
Critical Regularizations for Neural Surface Reconstruction in the Wild

Jingyang Zhang1* Yao Yao2 Shiwei Li2 Tian Fang2

David McKinnon2 Yanghai Tsin2 Long Quan2

1The Hong Kong University of Science and Technology 2Apple
1jzhangbs@cse.ust.hk

2{yaoyao, shiwei, fangtian, dmckinnon, ytsin, quan.long}@apple.com

Abstract

Neural implicit functions have recently shown promis-
ing results on surface reconstructions from multiple views.
However, current methods still suffer from excessive time
complexity and poor robustness when reconstructing un-
bounded or complex scenes. In this paper, we present
RegSDF, which shows that proper point cloud supervi-
sions and geometry regularizations are sufficient to pro-
duce high-quality and robust reconstruction results. Specif-
ically, RegSDF takes an additional oriented point cloud
as input, and optimizes a signed distance field and a sur-
face light field within a differentiable rendering framework.
We also introduce the two critical regularizations for this
optimization. The first one is the Hessian regularization
that smoothly diffuses the signed distance values to the en-
tire distance field given noisy and incomplete input. And
the second one is the minimal surface regularization that
compactly interpolates and extrapolates the missing geome-
try. Extensive experiments are conducted on DTU, Blended-
MVS, and Tanks and Temples datasets. Compared with re-
cent neural surface reconstruction approaches, RegSDF is
able to reconstruct surfaces with fine details even for open
scenes with complex topologies and unstructured camera
trajectories.

1. Introduction
Surface reconstruction from multiple calibrated views is

one of the key tasks in 3D computer vision. Traditionally,
the task is solved by first estimating a point cloud from im-
ages by multi-view stereo (MVS) [1, 4, 22, 26], and then
extracting a triangular mesh from the point cloud [8,11,14].
Recently, neural implicit surface reconstruction also shows
comparable or even better results especially for texture-
less and non-Lambertian surfaces. These methods apply
multi-layer perceptrons (MLP) to map a space coordinate
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to different geometry properties, such as density [16], oc-
cupancy [17] or signed distance to the nearest surface point
[25, 28, 29, 31]. The MLP can be fit into explicit geome-
try representations such as contour masks [17, 29], depth
maps [31] and point clouds [23], or can be further opti-
mized with the scene appearance through differentiable ren-
dering [16–18, 25, 28–30].

However, it is still a challenging task to conduct sur-
face reconstruction in the wild. First, textureless or non-
Lambertian surfaces, which exist in real-world scenes, are
hard to be recovered even for learning-based methods. Sec-
ond, camera trajectories of real-world data may be unstruc-
tured instead of object-centric. In traditional mesh recon-
struction pipelines, although multi-view stereo [22, 26] has
been proven to be effective for a variety of different scenes,
the reconstructed point cloud inevitably suffers from miss-
ing or noisy geometries, which are difficult to be corrected
in later mesh extraction steps. On the other hands, recent
neural surface methods [16, 18, 25, 28] is able to generate
surfaces directly from multi-view images. However, the op-
eration of volumetric rendering [16,18,25,28] with implicit
functions is time-consuming, and those methods are origi-
nally designed for reconstructions of object-centric captures
rather than open scenes with unstructured camera trajecto-
ries.

In this paper, we propose RegSDF, a neural framework
for surface reconstruction from multi-view images for a
broad variety of scenes. Implementation-wise, we choose a
signed distance field (SDF) as the geometry representation
and a surface light field as the appearance model to gener-
ate rendered images for network training. To take advan-
tages of well-established MVS pipelines, we additionally
apply an oriented point cloud from MVS as input to our re-
construction, where the SDF will be fit into observed data
points and also normal directions. Two critical regulariza-
tions, namely the Hessian regularization of second deriva-
tives and the minimal surface constraint, are proposed for
robust neural surface reconstruction. The Hessian regular-
ization is designed to let the signed distance value smoothly
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diffuse to the entire signed distance field, which is important
for reconstructing complete surface from incomplete and
noisy point clouds. Meanwhile, the minimal surface reg-
ularization is introduced to compactly interpolate holes and
extrapolate missing parts in the implicit surface. We show
in experiments that the proposed two regularizations, along
with the point cloud supervision, are sufficient to produce
high-quality and robust reconstruction results from multi-
view images.

The proposed method has been evaluated on DTU [6],
BlendedMVS [27], and Tanks and Temples [10] datasets.
We show by both qualitative and quantitative results that
our method outperforms other neural implicit surface re-
construction systems by higher surface accuracy, stronger
generalization ability to complex scenes, and shorter train-
ing time. Also, compared with traditional meshing meth-
ods, the proposed framework is robust against point cloud
noise and can produce realistic rendered images.

2. Related Works

Differentiable rendering. Differentiable rendering jointly
optimizes all scene parameters including the geometry by
inverting the rendering process. In this section we only re-
view neural-based methods. There are two lines of works
on the neural differentiable rendering, based on respectively
radiance field [16] and surface light field [29].

The radiance field representation assumes that radiance
is emitted from all space points and applies the volumetric
rendering [16, 18, 25, 28] to synthesize images. A soft den-
sity field is applied to represent the geometry of the scene.
The density value could be further interpreted as occupancy
[18] or signed distance [25, 28] for explicit geometry regu-
larizations. There are two major drawbacks of volumetric
rendering based methods. First, it is difficult to accurately
extract the surface from the soft density field. Second, the
volume rendering requires expensive MLP sampling along
the viewing ray.

The surface light field representation follows the as-
sumption that lights are reflected from a opaque geometry
surface. For example, DVR [17] regards the object surface
as the zero-crossing interval of the occupancy field, and ap-
plies root-finding such as the secant method to find the sur-
face intersection. This process can be accelerated in SDF-
based methods [29, 31] by using sphere tracing. However,
such methods can only optimize the surface locally, and ad-
ditional geometric supervisions like masks or depth maps
are required to as inputs. As a result, the quality of the sur-
face output will depend on the input data quality. In this
paper, we show that proper regularizations, including su-
pervision on second order derivatives and minimal surface
constraint, is able to robustly optimize the geometry even
for incomplete or missing point cloud inputs.

Neural implicit surface reconstruction. Recent neu-
ral surface reconstruction methods apply MLPs to repre-
sent geometries as implicit density field [16], occupancy
field [15,17,18,20,21,24] or signed distance field [9,12,13,
19,23,25,28,29,31]. The neural surface can be initialized by
intermediate geometry representations such as masks, depth
maps and point clouds, and can be further optimized with
the scene appearance by differentiable rendering.

Neural implicit surface reconstruction has several advan-
tages over traditional pipelines. First, as the surface is di-
rectly modeled and optimized, the final result is optimal
with respect to input images, while traditional pipelines pro-
duce sub-optimal results through lossy conversions from
depth maps to point cloud, and then to triangular meshes.
Second, the neural appearance representation can naturally
model the view dependent appearance, which is suitable for
modeling and reconstructing non-Lambertian surfaces. In-
spired by recent works [29, 31], we apply the SDF and sur-
face light field to represent the geometry and appearance of
the scene.

Geometry supervision for neural surface. Previous works
introduce intermediate geometry representations to directly
guide the implicit function or provide rough geometric
prior. DVR [17] and IDR [29] take object masks as inputs
to supervise object silhouettes during the network optimiza-
tion. However, it is difficult to automatically estimate per-
fect masks for input images, and the silhouette information
is not adequate for recovering concave geometries in the
scene. MVSDF [31] introduces depth maps from MVS and
use SDF fusion to directly supervise the SDF in the whole
space, but the method still suffers from incompleteness and
noises, making the system unstable for unstructured inputs
or complex scenes. In contrast, our methods apply oriented
point cloud as inputs, but also takes advantages of input im-
ages to refine fine detail geometries in the surface.

Traditional implicit surface reconstruction. Traditional
methods [2,7,8] use volumetric representations like octrees
to store occupancy or signed distance fields in space. Func-
tion values and their derivatives are fit to the input data and
the Marching Cubes [14] algorithm is applied to extract sur-
faces as a level set. These methods can generate triangular
meshes with fine details with affordable memory consump-
tion. However, volumetric representation has no intrinsic
smoothness compared to neural representation so it is more
sensitive to noisy point clouds. Also, octrees are hard to
naturally expand to places without observed data points, re-
sulting in missing surfaces when input point clouds are in-
complete. Finally, the volumetric representation is hard to
model the view-dependent color of the surface, making it
hard to optimize for non-Lambertion surfaces. In contrast,
neural representation is robust against noisy or missing data,
and could be optimized with view-dependent appearance
models for realistic view synthesis.
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3. Method
3.1. Geometry and Appearance Representations

Our geometry and appearance modelling, and the con-
struction of differentiable surface intersections closely fol-
low the works in [29, 31]. We define the surface S as the
zero level set of a Signed Distance Function f represented
by a MLP with network of parameters θ. Let Ω ⊂ R3 be the
domain of the scene bounding box. The network function
f : Ω → R takes a space location x as input and yields the
distance from the query location to the nearest surface point.
Following the previous level set method [32], we assume f
is Lipschitz continuous. The scene interior V is represented
as

V = {x ∈ Ω | f(x; θ) < 0},
and the surface S as

S = ∂V = {x ∈ Ω | f(x; θ) = 0}. (1)

And the appearance is modeled as a surface light field
represented by another MLP g with network parameters ϕ.
The network g : S×R3×R3 → [0, 1]3 takes an intersection
point x on surface, the unit normal vector of the point n,
and the unit view direction vector v as inputs, and yields
the RGB color of this surface point c:

c = g(x,n,v;ϕ),

where x ∈ S and the normal can be auto-differentiated
from the SDF as n = ∇xf(x; θ).

The intersection points are obtained by sphere tracing al-
gorithm and is not differentiable with respect to the network
parameters θ. To construct a differentiable version x(θ), we
can differentiate both sides of f(x(θ); θ) = 0 with respect
to θ and rearrange the terms. Given the current SDF net-
work parameters θ0, unit view direction vector v and the
intersection point x0, the differentiable surface intersection
x(θ) is derived as:

x(θ) = x0 −
f(x0; θ)− f(x0; θ0)

v · ∇xf(x0; θ0)
v, (2)

where f(x0; θ0) and ∇xf(x0; θ0) are constants.

3.2. Data Term

The proposed method additionally takes as input the ori-
ented point cloud from an MVS network. We first generate
point clouds without normal by Vis-MVSNet [30], estimate
the point cloud normals by principle component analysis
for the neighborhood of each point, and align the normal
according to camera positions.

The resulted point cloud can serve as a reliable geometric
guidance because they are properly filtered in the MVS step,
and interior/exterior of the object can be disambiguated by
the normal.

+

+

-

Wrong Sign        Wrong Value               Normal
Data Points                     Expected Interpolation

Figure 1. Illustration of wrong estimation of sign and distance
value because of the incompleteness in input point clouds, which
makes it unreliable to directly supervise the distance in the whole
space.

Surface points. At the locations of data points, their signed
distance are expected to be zero, and surface normals are
expected to agree with the data points. Let xD ∈ D be all
the data points, nD be the unit normal vector of the data
points, the data loss is given as

LD =
1

|D|
∑

xD∈D
λd|f(x)|+ λn(1−

nD · ∇f(x)

∥∇f(x)∥
),

where λd and λn are the weights for distance term and nor-
mal term.
Boundary. We also want to obtain the distance far away
from the surface as an additional boundary condition. Cam-
era centers are good choices because cameras must be lo-
cated in free space and the sign of their distances can be de-
termined. If the camera centers are not inside the bounding
box Ω, we consider the first intersection of the view lines
with Ω. Denote these points as boundary points xB ∈ B.
For each xB , we find its nearest neighbor in the point cloud
xnn
B ∈ D with unit normal vector nnn

B . The distance be-
tween xB and its nearest oriented data point xnn

B is derived
as

d(xB) = |(xB − xnn
B ) · nnn

B |,

and the boundary loss LB is the L1 loss between f(xB) and
d(xB).

Although we can calculate signed distances for any x ∈
Ω as d(x) = (x−xnn) ·nnn, these distances are unreliable
because point clouds from MVS may have missing points
so that the real nearest point cannot be found in the input.
Fig. 1 shows two examples that distances may have wrong
sign or value. However, these problems are not severe for
boundary points who have determined sign and are far from
the surface.

3.3. Regularization

In this section, we introduce the regularization that
smoothly and compactly interpolates and extrapolates dis-
tance values away from data points. In each optimization
iteration, we uniformly draw samples xR ∈ R ⊂ Ω from
the bounding box and do the following regularization.
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The gradients. The gradient magnitude is governed by
the Eikonal equation ∥∇f(x)∥ = 1 in the whole space as
in [29, 31]. The Eikonal loss LE would therefore expect
the gradient magnitude to be 1 in the whole space for the
signed distance field without truncation, it is defined to be
summed up over all the random samples and normalized by
the number of samples as

LE =
1

|R|
∑
x∈R

|∥∇f(x)∥ − 1|.

The gradient directions are expected not to change
rapidly. Following [2], we encourage the small second or-
der derivatives everywhere in space and can define a loss
using the second order derivatives as Hessian matrix H:

LH =
1

|R|
∑
x∈R

∥Hf(x)∥1,

where ∥ · ∥1 is the element-wise matrix 1-norm.
The smoothness of gradients/normals is also introduced

in previous works [18] by minimizing the difference of nor-
mals between a surface point and a sample within its neigh-
borhood. Instead of the discrete approach, we calculate an-
alytical Hessian matrices by further back-propagating the
gradient computation graph.

This regularization leads to two observations. First, the
distance values that are properly supervised by the data
terms can diffuse to the whole space. As results, we ob-
tain correct distance value away from the surface, and in-
completeness of the input can be interpolated. Second, the
surfaces with supporting data points are smoothed to avoid
overfitting the noise in the input.
The minimal surface. The surface areas without support-
ing data points need to be interpolated or extrapolated. The
Hessian loss tends to preserve surface normals and extends
the existing surfaces as planes. But when the missing sur-
faces are non-planar or when we want to close a cluster of
single-sided point cloud, the extra surfaces may overshoot.
Moreover, when the scene is not watertight, the surface be-
tween object and the boundary of bounding box is random.
Inspired by an active contour method in 2D [3], we would
expect the resulted surface to have minimal total area so
that the interpolated and extrapolated surfaces are compact,
which is illustrated in Fig. 2.

According to Eq. 1, the volume of the interior can be
calculated by

volume(V) =
∫
Ω

H(f(x; θ))dx,

area of the implicit surface can be calculated by:

area(S) =
∫
Ω

∥∇H(f(x; θ))∥dx

=

∫
Ω

δ(f(x; θ))∥∇f(x; θ)∥dx,

Minimal Surface                   Hessian Loss
Surface with Data                 Together

Figure 2. Effects of the regularization. The Hessian loss tends
to preserve normals, and the minimal surface constraint closes the
surface as planes. We can achieve a natural interpolation by the
combination of these two regularizations.

where H is the Heaviside function and δ is the Dirac func-
tion. Because f is an SDF, ∥∇f(x; θ)∥ = 1 and can be
omitted. In practice, we use a regularized Dirac function δϵ
and calculate the integration in a Monte Carlo manner. The
minimal surface loss is given by:

LM =
1

|R|
∑
x∈R

δϵ(f(x)), where δϵ(z) =
ϵπ−1

ϵ2 + z2
.

We set the parameter ϵ controlling the sharpness of the peak
to ϵ = 10 in practice.

3.4. Differentiable Rendering

Similar to recent differentiable rendering methods, we
re-render the input images and minimize the difference.
In each iteration, we randomly sample pixels p ∈ I
with ground truth color ĉp. For each pixel, we first find
the surface intersection xrt

p ∈ S along the view direc-
tion vp by sphere tracing. Then we calculate the normal
nrt
p = ∇f(x)|x=xrt

p
and construct a differentiable intersec-

tion xrt
p (θ) by Eq. 2. Now the color of p can be determined

by evaluating the surface light field g with the above inputs
and the render loss is given as

LR =
1

|I |
∑
p∈I

∥cp − ĉp∥1,

where cp = g(xrt
p (θ),nrt

p ,vp).

The render loss jointly optimizes the geometry and the ap-
pearance. It can recover surface details and refine the inter-
polated surfaces.

4. Experiments
4.1. Implementation

Point cloud generation. We use the pre-trained Vis-
MVSNet [30] to generate the point cloud. Hyper-
parameters, including number of source views Nv , proba-
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Chamfer (mm) PSNR
sPSR SSD NeRF UNISURF NeuS VolSDF IDR MVSDF RegSDF (Ours) sPSR SSD NeRF VolSDF IDR MVSDF RegSDF (Ours)

24 0.628 0.761 1.920 1.320 1.370 1.140 1.630 0.826 0.597 19.30 19.23 26.24 26.28 23.29 25.02 24.78
37 1.335 1.657 1.730 1.360 1.210 1.260 1.870 1.763 1.410 15.63 14.65 25.74 25.61 21.36 19.47 23.06
40 0.639 0.684 1.920 1.720 0.730 0.810 0.630 0.883 0.637 19.51 18.49 26.79 26.55 24.39 25.96 23.47
55 0.373 0.406 0.800 0.440 0.400 0.490 0.480 0.440 0.428 19.27 19.33 27.57 26.76 22.96 24.14 22.21
63 1.061 0.888 3.410 1.350 1.200 1.250 1.040 1.105 1.342 20.85 20.26 31.96 31.57 23.22 22.16 28.57
65 0.591 0.519 1.390 0.790 0.700 0.700 0.790 0.904 0.623 17.72 17.83 31.50 31.50 23.94 26.89 25.53
69 0.675 0.621 1.510 0.800 0.720 0.720 0.770 0.748 0.599 21.65 21.81 29.58 29.38 20.34 26.38 21.81
83 0.888 0.946 5.440 1.490 1.010 1.290 1.330 1.259 0.895 23.32 23.03 32.78 33.23 21.87 25.79 28.89
97 0.862 0.694 2.040 1.370 1.160 1.180 1.160 1.018 0.919 18.78 18.78 28.35 28.03 22.95 26.22 26.81
105 0.851 0.793 1.100 0.890 0.820 0.700 0.760 1.347 1.020 21.65 21.60 32.08 32.13 22.71 27.29 27.91
106 0.534 0.481 1.010 0.590 0.660 0.660 0.670 0.868 0.600 21.27 21.34 33.49 33.16 22.81 27.78 24.71
110 0.811 0.744 2.880 1.470 1.690 1.080 0.900 0.844 0.594 18.41 18.45 31.54 31.49 21.26 23.82 25.13
114 0.289 0.290 0.910 0.460 0.390 0.420 0.420 0.340 0.297 19.56 19.58 31.00 30.33 25.35 27.79 26.84
118 0.379 0.353 1.000 0.590 0.490 0.610 0.510 0.467 0.406 23.47 23.82 35.59 34.90 23.54 28.60 21.67
122 0.413 0.503 0.790 0.620 0.510 0.550 0.530 0.465 0.389 24.30 24.45 35.51 34.75 27.98 31.49 28.25
Mean 0.688 0.689 1.857 1.017 0.871 0.857 0.899 0.885 0.717 20.31 20.18 30.65 30.38 23.20 25.92 25.31

Table 1. Quantitative results on DTU [6] dataset. Our method achieves the lowest Chamfer distance among the neural surface reconstruction
methods and a balance between geometry accuracy and rendering fidelity. *Bold values are the best among the neural methods only.

sPSR

VolSDF

IDR

MVSDF
RegSDF (Ours)
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24

26

28

30

32

34

0.660.710.760.810.860.910.96

PS
N

R

Chamfer Distance (mm)

Figure 3. Trade off between geometry accuracy and rendering fi-
delity. The systems in the upper right corner performs better. The
radius of the circles represent the time consumption of each meth-
ods.

bility threshold pt and number of views for geometric con-
sistency Nf , are set according to different datasets. We
use Nv = 5, Nf = 3, pt = (0.6, 0.7, 0.8) for DTU,
Nv = 7, Nf = 3, pt = (0.6, 0.7, 0.8) for BlendedMVS, and
Nv = 20, Nf = 3, pt = (0.3, 0.4, 0) for Tanks and Tem-
ples. Normals of point clouds are calculated by PCA for
local point clusters by Open3D [33]. Finally point clouds
are downsampled to have roughly uniform density, where
the target density is selected as the 90% percentile of the
inter-point distance of the original point cloud.

Network architecture. Following [29, 31], we use an 8-
layer MLP with 512 hidden units and a skip connection in
the middle to represent the SDF and a similar 4-layer MLP
as the surface light field. Point locations and view direc-
tions are enhanced by Positional encoding [16] with 6 and
4 octaves respectively before fed into the networks. The
SDF network additionally outputs a 256-channel location
descriptor which is then fed into the surface light field.

Initialization. Previous methods usually initialize the SDF
to roughly form a sphere. However, this initialization is not

appropriate for geometries with arbitrary topologies. In-
stead, we follow [5] and apply a more general initialization
to preserve a uniform distribution U(−1, 1) from inputs.

Loss weights. The final loss is a weighted sum of the above
mentioned losses: L = λDLD+λBLB+λELE+λHLH+
λMLM +λRLR. Also, there are also additional weights λd

and λn inside LD. If not otherwise specified, we empiri-
cally set λd = λn = λD = λB = λR = 1 and LE = 0.1,
LH = LM = 0.01 in our experiments.

Training. The network is trained with a batch size of 8
for 1800 epochs for each DTU and BlendedMVS scene, or
600 epochs for each Tanks and Temples scene. The ini-
tial learning rate is set to 10−3. Starting from 1/3 of the
whole training process, the learning rate is scaled down by√
10 every 1/6 of the total epochs. The sample numbers are

|D| = 32768, |R| = 16384 and |I | = 4096 × 8. We use
the first 1/6 of training as warm up stage where we disable
the differentiable intersection to avoid instabilities.

Mesh extraction. After training, we extract a triangular
mesh from the SDF function by Marching Cube [14] algo-
rithm. The space resolution is set to 10243 for Tanks and
Temples dataset and open scenes in BlendedMVS dataset.
For other scenes, the resolution is set to 5123.

Evaluation metrics. Chamfer distance is a commonly used
metric for mesh evaluation. However, we observe that lower
Chamfer distance may not necessarily reflects visually bet-
ter results as the metric only considers the distance between
isolated 3D points. To better measure the similarity be-
tween meshes, we additionally introduce the surface normal
consistency into the metric. Specifically, we first sample
oriented point clouds from both meshes where point cloud
normals are inherited from mesh triangles. Similar to pure
distance metric, we find the nearest neighbor for each point,
but additionally consider the normal apart from the distance.
A point will be counted as an inlier if and only if the dis-
tance and the angular difference between two normals are
smaller than a certain threshold. We calculate percentages
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Figure 4. Qualitative results on DTU [6] dataset.

of inliers in both the estimation (accuracy) and the ground
truth (completeness), and report the F-score for evaluating
BlendedMVS and Tanks and Temples datasets.

4.2. Baseline Methods

We compare our method with 1) sPSR [8] and SSD
[2], which are classical mesh reconstructions from point
cloud inputs; 2) NeRF [16], UNISURF [18], NeuS [25] and
VolSDF [28], which are neural surface reconstructions by
volumetric neural rendering without additional inputs; 3)
IDR [29] and MVSDF [31], which are neural surface recon-
structions by ray-tracing with additional supervisions. Also,
we further compare our method with SIREN [23], which
is also a neural surface reconstruction method from point
clouds, on BlendedMVS and Tanks and Temples datasets.

4.3. Benchmark on Dataset in Laboratory

We first benchmark our method on DTU dataset [6]. The
dataset contains 128 laboratory-captured scenes each with
49 views. All scenes are object-centric and cameras are lo-
cated in front of the upper bounding sphere of the object. To
be consistent with previous methods, we report both surface
accuracy as Chamfer distance and render fidelity as PSNR
on the same subset of scenes as in [18, 25, 28, 29, 31].

Comparison on extracted meshes are shown in Fig. 4. All
methods can reconstruct correct topologies of the scenes. It
is shown that NeuS produces bumpy surfaces in the rooftop
area. We believe it is caused by the ambiguity of disentan-
gling appearance and geometry, which demonstrates the im-
portance of introducing the geometry supervision for neural
surface reconstructions. Also, unrestricted surfaces exist in

ground areas away from the object, which may be problem-
atic for the reconstruction of non-object-centric scenes.

Quantitative results are shown in Tab. 1. Our method
produce high-quality results similar to classical SSD and
sPSR, and is significantly better than recent neural-based
methods. Meanwhile, NeRF and VolSDF achieve highest
image fidelity scores. In fact, there is a trade off between
the geometry accuracy and the rendering fidelity. As shown
in Fig. 3, our method keeps a good balance between the
geometry and the appearance qualities. In addition, our
method takes less time (∼ 3.5 hours) to optimize the scene
compared with other neural surface reconstruction methods
(∼12 hours for VolSDF).

4.4. Benchmark on Datasets in the Wild

BlendedMVS. Next, we evaluate our method on Blend-
edMVS [27] dataset. We choose to test 4 object-centric
scenes and 4 UAV-captured open scenes in the dataset. The
distance-only and the normal-aware F-scores described in
Sec. 4.1 are used for evaluation. As previous methods have
not been evaluated on this dataset, we manually run sPSR,
SSD, NeuS and SIREN by provided open-sourced codes.

Qualitative results are shown in Fig. 5. For NeuS, sur-
faces near the bounding box boundary are missing. Mean-
while, SIREN tends to produce watertight surfaces, which
leads to extra surfaces above or below the scene (see
building and church). Quantitative results are shown in
Tab. 2, where our method significantly outperforms all other
neural-based methods
Tanks and Temples. Lastly, we test our method on the
training set of Tanks and Temples dataset [10]. There are
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Figure 5. Qualitative results on BlendedMVS [27] dataset.
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Figure 6. Qualitative results on Tanks and Temples [10] dataset. SPSR [8] produces noisy surface, NeuS [25] is not robust for all the
scenarios, and SIREN [23] creates incorrect surface closure.

Point Cloud Remove Both No Hessian No Minimal Surface Default Config.
Chamfer (mm): 1.780 1.516 1.600 1.410

Figure 7. Qualitative results of ablation studies on DTU [6] dataset. The Hessian loss produces smooth surface, and the minimal surface
constraint creates compact closure of single-sided point cloud (the scissors).
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Distance Distance and Normal
sPSR SSD NeuS SIREN RegSDF (Ours) sPSR SSD NeuS SIREN RegSDF (Ours)

Caterpillar 23.60% 19.99% - 20.94% 21.54% 13.43% 13.16% - 15.71% 16.75%
Truck 42.64% 37.68% 24.08% 41.93% 46.32% 33.25% 31.26% 20.19% 37.70% 42.03%
block 82.04% 81.01% 48.91% 60.43% 77.45% 71.98% 71.47% 42.03% 52.79% 68.06%
building 75.86% 75.80% 46.89% 58.26% 74.50% 61.30% 61.78% 37.78% 46.69% 61.14%
church 70.09% 68.01% 28.20% 56.48% 62.25% 46.66% 46.07% 16.38% 38.97% 43.12%
dog 72.02% 72.68% 56.68% 68.85% 69.36% 67.88% 68.65% 52.88% 64.53% 65.38%
doll 83.48% 82.36% 29.13% 59.74% 81.45% 75.71% 74.43% 22.53% 54.20% 74.41%
jade 53.00% 52.83% 29.19% 46.47% 43.73% 44.58% 44.73% 22.75% 39.61% 37.21%
robot 77.65% 68.62% 61.33% 62.13% 75.04% 70.16% 61.99% 54.87% 56.06% 68.31%
ruin 73.81% 70.06% 32.23% 58.32% 70.12% 64.59% 61.56% 27.87% 50.81% 62.02%
Mean 73.49% 71.42% 41.57% 58.84% 69.24% 62.86% 61.33% 34.64% 50.46% 59.96%

Table 2. Quantitative results on BlendedMVS [27] and Tanks and Temples [10] dataset. The right side contains the evaluation where both
distance and normal similarity are considered as criteria for inliers.

No Hessian LH Minimal Surface LM Sharpness of LM Default
LH and LM λH=1e-1 λH=1e-3 No LH λM=1e-1 λM=1e-3 No LM ϵ=1 ϵ=100 Config.

DTU 0.841 0.939 0.685 0.686 0.894 0.777 0.802 0.801 0.718 0.717
T&T. 23.90% 22.97% 28.72% 28.51% 25.33% 29.17% 29.25% 29.45% 29.43% 29.39%

Table 3. Ablation and sensitivity study on DTU and Tanks and Temples datasets. The value reported for DTU is the overall Chamfer
distance (the lower the better), and for Tanks and Temples is the inlier percentage with normal criterion (the higher the better). The default
configuration achieves overall good results.

totally 7 scenes with 2 indoor scenes which have long been
considered challenging for surface reconstruction. We qual-
itatively compare the 7 scenes and quantitatively evaluate
the 2 scenes with ground truth normals (Caterpillar and
Truck). Similar to the evaluation on BlendedMVS, we com-
pare our method with sPSR, SSD, NeuS and SIREN us-
ing both the distance-only and the normal-aware F-scores.
Also, to better adapt NeuS to indoor reconstructions, we
modify the SDF geometric initialization by negating the
MLP parameters in the last layer.

Qualitative results are shown in Fig. 6. Our method
shows the visually best result among all. NeuS fails to
reconstruct the indoor scene, and contains inaccurate sur-
faces for other scenes (Barn and Truck). SPSR is not ro-
bust against noises in input point clouds, which produce
noisy and bumpy surfaces in final mesh models. Simi-
lar to in BlendedMVS, SIREN produces extra surfaces at
scene boundaries, and tends to aggressively close the sur-
face (Barn and Caterpillar).

Quantitative results are shown in Tab. 2. For Caterpil-
lar, sPSR produces noisy surface, but quantitatively outper-
forms our method in terms of Chamfer distance. However,
if normal consistency is considered, our method achieves
higher score than sPSR among all, which is consistent with
qualitative results in Fig. 6.

4.5. Ablation Study

We conduct ablation studies to discuss the effectiveness
of the Hessian regularization and the minimal surface con-
straint. We test the following four configurations on DTU

and Tanks and Temples datasets: 1) remove both losses; 2)
remove Hessian regularization; 3) remove minimal surface
constraint; 4) default configuration. Qualitative results of
scan 37 in DTU are shown in Fig. 7. We find that the Hes-
sian regularization can lead to smooth surface, while the
minimal surface constraint can avoid extra surface and pro-
duce compact closure for single-sided point clouds. Each
losses can improve the quantitative evaluation, and the full
setting achieves the lowest Chamfer distance among all.

In addition, we test the system’s sensitivity to the loss
weights. The quantitative results of ablation and sensitivity
study is in Tab. 3. The Hessian loss can be down-weighted
for DTU whose point cloud quality is relatively high, but is
essential for Tanks and Temples. Overall, the default con-
figuration achieves good results in all the datasets.

5. Conclusion
In this work, we proposed RegSDF, which is a novel neu-

ral framework for multi-view surface reconstruction. We
introduced the MVS point cloud as additional input, and
fit the implicit neural surface to the observed 3D points.
For rest of the space, we apply the minimal surface con-
straint and the Hessian constraint on derivatives to regular-
ize the implicit surface. Our method can naturally interpo-
late the surface where the input point cloud is missing, and
is able to mitigate noises in the input point cloud. Extensive
evaluations on DTU, BlendedMVS, and Tanks and Temples
datasets have shown that the proposed method achieves both
accurate surface reconstruction and high-fidelity image ren-
dering for a variety of scenes.
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