VIP的待遇。一条船就装你一辆车。
(Truck experiences VIP treatment. A ship only holds a truck.)
Category:生活-生活记录 (life-life recording)
Tag:生活随手拍；记录生活；货车；船；随记
(life snapshot; record life; truck; shop; snapshot)

Title:烧烤小妙招，怕肉质太硬，那就用这一物，让肉质鲜嫩！
(Barbecue lifehack, afraid tough meat, you can use this thing, which
can make the meat fresh and tender.)
ASR:切一片洋葱圈。将肉馅放进去。能够保持肉馅的多汁
(Cut an onion ring, put the meat stuffing in, and it can keep the meat
fresh and tender)
Category:美食-菜谱 (food-menu)
Tag:烹饪妙招；烤肉；美食达人；鲜嫩多汁
(cooking lifehack; barbecue; food master; fresh and tender)

Title:和平精英：如何对待胆小的敌人？没有什么是一颗雷解决不了的
(PLUG: How to treat coward? Nothing can not be solved by a grenade.)
ASR:但他好像并没有来找我的勇气，面对这种胆小鬼只能主动出击…
(But he seems do not to have the courage to find me. Faced with this situation,
I have to be proactive…)
Category:游戏-手游 (game-mobile game)
Tag:海岛地图；生存游戏；和平精英；军事题材；射击游戏；达人解说
(island map; survival game; PLUG; military subject; shooting game; master
explanation)

Figure 2. Some examples of the Tencent-MVSE dataset. All videos in the dataset contain video frames, Chinese title, ASR text, and several
semantic tags. The pairwise data are annotated with similarity scores.

similarity degree annotation specifications examples

strongly similar
(1.0)

the subjects are consistent
and the core elements (such
as the IP, characters, actions,
scenes) are the same

both are the same movie/series/shows, similar scenario or the same actor
both are live video streaming, similar shows or the same streamer
both are beauty makeup videos, similar makeup or the same streamer
both are sport videos, the same kind of sport and the same country
both are cooking videos, similar foods or the same chef

weakly similar
(0.5)

the subjects are consistent,
and the core elements are
slightly different

both are the same movie/series/shows, different subject or actor or role
both are live video streaming, relevant content but different streamers
both are beauty makeup videos, different streamers and diverse makeup
both are sport videos, the same kind of sport but different countries or matches
both are cooking videos, different foods and chefs

not similar
(0.0)

the subjects are not consistent,
or the subjects are consistent
but the core elements are
greatly different

both are movie/series/shows, different subjects and no common actor
both are sport videos, different types of sport
both are game videos, different types of game
different places and people

Table 1. A simplified annotation specification for multi-modal video similarity

totally define 328 categories, which can be further classi-
fied into 29 super-categories, and 64, 903 tags. We build the
categories and tags vocabularies by first mining from user
searching queries and knowledge graphs behind a large-
scale video-sharing platform, then verifying by humans.
Each video belongs to exactly one category and may have
one or several tags. Annotators are hired to manually label
the videos, each of which is asked to select the categories
and tags after watching the videos (including the video titles
and the videos themselves). Figure 2 shows some samples
of the annotated videos.

3.2.2 Multi-modal Video Similarity Annotation

Multi-modal video similarity can measure the semantic
similarity between the contents of two videos, which re-
quires ground-truth similarity for each video pair. How-
ever, it is difficult for human beings to accurately decide the
similarity score. Inspired by the semantic textual similarity
(STS) task [5], we define three similarity degrees and design
detailed annotation specifications. For each video pair, we
invite ten annotators to select the similarity degrees based
on the specification after watching both videos and titles.

A simplified version is listed in Table 1. We define three
similarity degrees, including “strongly similar”, “weakly

similar” and “not similar”, whose similarity scores are 1.0,
0.5, 0.0, respectively. For each video pair, we consider the
average of all annotated scores as its final similarity score.

In the real world, most video pairs are categorized as
”not similar”, forming a crucially long-tailed classification.
To create a benchmark, however, we should maintain a rel-
atively balanced class distribution. To this end, we select
the candidate video pairs according to the following proce-
dures. First, We train three video embedding models for
video pairs selection. The three models are all trained by
multi-label classification tasks supervised by tags follow-
ing [1]. The three models take video, title, and video+title
as input, respectively, so that samples can be summarized
from different perceptions, which grants more diversity to
the candidate video pairs. Then, we randomly sample query
videos in the gallery with 2 million videos. For each embed-
ding model above, we retrieve the top 200 similar candidate
videos based on their cosine distances, and randomly sam-
ple three videos from the top 50, 50-100, and 100-200 re-
sults, respectively. According to our observation, very few
similar samples exist in the top 100-200 list. The three sam-
pling ranges can roughly denote the three respective similar-
ity degrees, and result in candidate video pairs in relatively
balanced distribution. Given the nine videos from three
models, the query videos as well as their retrieved videos
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Figure 3. The data analysis of our proposed Tencent-MVSE Dataset.

Dataset #Videos #Clips Duration(hs) #Cats #Tags #Text Text Type Source
MSR-VTT [42] 7.2K 10K 40 257 200K Caption YouTube
YouCook II [45] 2K 14K 176 89 14K Caption YouTube
ActivityNet Captions [19] 20K 100K 849 200 100K Dense Caption YouTube
TGIF [26] 102K 126K 103 - 126K Caption Tumblr
LSMDC [31] 200 128K 150 - 128K Movie Description Movies
How2 [32] 13.2K 185K 298 - 185K Subtitle YouTube
VATEX [39] 41.3K 41.3K 115 600 825K English & Chinese Caption YouTube
HowTo100M [29] 1.2M 136M 134K - 136M ASR text YouTube
YouTube-8M [1] 8.3M 8.3M 500K 4,800 - - YouTube
Tencent-MVSE 1.1M 1.1M 5,805 328 64,903 2.3M Chinese Title & ASR text Kandian

Table 2. Data analysis and comparison between Tencent-MVSE and other video understanding datasets. Tencent-MVSE provides the
largest scale of human-annotated categories and tags, and author-written titles.

are randomly selected for annotation.
After filtering out the low-quality annotations that have

variance greater than 0.25, we finally obtain 135,705 an-
notated video pairs. Here the 0.25 threshold is decided by
the variance of the array that has five 1.0 scores and five 0.5
scores. We conduct 10-folds cross-validation on the annota-
tions where the current annotation is considered as the pre-
diction and the average of the others is regarded as ground
truth. The 10-folds average Spearman’s Rank Correlation is
0.9096, which could be recognized as a human score. This
justifies that annotations among different annotators have a
strong correlation, and thus are reliable.

3.3. Data Statistic

We split the annotated video pairs into pairwise, test-
dev and test-std splits. The pairwise split contains 63, 613
videos and 67, 854 video pairs, which is used for training.
The test-dev split contains 31, 514 videos and 27, 161 video
pairs, which is used for validation. The test-std split con-
tains 43, 027 videos and 40, 726 video pairs, which is used
for evaluation. The test-dev spilt and the test-std split have
10, 581 same videos, and all videos in the pairwise do not
appear in the testing splits.

Figure 3 shows the categories, score and duration dis-
tribution of the Tencent-MVSE dataset. We provide 328
categories and 64, 903 tags. The 328 categories belong to

29 super-categories, following the distribution illustrated in
Figure 3(a). The category distribution of the three splits is
consistent and can reflect the real distribution of the online
system. From the annotation similarity distribution shown
in Figure 3(b), we find that except for the video pairs that
have 1.0 or 0.0 similarity scores, the score distribution is
relatively balanced. The duration of Tencent-MVSE dataset
is 5, 805 hours, where 90% of the videos possess duration
ranging from 7-35 seconds, as shown in Figure 3(c).

Table 2 shows the the statistic of Tencent-MVSE along
with other video datasets. The tag system of the Tencent-
MVSE dataset is the largest in the research community.
Compared with YouTube-8M whose tags are generated by
the YouTube video annotation system, our annotated cate-
gories and tags are based on manual annotation followed by
a sophisticated processing procedure, which is, therefore,
more representative and reliable.

3.4. Data Pre-processing

We extract the video frames in 1 FPS. We adopt three
kinds of typical models to extract the video frame features.
The first model is ResNet-50 [15], which is a classical im-
age classification model trained on ImageNet dataset [9].
We follow the standard strategy to pre-process the frames
by resizing the short edges to 256 pixels, and then crop-
ping the center 224× 224 square region. The second model
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Figure 4. The overview of our proposed MMT framework. The left part shows the MMT model architecture, which takes the concatenation
of text and video features as input, and output the multi-modal attention features. The right part shows the overview pipeline of the pre-
training and the fine-tuning.

we use is EfficientNet-B3 [37], which has stronger perfor-
mance than ResNet-50 on the ImageNet dataset [9]. For
EfficientNet-B3, we resize the short edges of input frames
to 300, and crop the center 300 × 300 regions. The third
network we adopt is CLIP [30]. CLIP is a large-scale pre-
training model under the supervision of natural language,
which can bridge the gap between vision and language do-
mains. It adopt ViT [11] as the image backbone. We pre-
process the input frames by resizing their short edges to 256,
then cropping the center 256 × 256 regions. The specific
CLIP model we use is ViT-B/32.

The effectiveness of these three kinds of features is pre-
sented in Sec 5.3. The comparison between their perfor-
mance illustrates the representation ability of classifica-
tion features affects the final multi-modal understanding re-
sults. We do not adopt the models that are specifically de-
signed for video understanding tasks (e.g. SlowFast [13],
S3D [44]) because of the inconsistent of sampling FPS. All
the features are also released to researches to reduce the
time costing of fetching data.

4. Baselines
We propose a simple multi-modality Transformer

(MMT) for joint video-text embedding learning. The
overview framework of MMT is shown in Figure 4.

4.1. Model Architecture

The MMT takes as input the video frame features and
text tokens. Given a video feature sequence, we use a fully-
connected layer to project the features into a commonly
hidden space with dimension d, followed by a LayerNorm

layer. For text input, we follow the pre-processing strat-
egy of BERT [10] to first use word-piece to tokenize the
sentence and then use an embedding layer to embed the to-
ken sequence into d dimension.The text feature is then con-
catenated with the video feature according to the sequence
length. We add a [CLS] token to the start of the sequence
and add a [SEP] token to indicate the end of the sentence.

We use a 12-layer Transformer [38] as a multi-modal en-
coder, whose parameters are inherited from public accessi-
ble pre-trained models. The average pooling of the attention
features is subsequently encoded by a linear layer into the
target embedding dimension. In this paper, we set the target
embedding dimension to 256 in all our experiments. Such
feature output of the linear layer is considered as the joint
video-text embedding.

4.2. Pre-training

We adopt three pre-training tasks to make use of the
large-scale pointwise split, including masked language
modeling (MLM), video text matching (VTM), and masked
frame modeling (MFM). For the MLM task, we follow
BERT [10] to randomly mask the text. Each token has a
15% probability of being masked. If a token is masked,
it has an 80% probability of being replaced by a [MASK]
token, 10% probability of being replaced by another ran-
domly token, and 10% probability of being kept. Given the
original tokens as ground truth labels, the model is required
to predict the masked tokens in a self-supervised manner.

For the VTM task, we consider the input video and text
as positive pairs. For each video, we randomly sample a
text from another video to construct a negative pair. The ra-
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tio of positive pairs and negative pairs is set as 1:1 in each
batch. We take the average pooling of the attention features
to perform a 2-way classification to predict whether the in-
put video-text pair is positive or negative.

For the MFM task, we randomly mask the video frames
features by [MASK] token embeddings. We gather the at-
tention features of masked frames and feed them into a lin-
ear layer to project them to the same dimension of the input
frame features. We follow [25] to adopt noise contrastive
estimation (NCE) loss by considering the original frames
features as ground truths, and other frame features inside
the same batch as negative distractors.

Except for the three self-supervised pre-training tasks,
we also take the average pooling of the attention features
to perform category and tag classification. We transfer the
annotated categories and tags into one-hot vectors for su-
pervision and adopt “pem cls” [27] loss function since it
can better handle the long-tail label distribution compared
with typically used cross-entropy loss and is shown effec-
tive in [14]. We denote such classification tasks as TAG
in the rest of this paper. We experimentally set the loss
weight of tag and category classification to 1.0 and 0.1, re-
spectively. Besides, since the tags and categories are also
provided by the pairwise split, we also adopt TAG in the
fine-tuning stage and find that it can benefit the final results.

When performing pre-training, we use the pre-trained
BERT parameters to initialize the word embedding, Trans-
former, and the MLM prediction layer. And when conduct-
ing fine-tuning, we use the pre-trained parameters to initial-
ize the whole network except the final projection layer.

5. Experiments

5.1. Implementations

We perform pre-training on the pointwise split, use the
pairwise split for supervised fine-tuning, and test-dev and
test-std splits for evaluation. For pre-training, we perform
the experiments on 8 NVIDIA A100 GPUs and set the batch
size to 32 videos per GPU. We use AdamW optimizer since
it has been proven effective for Transformer-based models.
We pre-train the models for 20 epochs and set the initial
learning rate to 5e-5. We adopt the linear learning rate de-
cay strategy with 2 warmup epochs. When fine-tuning on
the pairwise split, we train the model on 2 NVIDIA A100
GPUs. We fine-tune the model for 10 epochs with 1 warm-
up epoch. The other hyper-parameters are kept the same as
pre-training. The pre-training progress costs about 3 hours,
and the fine-tuning progress costs about 40 minutes.

For the input videos, we extract the video features by the
method described in Sec 3.4. We limit the maximum video
frame length to 32. If the video frame length is greater than
32, we will select the first 32 frames. We limit the maximum
text length of titles and ASR text to 32 and 128, respectively.

5.2. Evaluation Metric

The core insight of video embedding is to serve the rec-
ommendation, ranking, matching tasks. These tasks can all
be viewed as ranking problems, which are only sensitive to
the relative similarity scores. Therefore, we follow [5] to
adopt Spearman’s Rank Correlation as the evaluation met-
ric. The computation of Spearman’s Rank Correlation is

rs = 1− 6
∑

d2i
n(n2 − 1)

, (1)

where di indicates the rank difference between the predicted
rank and the original rank for each observation, and n is
the number of observations. For simplification, we consider
the cosine distance between given video pairs in embed-
ding space as the similarity score and compute the Spear-
man’s Rank Correlation score of the aforementioned simi-
larity score for the final evaluation.

5.3. Ablation Studies

5.3.1 Modality Selection

Our baseline model takes three kinds of modalities as in-
put, which are video features, title, and ASR text. We eval-
uate the effectiveness of each modality and its combina-
tions. In this ablation study, we adopt the settings of using
EfficientNet-B3 [37] features and BERT [10] architecture.
The experiment results are reported in Table 3. We mainly
compare the performance on the test-dev split. We first
adopt a single modality as input, and we observe that the
video-only model achieves the highest score with 0.6046,
the title-only model achieves the second-highest score with
0.5696, while the ASR-only model presents inferior perfor-
mance. Such single modality ablation results show that vi-
sual information plays the most important role in the video
similarity evaluation task, which is also consistent with
humans’ perception. Then we evaluate “video+title” and
“video+ASR” models, and discover that both title and ASR
information can boost the performance. We combine all
three modalities and notice that such a model can achieve a
0.7561 score, which outperforms all previous results. Later,
we try to leverage tags and categories for multi-task training
and find that the tags can boost the performance to 0.7778,
and categories can further boost the performance to 0.7825.
Such ablation studies show that all the information provided
can contribute to the multi-modal video similarity task.

5.3.2 Video Feature Selection

The representation ability of video features also may af-
fect the final performance. We try three feature extrac-
tors, including ResNet-50 [15], EfficientNet-B3 [37], and
CLIP [30]. Table 4 demonstrates the baseline performance
of these visual features. Empirical results justify that the
representation ability of video features will affect the per-
formance greatly. Among the three kinds of features, the
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Video Title ASR Tag Category test-dev test-std
✓ 0.6046 0.6014

✓ 0.5696 0.5577
✓ 0.1989 0.1940

✓ ✓ 0.7539 0.7525
✓ ✓ 0.5816 0.5724
✓ ✓ ✓ 0.7561 0.7512
✓ ✓ ✓ ✓ 0.7778 0.7734
✓ ✓ ✓ ✓ ✓ 0.7825 0.7787

Table 3. Ablation studies on multiple modalities.

Visual feature Transformer initialization test-dev test-std
R50 [15]

BERT [10]
0.7496 0.7442

EFN-B3 [37] 0.7825 0.7787
CLIP [30] 0.8014 0.8004
R50 [15]

RoBERTa [28]
0.7480 0.7403

EFN-B3 [37] 0.7849 0.7805
CLIP [30] 0.8003 0.8006
R50 [15]

MacBERT [7]
0.7441 0.7399

EFN-B3 [37] 0.7840 0.7776
CLIP [30] 0.8017 0.8006

Table 4. Ablation studies on visual features and Transformer ini-
tialization.

CLIP features outperform the EfficientNet-B3 features and
the ResNet-50 features by 0.02 and 0.05 on both test-dev
and test-std splits, respectively.

5.3.3 Transformer Initialization

We study three variants of Transformer initialization, in-
cluding the original BERT [10], the RoBERTa [28], and
the MacBERT [7]. These three models vary in their pre-
training strategies. We select these three initialization mod-
els because there are already open-source implementation
and pre-trained model [40], which can greatly reduce our
experiment cost. From Table 4 we can find that the three
initialization models achieve comparable results.

5.3.4 Pre-Training

Many vision-language works [6,10,16,24,25,36] show the
effectiveness of pre-training strategies, and have already
proposed several novel pre-training tasks. In this abla-
tion study, we investigate three widely used self-pretraining
tasks, including masked language modeling (MLM), video
text matching (VTM), masked frame modeling (MFM). In
addition, we also integrate category and tag classification
tasks by using the annotated categories and tags from the
pointwise split as supervision. We adopt CLIP [30] as the
video feature extractor, and BERT [10] as the Transformer
architecture. We simply adopt the same loss weights for
all the pre-training tasks following [16]. In the fine-tuning
stage, we use the best setting in Sec. 5.3.1.

We first apply MLM for pre-training since it is proved
effective in many vision-language works [6, 16, 34]. From
the first two lines of Table 5 we can find that pre-training

Pre-training Tasks test-dev test-std
- 0.8014 0.8004
MLM 0.8164 0.8168
TAG + MLM 0.8268 0.8246
TAG + MLM + VTM 0.8276 0.8261
TAG + MLM + VTM + MFM 0.8289 0.8250

Table 5. Ablation studies on pre-training.

Pre-training Fine-tuning test-dev test-std
MLM+VTM+MFM - 0.8119 0.8089
MLM+VTM+MFM TAG 0.8196 0.8167

TAG+MLM+VTM+MFM - 0.8193 0.8153
TAG+MLM+VTM+MFM TAG 0.8289 0.8250

Table 6. Ablation studies on TAG in pre-training and fine-tuning.

with MLM can improve the final downstream performance
from 0.8014 to 0.8164. Next, since in previous study we
find that tags and categories classification tasks can bring
great improvement, we then adopt TAG. From Table 5 we
find that the TAG task can boost the final performance to
0.8268 on test-dev. Then we conduct the VTM task. From
Table 5 we can find that the adding VTM task also boosts
the performance to 0.8276. Finally, we evaluate the MFM
task. We find that the MFM task can also improve the final
performance to 0.8289 on the test-dev split.

5.3.5 TAG

The categories and tags can provide rich semantic informa-
tion for multi-modal video similarity evaluation. However,
they require a large labeling cost and thus maybe not be easy
to achieve in similar application scenarios. We conduct an
ablation experiment to study the effectiveness of TAG in
both the pre-training and the fine-tuning stages under the
best setting of previous studies. The ablation experiments
on TAG can be found in Table 6. We find that the TAG
can bring about 0.007 and 0.008 performance gain on the
test-dev split when integrating with the pre-training and the
fine-tuning stages, respectively. When incorporated with
other pre-training tasks, the contribution of TAG is weak-
ened. We encourage researchers to explore approaches that
can be free from categories and tags.

6. Conclusion
We introduce the Tencent-MVSE dataset, which is the

first large-scale benchmark dataset for the multi-modal
video similarity evaluation task. The annotated video simi-
larity scores can help evaluate the similarity of video pairs,
and thus benefit the video recommendation system in many
real application scenarios. We involve an advanced Trans-
former to construct a multi-modal understanding baseline,
and also explore several self-supervised pre-training strate-
gies to improve the Tencent-MVSE performance. We hope
that such a benchmark can attract more researchers to study
it, and make more improvements to video understanding.

3145



References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016. 2, 4, 5

[2] Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In CVPR, pages 6077–6086,
2018. 3

[3] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.
Vqa: Visual question answering. In ICCV, pages 2425–2433,
2015. 3

[4] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In CVPR,
pages 961–970, 2015. 2

[5] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio,
and Lucia Specia. Semeval-2017 task 1: Semantic textual
similarity-multilingual and cross-lingual focused evaluation.
arXiv preprint arXiv:1708.00055, 2017. 4, 7

[6] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In ECCV,
pages 104–120. Springer, 2020. 2, 3, 8

[7] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. Revisiting pre-trained models
for chinese natural language processing. arXiv preprint
arXiv:2004.13922, 2020. 8

[8] Pradipto Das, Chenliang Xu, Richard F Doell, and Jason J
Corso. A thousand frames in just a few words: Lingual de-
scription of videos through latent topics and sparse object
stitching. In CVPR, pages 2634–2641, 2013. 3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255. Ieee, 2009. 5, 6

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, pages 4171–
4186, 2019. 2, 6, 7, 8

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2020. 6

[12] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. Vse++: Improving visual-semantic embeddings with
hard negatives. arXiv preprint arXiv:1707.05612, 2017. 3

[13] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. Slowfast networks for video recognition. In
ICCV, pages 6202–6211, 2019. 6

[14] Daya Guo and Zhaoyang Zeng. Multi-modal representation
learning for video advertisement content structuring. In ACM
Multimedia, pages 4770–4774, 2021. 7

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5, 7, 8

[16] Zhicheng Huang, Zhaoyang Zeng, Yupan Huang, Bei Liu,
Dongmei Fu, and Jianlong Fu. Seeing out of the box: End-to-
end pre-training for vision-language representation learning.
In CVPR, pages 12976–12985, 2021. 2, 3, 8

[17] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban,
Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The
thumos challenge on action recognition for videos “in the
wild”. Computer Vision and Image Understanding, 155:1–
23, 2017. 2

[18] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas
Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video
classification with convolutional neural networks. In CVPR,
pages 1725–1732, 2014. 2

[19] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 2, 5

[20] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos. In
ICCV, pages 706–715, 2017. 3

[21] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: a large video
database for human motion recognition. In ICCV, pages
2556–2563. IEEE, 2011. 2

[22] Hyodong Lee, Joonseok Lee, Joe Yue-Hei Ng, and Paul Nat-
sev. Large scale video representation learning via relational
graph clustering. In CVPR, pages 6807–6816, 2020. 2

[23] Joonseok Lee, Sami Abu-El-Haija, Balakrishnan Varadara-
jan, and Apostol Natsev. Collaborative deep metric learning
for video understanding. In SIGKDD, pages 481–490, 2018.
2

[24] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In CVPR,
pages 7331–7341, 2021. 3, 8

[25] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu,
and Jingjing Liu. Hero: Hierarchical encoder for video+ lan-
guage omni-representation pre-training. In EMNLP, pages
2046–2065, 2020. 3, 7, 8

[26] Yuncheng Li, Yale Song, Liangliang Cao, Joel Tetreault,
Larry Goldberg, Alejandro Jaimes, and Jiebo Luo. Tgif: A
new dataset and benchmark on animated gif description. In
CVPR, pages 4641–4650, 2016. 5

[27] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
Bmn: Boundary-matching network for temporal action pro-
posal generation. In ICCV, pages 3889–3898, 2019. 7

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 8

[29] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.

3146



Howto100m: Learning a text-video embedding by watching
hundred million narrated video clips. In ICCV, pages
2630–2640, 2019. 2, 3, 5

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. arXiv preprint arXiv:2103.00020, 2021. 6, 7, 8

[31] Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket
Tandon, Christopher Pal, Hugo Larochelle, Aaron Courville,
and Bernt Schiele. Movie description. IJCV, 123(1):94–120,
2017. 5

[32] Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, Desmond
Elliott, Loı̈c Barrault, Lucia Specia, and Florian Metze.
How2: a large-scale dataset for multimodal language under-
standing. arXiv preprint arXiv:1811.00347, 2018. 5

[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 2

[34] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu
Wei, and Jifeng Dai. Vl-bert: Pre-training of generic visual-
linguistic representations. In ICLR, 2019. 2, 3, 8

[35] Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A cor-
pus of natural language for visual reasoning. In ACL, pages
217–223, 2017. 3

[36] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and
language representation learning. In ICCV, pages 7464–
7473, 2019. 2, 3, 8

[37] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, pages
6105–6114. PMLR, 2019. 6, 7, 8

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017. 6

[39] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang
Wang, and William Yang Wang. Vatex: A large-scale, high-
quality multilingual dataset for video-and-language research.
In ICCV, pages 4581–4591, 2019. 2, 3, 5

[40] Thomas Wolf, Julien Chaumond, Lysandre Debut, Victor
Sanh, Clement Delangue, Anthony Moi, Pierric Cistac, Mor-
gan Funtowicz, Joe Davison, Sam Shleifer, et al. Transform-
ers: State-of-the-art natural language processing. In EMNLP,
pages 38–45, 2020. 8

[41] Bo Wu, Shoubin Yu, Tenenbaum Joshua B Chen, Zhenfang,
and Chuang Gan. Star: A benchmark for situated reasoning
in real-world videos. In NeurIPS, 2021. 3

[42] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
CVPR, pages 5288–5296, 2016. 2, 3, 5

[43] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi.
From recognition to cognition: Visual commonsense reason-
ing. In CVPR, pages 6720–6731, 2019. 3

[44] Da Zhang, Xiyang Dai, Xin Wang, and Yuan-Fang Wang.
S3d: single shot multi-span detector via fully 3d convolu-
tional networks. arXiv preprint arXiv:1807.08069, 2018. 6

[45] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards
automatic learning of procedures from web instructional
videos. In AAAI, 2018. 5

3147


