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Abstract

The deep stereo models have achieved state-of-the-art
performance on driving scenes, but they suffer from severe
performance degradation when tested on unseen scenes.
Although recent work has narrowed this performance gap
through continuous online adaptation, this setup requires
continuous gradient updates at inference and can hardly
deal with rapidly changing scenes. To address these chal-
lenges, we propose to perform continual stereo matching
where a model is tasked to 1) continually learn new scenes,
2) overcome forgetting previously learned scenes, and 3)
continuously predict disparities at deployment. We achieve
this goal by introducing a Reusable Architecture Growth
(RAG) framework. RAG leverages task-specific neural unit
search and architecture growth for continual learning of
new scenes. During growth, it can maintain high reusabil-
ity by reusing previous neural units while achieving good
performance. A module named Scene Router is further in-
troduced to adaptively select the scene-specific architecture
path at inference. Experimental results demonstrate that
our method achieves compelling performance in various
types of challenging driving scenes.

1. Introduction

The reconstruction of the surrounding 3D scene struc-
ture is the foundation of many vision tasks. Depth is the
useful precursor to sensing 3D geometry, which is prefer-
entially recovered by well-posed stereo matching due to its
simple settings, high accuracy, and acceptable cost. Bene-
fiting from the convolutional neural networks (CNNs), deep
stereo methods have achieved remarkable progress recently
in driving scenes [3, 5, 6, 14, 45, 48], constantly improving
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Figure 1. Schematic representation of our framework deployed on
real-world continuous driving scenes. The scene-specific architec-
ture path will be loaded for inference according to Scene Router.

stereo benchmarks like KITTI [11, 26].
However, deep stereo models suffer from performance

degradation when deployed to unseen scenarios [41]. This
is often caused by the gap between training and testing data
domains, e.g., synthetic [25] and real-world data [11, 26].
Domain-adaptive methods [22,29,39] can achieve good per-
formance, but they inherently rely on the types of scenes
available at training time. Unfortunately, collecting enough
data from all kinds of scenes at hand, such as various
weather and road conditions in autonomous driving, is quite
expensive and unfeasible in reality.

Imagine a car driving in real-world scenarios shown in
Fig. 1. The car may experience continuous scenes changing
from cloudy to rainy, or from the city to the countryside.
A stereo model with a single fixed architecture can hardly
perform well on all types of scenes. Moreover, it is also dif-
ficult to continue to learn new scenes without forgetting pre-
vious knowledge. For optimal performance, an ideal model
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should adaptively load suitable architectures for the scenes
at inference. The model also needs to avoid the performance
drop on previous scenes while learning on the new scenes.

The previous method MADNet [43] utilizes an online
learning scheme to continuously adapt to current scenes.
The follow-up work MAD++ [31] leverages prior labels to
improve the performance while alleviating catastrophic for-
getting in stereo. Nevertheless, continuous online gradient
updates are required at inference even when the model has
adapted well to the current scene, which is computation-
ally unnecessary. Besides, when faced with rapidly chang-
ing scenes at inference, MAD++ still needs buffer time to
adapt since it cannot leverage previously learned scenes to
help. In contrast, we reformulate this problem as a contin-
ual stereo matching problem. By doing this, the model can
continually learn to estimate the disparity of new heteroge-
neous scenes and quickly adapt to rapidly changing contin-
uous scenes without online gradient updates at inference.

In this work, we propose a Reusable Architecture
Growth (RAG) framework to address the continual stereo
problem. RAG can overcome the catastrophic forgetting
by freezing the model parameters learned in the previous
scenes. Since different scenes vary in color, lighting, and
disparity distributions, we assign task-specific neural units
for each new scene and adapt the model to them by ar-
chitecture growth. To obtain a more compact architec-
ture, we explicitly reuse the learned neural units during ar-
chitecture growth and thereby achieve a balance between
model performance and parameter efficiency. Under differ-
ent weather and road conditions, our method achieves com-
parable or better performance compared with the state-of-
the-art methods. At deployment time, we further propose
a module called Scene Router to automatically select the
scene-specific architecture path according to the scene type
of the input.

Our contributions are summarized as follows:

• We propose a Reusable Architecture Growth frame-
work consisting of task-specific neural units search and
architecture growth. The framework can continually
learn to estimate the disparity of new scenes without
catastrophic forgetting while exhibiting good reusabil-
ity of the learned neural units.

• A Scene Router module is further introduced to adap-
tively select the scene-specific architecture path for the
current scene at inference. In contrast to continuous
adaptation methods [31, 43], our method can quickly
adapt to rapid scene switches and is more computa-
tionally efficient.

• Experiments demonstrate that our method achieves
compelling performance under different challenging
weather and road conditions on DrivingStereo [46],
KITTI raw [10], and Virtual KITTI [2] datasets.

2. Related Work

Deep Stereo Matching. DispNet [25] is the first end-to-
end deep stereo model utilizing a correlation layer to en-
code matching information. Along this line, the resid-
ual learning is exploited [18, 28] to obtain more accurate
disparity. Besides, semantic cues [47] and edge informa-
tion [40] are also incorporated. AANet [45] further boosts
the performance through adaptive aggregation. Another cat-
egory of deep stereo methods represented by GC-Net [14]
has focused on building a 4D cost volume and leverag-
ing 3D convolutions to regress disparity. Subsequent im-
provements in the network structure include PSMNet [3],
CSPN [5], and GANet [48]. Other methods [12, 13, 37]
explore to construct better regular or cascade cost volume.
They achieve remarkable performance on the KITTI bench-
marks [11, 26]. LEAStereo [6] further improves the bench-
mark score through hierarchical neural architecture search.

Adaptive Stereo Matching. It is observed in [41] that
deep stereo models pre-trained on synthetic data will suffer
from performance degradation when exposed to real-world
scenarios. To alleviate the problem, a series of unsuper-
vised domain adaptation methods [22, 29, 39] have made
efforts to narrow the domain gap. Apart from the offline
learning mechanism, online learning can also be employed
like temporal information exploitation [50], meta-learning
scheme [42], and modular adaptation [43]. The latter is
further improved by prior labels to alleviate catastrophic
forgetting [31]. However, online learning requires contin-
uous gradient descent updates at inference, which is com-
putationally extensive. In contrast, our method can perform
continuous inference without online gradient updates at de-
ployment while not forgetting the previous scenes.

Neural Architecture Search (NAS). Automatic network
design has attracted increasing interest in recent years. Most
of the methods targeted on image classification tasks to
search top-performing architectures by reinforcement learn-
ing [20, 30, 51, 52], evolutionary algorithms [32], and one-
shot search [21]. In addition, some recent work attempts
to develop NAS to semantic segmentation [19], object de-
tection [4], and other tasks. AutoDispNet [35] first applies
NAS to stereo matching by searching cell units of a U-shape
architecture. Subsequently, LEAStereo [6] achieves the top
performance on several stereo benchmarks through hierar-
chical NAS. In this study, we leverage NAS to perform task-
specific neural unit search and architecture growth to learn
the continually incremental scenes.

Continual Learning. Continual learning methods aim to
overcome catastrophic forgetting, which are mainly divided
into three families [7], i.e., replay, regularization, and pa-
rameter isolation. The replay methods store representa-
tive samples in memory [33] or construct pseudo-samples
by generative models [38]. The regularization-based meth-
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Figure 2. Catastrophic forgetting in stereo. The deep stereo model
is first trained on the cloudy scene and then sequentially finetuned
on each of the other scenes. The red boxes refer to the performance
on each scene learned so far, while the blue boxes refer to the
poor generalization performance. The EPE (left) and D1-all (right)
metrics are used for evaluation. Light colors represent lower error
rates. Best viewed in color.

ods [15,17,23] preserve the previous knowledge by adding a
regularization term to the loss function without extra mem-
ory requirements. Nevertheless, these two families still can
not fully maintain the previously learned knowledge. To
avoid any possible forgetting, the parameter isolation meth-
ods protect the model parameters of previous tasks when
learning new tasks. One way is to select a sub-network
for each task from a fixed network [8, 24, 36], but the fixed
network has a limited capacity for continually increasing
tasks. Another way utilizes dynamic architectures [1, 34]
by allocating a single model for each task separately, which
does not consider the reusability of previous models. Other
methods [16,44] selectively expand new units or adapt from
old units when learning a new task, which reduces the speed
of model expansion to some extent. However, these meth-
ods all focus on image classification tasks. In this study, we
advance a further step to the dense regression task for con-
tinual stereo matching and realize it with the high reusabil-
ity of the learned neural units.

3. Continual Stereo Matching

3.1. Catastrophic Forgetting in Stereo Macthing

We first demonstrate the catastrophic forgetting phe-
nomenon in stereo, that is, deep stereo models often suf-
fer from serious performance drop on previously learned
scenes when adapting to new scenes. To this end, we choose
the off-the-shelf state-of-the-art model LEAStereo [6] for
our discussions.

For illustration, we construct a task sequence using
four kinds of weather conditions of the DrivingStereo [46]
dataset, i.e., cloudy → foggy → rainy→ sunny. The train-
ing and validation sets are divided for each scene. We
first train the model on the cloudy scene and then sequen-
tially finetune it on the other scenes. The evaluation is per-
formed on each scene learned so far and unseen scenes as

shown in Fig. 2. We observe that sequential finetuning usu-
ally achieves the best performance after finetuning on the
current scene, but it performs badly on previously learned
scenes or unseen scenes. This is especially obvious after
finetuning on the rainy scene since it is completely differ-
ent from the other three scenes in terms of color, lighting,
and texture. The experimental results show that catastrophic
forgetting is common in heterogeneous driving scenes.

3.2. Problem Statement

The continual stereo problem T can be formulated as
learning N consecutive task sequences {T 1, T 2, ..., T N}
with each corresponding to a heterogeneous scene. Let
Ω = {Ω1,Ω2, ...,ΩN} denote the data of the N contin-
ual scenes, which is divided into training data Ω(train) and
testing data Ω(test). For each task T t, the correspond-
ing training data consist of M triples, that is Ωt

(train) =

{(Itl1 , I
t
r1 , D

t
gt1), ..., (I

t
lM

, ItrM , Dt
gtM )}, where Il, Ir, and

Dgt are left image, right image, and the ground truth dis-
parity, respectively. Denote the learning model ht that con-
tains all the parameters learned up to the current task T t.
The model learns on the tasks from T 1 to T N sequentially,
and only the training data of the current task Ωt

(train) can
be used. Both Ωt

(train) and Ωt
(test) will not be available in

the subsequent tasks. The goal of the continual stereo is to
continually learn the ability to estimate the disparity of in-
cremental new scenes by maximizing the performance of ht

on the current task T t while minimizing the forgetting for
previously learned tasks from T 1 to T t−1. To achieve the
maximum goal, we can minimize the following objective
function,

L(hN ; Ω(train)) =
∑N

t=1
Lt

(
ht; Ωt

(train)

)
(1)

Lt

(
ht; Ωt

(train)

)
=

1

M

∑M

i=1
Lreg

(
Dt

predi
, Dt

gti

)
(2)

where Lreg is the smooth l1 loss of the predicted disparity
Dt

predi
= ht

(
Itli , I

t
ri

)
and the ground truth disparity Dt

gti .
Note that we have no access to all the training data at

once, thus Eq. (1) can not be directly optimized. Actually,
for the current task T t, the parameters learned on the previ-
ous tasks have been optimized. By freezing the previously
learned parameters, we can get an approximate optimiza-
tion target of optimizing Eq. (2) for the current model ht

while achieving the minimization goal.

4. Method
4.1. Overview

In this study, we propose the Reusable Architecture
Growth to better deal with the current task. Following [6],
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Figure 3. Overview of our Reusable Architecture Growth. For the current task T t, based on the previous model (a), we first search task-
specific neural units of the Feature Net (marked as F ) and Matching Net (marked as M ) (b), then select suitable units to make the network
grow (c), and finally train the selected specific model (d). At test time, the scene-specific architecture path (marked in red) is selected for
inference according to the Scene Router (e). Best viewed in color.

our basic model includes Feature Net, cost volume, Match-
ing Net, and disparity regression layers. Fig. 3 shows
the overall pipeline of our RAG. For the current task T t,
we first search for task-specific neural units since different
scenes have different colors, textures, and disparity distri-
butions. To adapt the model to T t without forgetting previ-
ous tasks, we then perform architecture growth to determine
whether to use the reused old units or the searched new ones
for each layer in the network level. The selected new units
are retained while the unadopted are deleted. Finally, the
model of the current task will be trained. At test time, we
further introduce the Scene Router module to adaptively se-
lect a specific architecture path to predict the disparity of
continuous image data stream. In the following subsections,
we will introduce our RAG and Scene Router in detail.

4.2. Reusable Architecture Growth

Cell Level Search. The neural unit in our model is a search-
able cell that consists of a fully-connected directed acyclic
graph (DAG). Following [6], the cell consists of two in-
put nodes from the preceding two layers, three intermediate
nodes, and one output node. Let O denote a set of candi-
date operations. The set includes the 3 × 3 2D convolution
and skip connection for Feature Net. For Matching Net, it
includes the 3 × 3 × 3 3D convolution and skip connec-
tion. Then each intermediate node sj can be formulated as
sj =

∑
i∼j oij (si), where ∼ indicates that node i is con-

nected to j, and oij is the operation between them contain-
ing K(= 2) operations.

For each operation oij = {o1ij , ..., oKij }, we allocate a
validation score ∆ = {δij}, an iteration record C = {cij},
and a candidate probability P = {pij}. Both the validation
score ∆ and the iteration record C are initialized to zero,
and the candidate probability P is uniformly initialized.

To update P , we apply the MdeNAS algorithm in [49] to
our cell level search with modifications. Define the selected
set of operations after each sampling as m∗. Assuming the
error rate (D1-all) on the validation set is σ∗ after one epoch,
we have the validation score formulated as

δm
∗

ij = 1− σ∗. (3)

The iteration record correspondingly increases by one.
Intuitively, the operation with fewer iterations and higher

validation scores should be preferentially selected, thus get-
ting probability gain. Otherwise it should get probability
decay for penalty. Following this point of view, the updat-
ing policy of P is as follows:

pm
∗

ij = pm
∗

ij + α(
∑K

k=1
I(cm

∗

ij < ckij , δ
m∗

ij > δkij)−∑K

k=1
I(cm

∗

ij > ckij , δ
m∗

ij < δkij)),
(4)

where I(, ) denotes as the indicator function that equals to
one if its condition is true and α is the update momen-
tum. To ensure that the sum of the probabilities is 1, we
adopt the softmax operation on the candidate probability as

pm
∗

ij =
exp(pm∗

ij )∑K
k=1 exp(pk

ij)
. Finally, select the operations with the

highest probability as the final operations of the cell. Exten-
sive experiments demonstrate that task-specific neural units
achieve superior performance to fixed units.
Network Level Growth. We define the network level
search space as the arrangement of cells of old and new
tasks. For the current task T t, the candidate architecture is
composed of cells in each layer, i.e., ht =

⋃L
j=1 βj , where

L is the number of layers and βj is composed of the reused
old cells {o1j , ..., o

t−1
j } and the searched new cell otj .

Similar to the cell level search, we also allocate a vali-
dation score ∆ = {δj}, an iteration record C = {cj}, and
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a selected probability P = {pj} to each cell. The update
of the selected probability follows the policy in Eq. (4). Fi-
nally, the cells with the highest probability are selected to
form the model ht of the current task T t.

It is worth noting that the architecture growth will in-
evitably increase the model parameters. We hope to select
reused old cells as many as possible to improve the reusabil-
ity of the learned cells while maintaining good performance.
To this end, we modify the updated policy in two aspects:
initialization and validation score.

Initialization. Unlike the cell level search, the reused
cells learned on the old tasks have already been trained,
so their iteration records should be initialized to a non-zero
constant c0 while the new cells are still initialized to zero.
Besides, to improve the reuse rate of the old cells, the se-
lected probability of old cells should be higher than that of
new cells. Here, we initialize the probability of the old cells
to γ times that of the new cell, i.e.,

pkj = γ · ptj =
γ

γ(t− 1) + 1
, k ∈ {1, 2, ..., t− 1}. (5)

Validation Score. A simple way is to directly use the er-
ror rate as the validation score like Eq. (3), but the reusabil-
ity of the model is excluded. To keep the model more com-
pact during growth, we explicitly integrate the model pa-
rameters into the growth evaluation. After each sampling,
the selected architecture path is marked as m∗, and the num-
ber of parameters of the selected reused cells is ϕm∗

. As-
suming that the error rate on the validation set after one
epoch is σ∗, then the validation score can be composed of
the error rate and model parameters as below:

δm
∗

j =
√
1− σ∗ · log

(
ϕm∗

ϕ
+ 1

)
, (6)

where ϕ is the target number of parameters of the reused
cells. The above formula shows that the lower error rates
and more old reused cells make δm

∗

j larger. In addition,
δm

∗

j can roughly fall within the range of (0, 1). See the sup-
plementary material for more design details. The ablation
study in Section 5.4 shows that the above strategy improves
the parameter efficiency while keeping good performance.

4.3. Scene Router

At inference, a scene-specific architecture path needs to
be selected to predict the disparity of continuous stereo im-
ages. Although the path can be manually chosen, it is often
difficult for the drivers to judge what the current scene is.
To break this dilemma, we propose a Scene Router module
to automatically select the path for the current scene.

As stated in [1], for the current task T t, we train a one-
layer autoencoder for each task. The task-specific autoen-
coder takes the image feature representation xt

n as input and

is trained using the mean square error loss Lmse between
the reconstructed output x̂t

n and the input xt
n. At test time,

the test image is input into different task-specific autoen-
coders to reconstruct itself, and the scene corresponding to
the autoencoder with the smallest reconstruction error is se-
lected as the final choice.

The above training mechanism can achieve good perfor-
mance in image classification [1], but it fails in some cases
in the driving scenarios by experiments in Section 5.4. An
autoencoder trained in one scene may yield a lower recon-
struction error for the other due to the correlation between
different scenes. To alleviate this problem, we advocate to
explicitly enlarge the reconstruction loss of the image of the
new scene on the previously trained autoencoders. Assum-
ing that the reconstruction output obtained by the autoen-
coder trained on the old task T i is x̂i

o(i < t). Our goal is to
make the reconstructed output x̂t

n close to the input xt
n and

far from x̂i
o, i.e.,

simnn

(
x̂t
n, x

t
n

)
≫ simno

(
x̂t
n, x̂

i
o

)
, (7)

where sim(x, y) is the similarity measurement using the in-
verse of the mean square error. Inspired by [27], we propose
a scene contrastive loss to impose this constraint as

Lcon = − log

(
exp(simnn /τ)

exp(simnn /τ) +
∑

i exp(simno /τ)

)
, (8)

where τ is the temperature (typically set to 2). Thus the
entire training loss becomes to Lauto = Lmse + λ · Lcon,
where λ = 0.1. Experiments in Section 5.4 show that Lcon

can significantly improve the accuracy of scene division.

5. Experiments
5.1. Datasets and Evaluation Metrics

Datasets. We evaluate the proposed method on Driving-
Stereo [46], KITTI raw [10], and Virtual KITTI [2, 9]
datasets. DrivingStereo is a large-scale outdoor stereo
dataset in driving scenarios. From the entire dataset, we
use the specially selected four weather conditions (cloudy,
foggy, rainy, sunny) for continual stereo. KITTI raw col-
lects real-world outdoor stereo video sequences covering
heterogeneous environments, namely residential, city, road
and campus. Virtual KITTI is a synthetic clone of the real
KITTI dataset containing 5 sequences of Scene 01, 02, 06,
18, and 20. Since the weather conditions have been consid-
ered in DrivingStereo, we select the 5 scenes with 4 camera
configurations for continual stereo in Virtual KITTI.
Metrics. The stereo performance is accessed using the stan-
dard end-point-error (EPE) and D1-all metrics. To evaluate
the performance for continual stereo, we use Final Average
Error (FAE) to represent the average performance of the fi-
nal model on each task learned so far. Backward Transfer
(BWT) in [23] is also adopted to evaluate the forgetting of
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Table 1. Results of different continual learning methods on DrivingStereo, KITTI raw, and Virtual KITTI datasets. The D1-all and EPE in
terms of FAE and BWT are compared. Red and blue represent the best and the second best results on the corresponding datasets.

Methods
DrivingStereo KITTI raw Virtual KITTI

FAE BWT FAE BWT FAE BWT
EPE↓ D1↓ EPE↓ D1↓ EPE↓ D1↓ EPE↓ D1↓ EPE↓ D1↓ EPE↓ D1↓

Incremental Finetuning 0.937 2.60% 0.342 1.43% 0.594 0.78% 0.050 0.04% 0.892 5.63% 0.353 2.66%
EWC [15] 1.053 4.02% 0.095 0.56% 0.620 0.90% 0.008 0.02% 0.934 5.85% 0.070 0.45%
iCaRL [33] 0.866 1.78% 0.225 0.50% 0.586 0.72% 0.011 0.03% 0.863 5.01% 0.143 0.80%

Expert Gate [1] 0.681 1.52% 0.0 0.0% 0.586 0.74% 0.0 0.0% 0.697 3.91% 0.0 0.0%
Learn to Grow [16] 0.662 1.34% 0.0 0.0% 0.598 0.77% 0.0 0.0% 0.836 5.03% 0.0 0.0%

Joint Training (Ideal) 0.673 1.38% - - 0.554 0.64% - - 0.737 4.18% - -
RAG (Ours) 0.637 1.21% 0.0 0.0% 0.583 0.71% 0.0 0.0% 0.717 4.18% 0.0 0.0%

previously learned knowledge. In addition, we further de-
note a metric of Average Reuse Rate (ARR) to evaluate the
reusability of the learned cells, which calculates the aver-
age percentage of the number of parameters of reused cells
in the current architecture. We provide more details about
the datasets and metrics in the supplementary material.

5.2. Implementation Details

Our method is implemented with PyTorch1. Images are
randomly cropped to the size of 384×192 with no other data
augmentation. We adopt the SGD optimizer with momen-
tum 0.9, weight decay 0.0003, and cosine learning rate from
0.025 to 0.001. The update momentum α is set to 0.01. We
set the initial value of the iterative record c0 = 10, the mul-
tiple γ = 2, and the target number of parameters ϕ = Φ/2.
The network structure of the base model and other training
details can be found in the supplementary material. Code is
available at https://github.com/chzhang18/RAG.

5.3. Evaluation of Continual Stereo

Baselines. We compare our method with several represen-
tative continual learning methods, which are regularization-
based EWC [15], replay-based iCaRL [33], as well as Ex-
pert Gate [1] and Learn to Grow [16] based on dynamic
structure. We also adopt the other two widely used base-
lines, incremental finetuning and joint training using all data
from various scenes (ideal conditions).
Comparisons. The overall performance comparisons with
the above baselines are listed in Table 1. It is clear that
our method achieves remarkable performance on all three
datasets across various weather and road conditions. Bene-
fiting from the task-specific neural units, our RAG outper-
forms Learn to Grow and achieves the best performance on
DrivingStereo. A surprising result is that our RAG even
surpasses the performance of joint training in ideal on Driv-
ingStereo and Virtual KITTI except for KITTI raw. This
suggests that joint training on all the scenes may cause the
model to only find the global solution of the mixed scenes,
but the solution is not always optimal for each scene, es-

1We also provide a version implemented by MindSpore.
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Figure 4. Comparison with various continual learning methods
on each scene of DrivingStereo, KITTI raw, and Virtual KITTI
datasets. EPE and D1-all results are reported.

pecially when the difference across scenes is large. On the
contrary, learning each scene in sequence by architecture
growth can decouple the mixed scenes to find a local so-
lution for each scene. The claim is further validated that
Expert Gate obtains superior results on Virtual KITTI since
it allocates a separate base model to each scene. Each base
model can focus on the current scene better under sufficient
heterogeneous data, but the number of parameters will in-
crease sharply at the same time. By contrast, our method
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Table 2. Ablation study of neural units search and architecture growth on the DrivingStereo dataset.

Cells Fea. Net Mat. Net # param Cloudy Foggy Rainy Sunny FAE
Search Grow Grow (M) EPE ↓ D1 ↓ EPE ↓ D1 ↓ EPE ↓ D1 ↓ EPE ↓ D1 ↓ EPE ↓ D1 ↓

0.61 0.782 1.93% 0.639 1.03% 0.541 0.93% 1.020 2.49% 0.746 1.60%
! 0.61 0.601 1.03% 0.603 0.82% 0.546 0.99% 0.650 1.34% 0.600 1.05%
! ! 0.17 0.733 1.74% 0.704 1.40% 0.806 2.30% 0.696 1.66% 0.735 1.78%
! ! 0.38 0.685 1.40% 0.712 1.39% 0.585 1.08% 0.707 1.69% 0.672 1.39%

! ! 0.41 0.618 1.03% 0.604 0.84% 0.645 1.33% 0.753 1.90% 0.655 1.28%
! ! ! 0.48 0.601 1.03% 0.612 0.90% 0.620 1.21% 0.715 1.70% 0.637 1.21%

Table 3. Ablation results of different strategies for the model reusability on the DrivingStereo dataset.
(a) Initial value.

c0 EPE↓ D1↓ ARR↑
0 0.818 2.12% 81.5%

10 0.655 1.34% 40.7%
20 0.676 1.42% 31.5%

(b) Multiple.

γ EPE↓ D1↓ ARR↑
1 0.655 1.34% 40.7%
2 0.671 1.36% 48.1%
5 0.703 1.55% 49.3%

(c) Validation score.

δm
∗

j EPE↓ D1↓ ARR↑

Eq. (3) 0.671 1.36% 48.1%

Eq. (6) 0.660 1.32% 50.9%

(d) Target parameters.

ϕ EPE↓ D1↓ ARR↑
Φ/3 0.664 1.40% 48.2%
Φ/2 0.637 1.21% 50.1%
Φ 0.660 1.32% 50.9%

can keep high reusability during architecture growth while
achieving competitive performance with fewer parameters.
For catastrophic forgetting, incremental finetuning suffers
the most as evidenced by the highest BWT. Compared with
regularization and replay based methods, our method does
not forget any previous knowledge since our BWT is zero.

We further compare the FAE on each scene with these
methods as shown in Fig. 4. The D1-all results of incre-
mental finetuning and EWC are excluded on DrivingStereo
due to poor performance. Our RAG achieves the best re-
sults in most scenes on all the datasets despite being inferior
in some scenes, such as rainy on DrivingStereo, campus on
KITTI raw, and Scene 06 on Virtual KITTI. It seems that the
knowledge learned from previous scenes is not always suffi-
cient to support the model to achieve the best on each scene
under reusable constraints. Despite this, we still achieve the
top performance in terms of the final average error.

5.4. Ablation Study

In this part, we run comprehensive ablations on the Driv-
ingStereo dataset to analyze the component of RAG and the
Scene Router module.
Neural Units Search. In continual stereo, data from het-
erogeneous scenes are quite different in terms of color, il-
lumination, and disparity distribution. Hence, it is better to
design task-specific neural units for each scene. For illus-
tration, we train a separate model with fixed cells (searched
on synthetic data) and searchable cells for each scene, re-
spectively. The experimental results are listed in the top
two rows of Table 2. It is clear that using task-specific cells
achieves remarkable advantages on three scenes. Even in
the rainy scene, considerable performance is realized. This
indicates that searching for task-specific cells is better than
using fixed cells.
Architecture Growth. The architecture to grow comes
from two parts, i.e., Feature Net and Matching Net. The

results in the last four rows in Table 2 demonstrate the con-
tributions of each part. Only the Feature Net growth can
achieve reasonable performance, but it is inferior to the
model using fixed cells. Only the Matching Net growth
achieves better performance benefiting from the more pow-
erful 3D convolutions. The growth of both parts further re-
duces the error rates and EPE. This suggests that the simul-
taneous growth of the two parts can maximize the perfor-
mance of the model on the continual stereo. Our RAG even
achieves comparable performance to the multiple models
with task-specific cells (2nd row) yet has fewer parameters.

Reusability. Our method will inevitably increase the model
parameters as the scenes increase. To tackle this prob-
lem, we propose a series of strategies to improve the model
reusability while maintaining good performance. Here, four
factors are considered, i.e., the initial value c0, the multiple
γ, the validation score δm

∗

j , and the target parameters ϕ.

Table 3a shows the results of several different initial val-
ues of c0. Zero initialization for the well-trained old cells
can get a high ARR but the performance of the model drops
rapidly as the scenes increase. In contrast, non-zero initial-
ization achieves more stable performance despite decreas-
ing the ARR. We set c0 = 10 in this work. To improve the
reusability of the old cells, we set their initial probability
to γ times that of the new cells. One can observe in Ta-
ble 3b that larger multiples can increase the ARR but the
error rates also increase. We choose γ = 2 as the trade-off
between performance and reuse rates. Table 3c compares
the results of using only the error rate as the validation score
like Eq. (3) with our design in Eq. (6). The proposed strat-
egy improves both the performance and ARR, which indi-
cates that better old cells are selected for the new task during
architecture growth. We further explore the impact of the
target number of parameters of the old cells ϕ. As listed in
Table 3d, using a larger target number can get a higher reuse
rate, but the error rate does not decrease linearly. We finally
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Figure 5. Visualization of the growing architecture on the Driving-
Stereo dataset. The four architecture paths represent the inference
paths of the four kinds of weather. We only depict cells in the
Feature Net (yellow circle) and Matching Net (red circle).
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Figure 6. The effectiveness of Scene Router tested on the Driving-
Stereo dataset including scene division and continuous inference.

choose the suitable intermediate value ϕ = Φ/2 where Φ
represents the number of parameters of a base model. The
visualization of the growing architecture in Fig. 5 gives a
more intuitive description of the reusability of old cells.
Scene Router. At deployment, we adopt Scene Router
to adaptively select the scene-specific architecture path for
continuous disparity estimation. Fig. 6(a) shows the accu-
racy of scene division of our method and Expert Gate [1].
Serious misjudgments occur in Expert Gate in a certain
scene like sunny, which makes the model unable to be well-
excavated. In contrast, our Scene Router can achieve bal-
anced results in various scenes and improve the mean accu-
racy by about 15% benefiting from the proposed scene con-
trastive loss. Despite our method failing in some cases, it
does not mean that the final stereo performance will drop a
lot. Actually, images in different scenes are sometimes diffi-
cult to distinguish clearly, such as sunny and cloudy scenes.
The misclassification of these two scenes may yield com-
parable stereo performance. To this end, we further com-
pare our Scene Router with Expert Gate and manual selec-
tion. As depicted in Fig. 6(b), Scene Router significantly
surpasses Expert Gate, achieving considerable performance
to manual selection.

5.5. Comparison with Continuous Adaptation

We further compare our method with the supervised
version of the continuous adaptation method [43], called
MADNet-GT-Full, to show the ability to overcome for-
getting and the adaptability to novel scenes at inference.
As shown in Fig. 7(a), after learning or adapting to a se-
ries of scenes (cloudy → foggy → rainy → sunny), MAD-

D1=13.08%

D1= 0.90%

Previous Scene

D1=2.57%

D1=2.02%

MAD-GT-FULL

Ours

Novel Scene

(a) Overcome catastrophic forgetting (b) Adaptability to novel scenes

Figure 7. Comparison with the continuous adaptation method [43].
Our method can overcome catastrophic forgetting (a) and have bet-
ter adaptability (boxed in yellow) to the novel scene (b).

GT-Full yields severe errors when tested on the previously
learned scene (e.g., rainy days) since it has forgotten pre-
vious knowledge. It needs some buffer time to re-adapt to
this scene through continuous online gradient updates. In
contrast, our method can overcome catastrophic forgetting
to achieve good results. Benefiting from the Scene Router,
our method can quickly adapt to the rapid scene switches.
We also show the generalization performance of direct in-
ference without adaptation in Fig. 7(b). When exposed to
a novel scene, such as overcast days at dusk, our Scene
Router can adaptively select the suitable architecture path to
predict better disparity. In this case, the architecture corre-
sponding to the cloudy scene is selected for inference since
the scene type of the input image is closest to a cloudy day.
See supplementary material for more cases.

6. Conclusion and Future Work
The proposed RAG framework successfully tackles the

continual stereo problem through task-specific neural unit
search and architecture growth. During architecture growth,
our RAG can achieve high reusability to make the model
more compact. We have shown the efficacy of RAG by
experimental analysis, which surpasses various continual
learning methods in challenging weather and road condi-
tions. At deployment, we utilize Scene Router to adaptively
select the architecture path to adapt to rapid scene switches
without online gradients update. In future work, we plan
to extend RAG to other dense regression tasks. We would
also like to investigate alternative approaches to realize the
function of the Scene Router.

Acknowledgements
This research was supported by the National Key Re-

search and Development Program of China under Grant No.
2018AAA0100400, the National Natural Science Foundation of
China under Grants 61976208, 62071466, 62076242, the InnoHK
project, and CAAI-Huawei MindSpore Open Fund.

18908



References
[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts. In
CVPR, pages 3366–3375, 2017. 3, 5, 6, 8

[2] Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual kitti 2, 2020. 2, 5

[3] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. In CVPR, pages 5410–5418, 2018. 1,
2

[4] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,
Xinyu Xiao, and Jian Sun. Detnas: Backbone search for
object detection. In NeurIPS, pages 6642–6652, 2019. 2

[5] Xinjing Cheng, Peng Wang, and Ruigang Yang. Learning
depth with convolutional spatial propagation network. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(10):2361–2379, 2019. 1, 2

[6] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao
Dai, Xiaojun Chang, Tom Drummond, Hongdong Li, and
Zongyuan Ge. Hierarchical neural architecture search for
deep stereo matching. In NeurIPS, pages 22158–22169,
2020. 1, 2, 3, 4

[7] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Greg Slabaugh, and Tinne
Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 2021. 2

[8] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori
Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and
Daan Wierstra. Pathnet: Evolution channels gradient descent
in super neural networks. arXiv preprint arXiv:1701.08734,
2017. 3

[9] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora
Vig. Virtual worlds as proxy for multi-object tracking anal-
ysis. In CVPR, pages 4340–4349, 2016. 5

[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 2, 5

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, pages 3354–3361, 2012. 1, 2

[12] X. Gu, Z. Fan, S. Zhu, Z. Dai, and P. Tan. Cascade cost vol-
ume for high-resolution multi-view stereo and stereo match-
ing. In CVPR, pages 2495–2504, 2020. 2

[13] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and
Hongsheng Li. Group-wise correlation stereo network. In
CVPR, pages 3273–3282, 2019. 2

[14] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, and
Peter Henry. End-to-end learning of geometry and context
for deep stereo regression. In ICCV, pages 66–75, 2017. 1,
2

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the National Academy of the
Sciences, pages 3521–3526, 2017. 3, 6

[16] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and
Caiming Xiong. Learn to grow: A continual structure learn-
ing framework for overcoming catastrophic forgetting. In
ICML, pages 3925–3934, 2019. 3, 6

[17] Zhizhong Li and Derek Hoiem. Learning without forgetting.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pages 2935–2947, 2017. 3

[18] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei
Chen, Linbo Qiao, Li Zhou, and Jianfeng Zhang. Learning
for disparity estimation through feature constancy. In CVPR,
pages 2811–2820, 2018. 2

[19] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-
deeplab: Hierarchical neural architecture search for semantic
image segmentation. In CVPR, pages 82–92, 2019. 2

[20] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, pages 19–34, 2018. 2

[21] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 2

[22] Rui Liu, Chengxi Yang, Wenxiu Sun, Xiaogang Wang, and
Hongsheng Li. Stereogan: Bridging synthetic-to-real do-
main gap by joint optimization of domain translation and
stereo matching. In CVPR, pages 12757–12766, 2020. 1,
2

[23] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. In NeurIPS, pages
6467–6476, 2017. 3, 5

[24] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-
tiple tasks to a single network by iterative pruning. In CVPR,
pages 7765–7773, 2018. 3

[25] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, pages
4040–4048, 2016. 1, 2

[26] Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In CVPR, pages 3061–3070, 2015. 1,
2

[27] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 5

[28] Jiahao Pang, Wenxiu Sun, Jimmy Ren, Chengxi Yang, and
Qiong Yan. Cascade residual learning: A two-stage convo-
lutional neural network for stereo matching. In ICCV, pages
878–886, 2017. 2

[29] Jiahao Pang, Wenxiu Sun, Chengxi Yang, Jimmy Ren,
Ruichao Xiao, Jin Zeng, and Liang Lin. Zoom and learn:
Generalizing deep stereo matching to novel domains. In
CVPR, pages 2070–2079, 2018. 1, 2

[30] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In ICML, pages 4095–4104, 2018. 2

[31] Matteo Poggi, Alessio Tonioni, Fabio Tosi, Stefano Mattoc-
cia, and Luigi Di Stefano. Continual adaptation for deep

18909



stereo. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021. 2

[32] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, pages 4780–4789, 2019. 2

[33] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classi-
fier and representation learning. In CVPR, pages 2001–2010,
2017. 2, 6

[34] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 3

[35] Tonmoy Saikia, Yassine Marrakchi, Arber Zela, Frank Hut-
ter, and Thomas Brox. Autodispnet: Improving disparity
estimation with automl. In ICCV, pages 1812–1823, 2019. 2

[36] Joan Serra, Didac Suris, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In ICML, pages 4548–4557, 2018. 3

[37] Zhelun Shen, Yuchao Dai, and Zhibo Rao. Cfnet: Cascade
and fused cost volume for robust stereo matching. In CVPR,
pages 13906–13915, June 2021. 2

[38] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon
Kim. Continual learning with deep generative replay. arXiv
preprint arXiv:1705.08690, 2017. 2

[39] Xiao Song, Guorun Yang, Xinge Zhu, Hui Zhou, Zhe Wang,
and Jianping Shi. Adastereo: a simple and efficient approach
for adaptive stereo matching. In CVPR, pages 10328–10337,
2021. 1, 2

[40] Xiao Song, Xu Zhao, Liangji Fang, Hanwen Hu, and Yizhou
Yu. Edgestereo: An effective multi-task learning network for
stereo matching and edge detection. International Journal of
Computer Vision, 128(4):910–930, 2020. 2

[41] Alessio Tonioni, Matteo Poggi, Stefano Mattoccia, and
Luigi Di Stefano. Unsupervised adaptation for deep stereo.
In ICCV, pages 1614–1622, 2017. 1, 2

[42] Alessio Tonioni, Oscar Rahnama, Thomas Joy, Luigi Di Ste-
fano, Thalaiyasingam Ajanthan, and Philip H S Torr. Learn-
ing to adapt for stereo. In CVPR, pages 9661–9670, 2019.
2

[43] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mat-
toccia, and Luigi Di Stefano. Real-time self-adaptive deep
stereo. In CVPR, pages 195–204, 2019. 2, 8

[44] Wenjin Wang, Yunqing Hu, and Yin Zhang. Lifelong
learning with searchable extension units. arXiv preprint
arXiv:2003.08559, 2020. 3

[45] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation
network for efficient stereo matching. In CVPR, pages 1959–
1968, 2020. 1, 2

[46] Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng,
Jianping Shi, and Bolei Zhou. Drivingstereo: A large-scale
dataset for stereo matching in autonomous driving scenarios.
In CVPR, pages 899–908, 2019. 2, 3, 5

[47] Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong
Deng, and Jiaya Jia. Segstereo: Exploiting semantic infor-
mation for disparity estimation. In ECCV, pages 660–676,
2018. 2

[48] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and
Philip HS Torr. Ga-net: Guided aggregation net for end-
to-end stereo matching. In CVPR, pages 185–194, 2019. 1,
2

[49] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,
Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-
ing for effective neural architecture search. In ICCV, pages
1304–1313, 2019. 4

[50] Yiran Zhong, Hongdong Li, and Yuchao Dai. Open-world
stereo video matching with deep rnn. In ECCV, pages 101–
116, 2018. 2

[51] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 2

[52] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, pages 8697–8710, 2018. 2

18910


