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Abstract

Low-light image enhancement (LLIE) explores how to
refine the illumination and obtain natural normal-light im-
ages. Current LLIE methods mainly focus on improving the
illumination, but do not consider the color consistency by
reasonably incorporating color information into the LLIE
process. As a result, color difference usually exists between
the enhanced image and ground-truth. To address this is-
sue, we propose a new deep color consistent network termed
DCC-Net to retain the color consistency for LLIE. A new
“divide and conquer” collaborative strategy is presented,
which can jointly preserve color information and enhance
the illumination. Specifically, the decoupling strategy of our
DCC-Net decouples each color image into two main com-
ponents, i.e., gray image plus color histogram. Gray image
is used to generate reasonable structures and textures, and
the color histogram is beneficial for preserving the color
consistency. That is, they both are utilized to complete the
LLIE task collaboratively. To match the color and content
features, and reduce the color consistency gap between en-
hanced image and ground-truth, we also design a new pyra-
mid color embedding (PCE) module, which can better em-
bed color information into the LLIE process. Extensive ex-
periments on six real datasets show that the enhanced im-
ages of our DCC-Net are more natural and colorful, and
perform favorably against the state-of-the-art methods.

1. Introduction

Low-light image enhancement (LLIE) is a task of re-
fining the illumination to obtain natural norm-light images,
which aims at improving the perception and visual quality
of low-light images captured in poor illumination environ-
ment. Low-light images are rather common in reality, e.g.,
images captured in outdoor or indoor scenes with poor light-
ing conditions, which suffers from the unclear contents and
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Figure 1. Comparison of our DCC-Net and other deep LLIE meth-
ods in terms of PSNR/SSIM metrics. We clearly see that there is a
large color gap between the enhanced images of RetinexNet, Zero-
DCE++, Kind++ and EnlightenGAN, and the ground-truth image.
In contrast, our DCC-Net can retain the color consistency effec-
tively, and the enhanced image is more natural and colorful.

textures, low contrast and noises. These degradations will
not only have negative effect on human perception, but also
will be not conducive to the subsequent multimedia comput-
ing and computer vision tasks designed for high-quality im-
ages, for instance face recognition [3], object detection [25]
and semantic segmentation [4].

Traditional LLIE methods aim to build a model to refine
the illumination and obtain the enhanced image, which can
be roughly categorized into histogram equalization (HE)-
based and retinex-based methods. Traditional methods are
relatively simple and easy, but they usually cannot restore
the consistent colors and detailed textures.

With the impressive performance of deep neural net-
works (DNN) in diverse high-level and low-level vision
tasks [5, 10, 31, 36], deep LLIE methods also achieve great
improvement [2,11,30]. Deep LLIE methods usually design
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a deep neural network equipping with different modules to
reverse the degradation process. Compared to traditional
methods that usually produce undesirable illumination and
noises, deep LLIE methods can obtain better results due to
the strong ability of DNN. However, these methods tend to
generate inconsistent colors, which can be seen in Figure
1. There is obvious color difference between the generated
images of RetinexNet, Zero-DCE++, Kind++ and Enlight-
enGAN and the ground-truth. While the result of our DCC-
Net is more natural and conforms to the real color. We ask:
what makes the enhanced images lose color consistency?
We attempt to answer this question from two respects:

1) Different architectures. There are two popular ways
to handle the LLIE task in current studies: 1) end-to-
end deep frameworks that directly handle the low-light
image to obtain normal-light images; 2) retinex-based
frameworks that decompose the image into reflectance
and illumination for further processing. Both the two
modes focus on refining illumination, while ignoring
the color consistency and naturalness. Thus, there will
be color gap in the enhanced images.

2) Information mismatch. Color histogram describes
color information globally, which does not contain any
spatial information. As a result, we cannot find suit-
able color information for specific contents of images.
The connection between the color and content features
is therefore unable to be directly built. This kind of
information mismatch will make the enhanced images
unnatural and contain inconsistent colors.

We therefore propose a new “divide and conquer” col-
laborative strategy, which can jointly retain the color con-
sistency and enhance the illumination. Generally, the main
contributions of this paper are summarized as follows:

• Technically, we introduce a new strategy to retain the
color consistency for LLIE, and also propose a deep
color consistent network termed DCC-Net to reduce
the color difference between the enhanced image and
ground-truth. To the best of our knowledge, this is the
first work to enhance the illumination of low-light im-
age by directly exploring the color consistency. Ex-
tensive experiments show that our DCC-Net can better
enhance the illumination, and the enhanced images are
more natural and consistent in color.

• To jointly retain the color consistency and enhance the
illumination, DCC-Net designs a decoupling strategy
to decouple a color image into a gray image and a color
histogram that complete the LLIE task collaboratively.
We design three sub-nets for DCC-Net, i.e., G-Net, C-
Net and R-Net, as shown in Figure 2. G-Net aims at
recovering the gray image that can offer rich structure
and texture information. C-Net aims to learn the color

distributions, which will be conductive to the color co-
herence. R-Net combines the gray image and color
information to restore the normal-light image.

• To better overcoming the weakness of lacking spa-
tial information for color histogram, we also design
a pyramid color embedding (PCE) module that con-
sists of six color embedding (CE) sub-modules with
pyramid structure. CE can match the color and content
features, according to the affinities between them, so
that the color information can be dynamically incorpo-
rated, which can further reduce the color gap between
the enhanced image and ground-truth image.

2. Related work
In this section, a brief review on both traditional and deep

LLIE methods will be presented.

2.1. Traditional LLIE Methods

HE-based methods. Based on various image priors,
HE-based LLIE methods [17, 24] focus on changing the
dynamic range of the image to improve the contrast, such
as [1, 17]. However, HE-based methods pay attention to
enhancing the contrast, rather than directly refining the il-
lumination. Thus, the enhanced results may suffer from the
under-enhancement or over-enhancement.

Retinex-based methods. This kind of methods [7,8,20]
decompose image into the pixel-wise product of reflectance
and illumination, inspired by the retinex theory [15]:

S = R� I, (1)

where S denotes an image, R and I denote the correspond-
ing reflectance and illumination respectively. By further
processing the reflectance and illumination, enhanced re-
sults can be obtained [7, 8, 12, 13, 20, 27]. Since Retinex-
based methods aim at estimating the illumination, which is
hand-crafted and depends on intensive parameters tuning,
the final result often contain inconsistent colors and noises.

2.2. Deep Learning-based LLIE Methods

Deep LLIE methods can usually outperform traditional
methods due the strong learning ability of DNNs. Accord-
ing to whether paired data are used, current deep LLIE
methods can be divided into three categories, that is, su-
pervised, unsupervised and semi-supervised methods.

Supervised deep LLIE methods. For supervised meth-
ods, all training data are paired. We can further divide this
kind of methods into retinex-based methods and end-to-
end methods. Retinex-based deep LLIE methods similarly
uses deep learning to compose an image into reflectance
and illumination. For example, Wei el al. [30] proposed
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Figure 2. The overall framework of our DCC-Net. As can be seen, there are three sub-nets: G-Net, C-Net and R-Net, where G-Net aims at
recovering the gray images with rich content information, C-Net focuses on learning the color distributions, and R-Net combines the gray
image and color information to restore the natural and color-consistent normal-light images.

a RetinexNet with two stages, where the first stage decom-
poses an image into reflectance and illumination, and the
second one adjusts the illumination map. Zhang et al. also
presented two RetinexNet based improved models, called
KinD [35] and KinD++ [34]. Compared with RetinexNet,
there are three sub-networks for KinD and KinD++, which
are decomposition-net, restoration-net and adjustment-net.

End-to-end deep LLIE methods directly handle the low-
light image, rather than decomposing the image. For ex-
ample, LLNet [21] is a pioneering work using deep auto-
encoder approach for deep LLIE. Due to the strong repre-
sentation ability of Convolutional Neural Networks (CNN),
Li et al. [19] further presented a CNN-based deep LLIE
model. By estimating the global contents of low-light im-
age, a deep hybrid network was also developed to preserve
the structure details in the enhanced image [26]. Super-
vised methods can achieve better weakly illuminated image
enhancement, but the color consistency between enhanced
image and ground-truth is still a difficult issue.

Unsupervised/semi-supervised deep LLIE methods.
In reality, it is challenging or even impractical to simultane-
ously obtain the paired data, i.e., degraded and ground-truth
images, of the same scene. Therefore, unsupervised/semi-
supervised LLIE methods are studied to alleviate this prob-
lem. For example, Yang et al. [32] designs a deep recursive
band network using paired and unpaired low/normal-light
images to obtain a linear band representation of an enhanced
normal-light image. Jiang et al. [11] present an unsuper-

vised LLIE method that employs the generative adversarial
network (GAN) as main framework. There are also several
zero-shot methods whose input only contains the low-light
images [6, 18, 33, 38]. By training these zero-shot models
with carefully-designed loss functions, the illumination of
input low-light images also can be enhanced. Though these
methods solves the LLIE problem without or with partial
paired data, the enhancement quality is usually limited.

3. Proposed Method
In this section, we introduce the framework (see Figure

2) and details of DCC-Net, which aims at preserving the
color consistency and naturalness in obtaining normal-light
images. DCC-Net has three sub-nets (i.e., G-Net, C-Net,
R-Net) and one pyramid color embedding (PCE) module.

3.1. Network Structure

G-Net. Given an input low-light image, the target of
G-Net is to predict the gray image of normal-light image,
which contains rich structure and texture information, with-
out color information. This process is formulated as

Gpre = GNet(Slow), (2)

where Gpre denotes the predicted gray image, Slow denotes
the input low-light image and GNet denotes the transfor-
mation of G-Net. Specifically, G-Net employs the encoder-
decoder pipeline, which is similar with classic U-Net [28].
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For G-Net, we use l1 loss to reconstruct the gray image:

lg =
1

H ×W
‖Gpre −Ghigh‖1, (3)

where lg denotes the gray image reconstruction loss, Ghigh

denotes the gray image of normal-light image,H andW de-
note the height and width of the gray image Ghigh. Hence,
G-Net does not consider color information and devotes to
recovering the textures and structures.

C-Net. Color histogram is a kind of color features,
which is widely used in image retrieval systems [9]. Color
histogram mainly describes the proportion of different col-
ors in the entire image, while not caring the spatial position
of color. In this paper, we calculate the color histogram
in RGB color space. In particular, the color histogram of
an image should be a matrix with size of N × 256, where
N = 3 correspond to the three color channels (i.e., R, G
and B), and 256 is consistent with the range of pixel values.

C-Net is designed based on the color histogram for color
feature learning. The goal of C-Net is to obtain consis-
tent color features with the normal-light image (see Figure
2). We also utilize the encoder-decoder pipeline for C-Net,
which transforms the input low-light image to the predicted
color histogram by the following formula:

Cpre = CNet (Slow) , (4)

whereCpre denotes the obtained color histogram andCNet
denotes the calculation process of C-Net. To better recon-
struct the color histogram, we also apply the l1 loss to con-
strain C-Net, which can be described as follows:

lc =
1

N × 256
‖Cpre − Chigh‖1, (5)

where lc is color histogram reconstruction loss and Chigh

is the real color histogram of normal-light image. Note that
color histogram cannot describe the contents and details in
images. That is, C-Net pays all attention to learning consis-
tent color features, which is beneficial to enhancement.

R-Net. Based on the gray image and color histogram ob-
tained by G-Net and C-Net, R-Net combines them to restore
normal-light image collaboratively. The input low-light im-
age, predicted gray image and color histogram are trans-
formed into the normal-light image by R-Net as follows:

Spre = RNet (Slow, Gpre, Cpre) , (6)

where Spre denotes the enhanced image. To reconstruct the
normal-light image in pixel level, we use color image re-
construction loss lr, which is defined as follows:

lr =
1

N ×H ×W
‖Spre − Shigh‖1, (7)
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Figure 3. The detailed structures of the pyramid color embed-
ding (PCE) and color embedding (CE) modules, where � denotes
element-wise multiplication, ⊕ denotes element-wise addition and
⊗ denotes upsampling operation.

where N , H and W denote the channel number, height and
width of the normal-light image Shigh. In terms of structure
level, we employ the ssim loss as the constraint:

lssim = 1− SSIM (Spre, Shigh) . (8)

where the similarity function SSIM (·) is described as

SSIM (x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
· 2σxy + c2
σ2
x + σ2

y + c2
, (9)

where x, y ∈ RH×W×3 denote two images to be measured,
µx, µy ∈ R represent the mean values of the two images,
σx,σy ∈ R are the corresponding variances of the two im-
ages, c1 and c2 are two constant parameters which can pre-
vent the denominator from being zero. In addition, the total
variation loss ltv is also employed as a regularization term
to retain the smoothness for the enhanced image.

3.2. Pyramid Color Embedding (PCE)

The PCE module is designed to well embed the color in-
formation into R-Net, as shown in Figure 3. Clearly, PCE
has six color embedding (CE) modules with pyramid struc-
ture. Specifically, CE achieves the dynamic embedding of
color features. The main component of CE is dual affinity
matrix (DMA) that solves the information mismatch issue.

Dual affinity matrix. From G-Net and C-Net, we can
obtain the corresponding gray image and color histogram,
which can provide rich structure and texture details, and
color information respectively. R-Net applies both of them
to achieve better enhancement. Since color histogram does
not contain spatial information, simply concatenating them
will cause inaccurate illumination in the enhanced image.
Besides, the simple concatenation will also result in mis-
match between color information and contents, which may
produce color difference in the enhanced images.
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Figure 4. Visual comparison of deep LLIE methods on LOL dataset.

To solve the information mismatch issue and obtain bet-
ter color information embedding, we present a new color
embedding (CE) module, which can dynamically incorpo-
rate color features into R-Net according to the affinity be-
tween color and content features. The proposed dual affin-
ity matrix (DAM) aims at computing the affinity matrix to
match color and content features, and further prevent the en-
hanced image from producing inconsistent colors. Specifi-
cally, given color featuresC and content feature F with size
of N × H ×W , DAM first computes the Manhattan dis-
tance and inner product between C and F for each position,
which are formulated as follows:

M (x, y) = −‖F (x, y)− C (x, y) ‖1, (10)
P (x, y) = F (x, y) · C (x, y) , (11)

where F (x, y) , C (x, y) ∈ RN denote the vectors of F and
C for position (x, y), M,P ∈ RH×W are Manhattan dis-
tance matrix and inner product matrix. Then, the dual affin-
ity matrix A can be calculated as follows:

A = 2× sigmoid (M)� tanh (P ) , (12)

where tanh (·) and sigmoid (·) are tanh function and sig-
moid function respectively. Note thatM (x, y) ≤ 0 for each
position (x, y), so that sigmoid (M) ∈ [0, 0.5]. Hence, we
use 2× sigmoid (M) to ensure the range of A ∈ [0, 1].

Color embedding. CE obtains the dynamic embedding
of color information, whose structure is given in Figure 3.
After obtaining the dual affinity matrix A, CE computes the
element-wise multiplication of A and color features C. The
weighted color features are summed with the content fea-
ture F to obtain the color information embedded features:

E = A� C + F, (13)

where E denotes the output features used in the decoder
of R-Net. There is also an upsampling operation for color
features C to change its resolution, and then further feed
into the next CE as original color features.

Pyramid structure. Given color features, we can use
them to guide the enhancement process to obtain consistent
colors. To fully explore the color information, we present
PCE including six CEs with pyramid structure (see Figure
3). Given the color features Ci and content feature Fi from
i-th CEs, the features obtained by PCE in each layer from
shallow to deep are described as follows:

Ei, Ci+1 = CE(Fi, Ci), i = 1, 2, · · · , 6, (14)

where Ei denotes the output features, CE (·) denotes the
transformation of CE. Ci is computed by the (i− 1)-th CE.
In contrast, Fi is copied from the corresponding layer in the
encoder of R-Net. The pyramid structure embeds color fea-
tures into six layers. In other words, the progressive design
can make full use of the color information. As a result, the
enhanced image will be more consistent in colors.

3.3. Objective Function

The objective function of our DCC-Net is described as

ltotal = λglg + λclc + λrlr + λssimlssim + λtvltv (15)

where λg, λc, λr, λssim, λtv are several trade-off parame-
ters. Specifically, lg and lc are used to recover the gray im-
age and color histogram, respectively. lr and lssim are uti-
lized to reconstruct the norm-light image in pixel and struc-
ture level. ltv can be regarded as an regularization term to
prevent over-fitting and preserve smoothness.

4. Experiments
In this section, we evaluate the LLIE performance of our

DCC-Net on several datasets, and describe the comparison
results with some related deep LLIE methods.

4.1. Experimental Settings

Evaluated datasets. For training, we use LOL synthetic
dataset and LOL real dataset [30]. Specifically, LOL syn-
thetic dataset contains 1,000 paired synthetic low/normal
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Table 1. Evaluation results in terms of PSNR, SSIM, MAE, CSE
and inference time on the LOL dataset, where the red denotes best
performance and the blue denotes the second best.

Method PSNR SSIM MAE(%) CSE (ratio) Time(s)

RetinexNet 16.82 0.43 14.93 2.51 0.0390
KinD 20.42 0.82 9.82 2.30 0.0650

Zero-DCE 16.02 0.51 15.98 5.98 0.0026
EnlightenGAN 18.32 0.64 13.71 1.66 0.0150
Zero-DCE++ 16.11 0.53 15.89 9.59 0.0012

KinD++ 20.92 0.80 8.83 1.15 0.0320

DCC-Net 22.72 0.81 8.72 1.00 0.0260

light images. The LOL real dataset includes 485 paired real
low/normal light images. For testing, we use LOL testing
dataset [30] (15 paired images), DICM [16] (64 images),
LIME [7] (10 images), MEF [22] (17 images), NPE [29]
(85 images) and VV1 (24 images) datasets.

Evaluation metrics. To evaluate the performance of dif-
ferent LLIE methods, we use both full-reference and non-
reference image quality evaluation metrics. For LOL testing
data with paired data, peak signal-to-noise ratio (PSNR),
structural similarity (SSIM), mean absolute error (MAE),
inference time and color-sensitive error (CSE) [37] are em-
ployed. For the DICM, LIME, MEF, NPE and VV datasets
without paired data, only naturalness image quality eval-
uator (NIQE) is used, as there is no ground-truth. Note
that CSE is a new metric that can measure the color differ-
ence of two images [37] . To be specific, the greater PSNR
and SSIM, the better enhancement. In contrast, the smaller
CSE, MAE and NIQE, the more realistic the refined images.

Compared methods. Since we mainly focus on deep
LLIE methods, DCC-Net is compared with six state-of-the-
art deep neural network-based LLIE methods:

• RetinexNet (BMVC’18) [30]: RetinexNet is a deep
LLIE network incorporating the Retinex theory.

• EnlightenGAN (TIP’21) [11]: EnlightenGAN is an
GAN-based unsupervised deep LLIE method.

• KinD (MM’19) [35]: KinD is a classic supervised
deep LLIE method based on Retinex theory.

• KinD++ (IJCV’21) [34]: KinD++ extends KinD by
equipping with multi-scale illumination attention.

• Zero-DCE (CVPR’20) [6]: Zero-DEC develops a new
zero-shot learning framework for deep LLIE.

• Zero-DCE++ (TPAMI’21) [18]: Zero-DEC++ is a
light version of Zero-DEC, which replaces the convo-
lution layer with depth-wise separable convolution.

Implementation details. We conduct all experiments
by the Pytorch [23] platform on Python environment with

1https://sites.google.com/site/vonikakis/datasets

two NVIDIA GeForce RTX 2080i GPUs. All training and
testing images are resized into 512×512 pixels. Adam op-
timizer [14] is utilized with a batch size of 6. We train our
DCC-Net for 400 epochs, where the learning rate is 0.0001
during the first 200 epochs and 0.00001 for the next 200
epochs. For the hyper-parameters of our DCC-Net, we em-
pirically set λg = 1, λc = 2, λr = 2, λssim = 2, λtv = 0.1.

4.2. Quantitative Enhancement Results

LOL dataset with paired data. We first evaluate each
deep LLIE model on LOL dataset. The numerical results
are described in Table 1. We can see that: (1) our DCC-Net
obtains the greatest PSNR value and smallest MAE value,
i.e., the enhanced results are more close to the ground-truth
among all the compared methods; (2) for the SSIM metric,
our DCC-Net is comparable to KinD, and superior to other
methods, i.e., our DCC-Net can better restore the structures
for LLIE; (3) compared with supervised methods, unsuper-
vised methods are still weak in retaining the quality of en-
hanced images; (4) our DCC-Net obtains obvious improve-
ment on the CSE metric compared with other deep LLIE
methods, where ”raio” indicates the ratio of other method’s
results to that of our DCC-Net. Since CSE can directly mea-
sure the color difference between two images, so the results
can express that our DCC-Net is effective to preserve the
color consistency; (5) The inference time of our DCC-Net is
comparable to other methods. As such, in terms of enhance-
ment performance and inference time, DCC-Net obtains the
best results with relatively short inference time.

Datasets (DICM, LIME, MEF, NPEE and VV) with-
out paired data. We also conduct experiments on unpaired
and real low-light images. Table 2 displays the quantitative
image quality of LLIE results in terms of NIQE metric. In
general, DCC-Net obtains better NIQEs results among all
methods. To be specific, KinD and KinD++ achieve prefer-
able performance on MEF dataset, which is slightly better
than ours. For other datasets, our DCC-Net is the best one.

4.3. Visual Image Analysis and Evaluations

LOL dataset with paired data. Figure 4 shows several
enhanced images of LOL datset. It is clear that our DCC-
Net can prevent the enhanced image from inaccurate colors.
In most cases, there are obvious color difference with the
ground-truth image in the enhanced images of compared
methods. For the light refined images of KinD, KinD++,
the results are usually over-enhanced. The resulted images
of EnlightenGAN and our DCC-Net looks better. In terms
of numerical PSNR/SSIM metrics, our proposed DCC-Net
method achieves the best enhancement results.

Datasets without paired data. We further exhibit the
visual enhancement results on the DICM, LIME, MEF, NPE
and VV datasets in Figure 5-7. We can find that: (1) Zero-
DCE++ and Zero-DCE tend to generate over-enhancement
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Low Zero−DCE++ Zero−DCE RetinexNet KinD++ KinD EnlightenGAN DCC−Net

Figure 5. Visual comparison of deep LLIE methods on DICM and LIME datasets, where the results in the first row are based on the LIME
dataset, and the results in the second row are based on the DICM dataset.

Low Zero−DCE++ Zero−DCE RetinexNet KinD++ KinD EnlightenGAN DCC−Net

Figure 6. Visual comparison of deep LLIE methods on NPE dataset.

Low Zero−DCE++ Zero−DCE RetinexNet KinD++ KinD EnlightenGAN DCC−Net

Figure 7. Visual comparison of deep LLIE methods on MEF and VV datasets, where the results in the first row are based on the MEF
dataset, and the results in the second row are based on the VV dataset.
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Table 2. Evaluation results in terms of NIQE on DICM, LIME,
MEF, NPE and VV dataset, where the red color denotes best per-
formance and the blue color denotes the second best.

Method DICM LIME MEF NPE VV

RetinexNet 4.33 5.75 4.93 4.95 4.32
KinD 3.95 4.42 4.45 3.92 3.72

Zero-DCE 4.58 5.82 4.93 4.53 4.81
EnlightenGAN 4.06 4.59 4.70 3.99 4.04
Zero-DCE++ 4.89 5.66 5.10 4.74 5.10

KinD++ 3.89 4.90 4.55 3.91 3.82

DCC-Net 3.70 4.42 4.59 3.70 3.28

Table 3. LLIE results of our DCC-Net with different structures on
LOL dataset, where the bold denotes the best.

Model W/o G-Net W/o C-Net W/o PCE DCC-Net

PSNR 21.51 21.01 21.14 22.72
SSIM 0.79 0.79 0.79 0.81

MAE(%) 10.27 10.13 10.43 8.72

images, which are full of white pixels and lose many de-
tails; (2) there is obvious color gap for the enhance results of
RentinexNet, which makes them seem unreal; (3) for KinD,
Kind++ and EnlightenGAN, the illumination improved im-
ages lack of naturalness; (4) in contrast, the enhanced im-
ages of our DCC-Net are more natural and colorful.

4.4. Ablation Study

We evaluate the effect of the network structure and PCE
module on the performance of our DCC-Net.

Effectiveness of network structure. To demonstrate
the effectiveness of the sub-networks G-Net and C-Net, we
conduct the LLIE task on LOL dataset with and without
them. Figure 8 displays the LLIE results of different mod-
els, where W/o G-Net and W/o C-Net represent our DCC-
Net without G-Net and C-Net respectively. We find that
unreasonable colors are produced by W/o G-Net and W/o
C-Net. Table 3 describes the quantitative results. We see
that there is obvious performance decline without G-Net or
C-Net, which demonstrates the rationality and validity of
the proposed “divide and conquer” collaborative strategy.

Effectiveness of PCE. As can be seen from Table 3,
when PCE is removed from DCC-Net, denoted as W/o
PCE, the values of PSNR and SSIM are smaller than DCC-
Net, i.e., PCE is important to ensure the performance. Sim-
ilarly, the value of MAE is greater than W/o PCE, which
suggests that PCE is effective to enhance the illumination.
Since PCE can effectively match the color and content fea-
tures layer by layer, which can take full advantage of the
color information. From the third row of Figure 8, we see
that the enhanced image contains undesired yellow color,

W/o PCE DCC-Net

W/o C-Net DCC-Net

W/o G-Net DCC-Net

Figure 8. Comparison of different LLIE models on LOL dataset.

which is obviously inconsistent with peripheral regions.

5. Conclusion
We have discussed the issues of retaining the color con-

sistency and naturalness for LLIE task. Technically, we pro-
posed a new “divide and conquer” collaborative strategy to
retain color information and naturalness, and developed a
deep color consistent network called DCC-Net. To be spe-
cific, two sub-nets are designed to learn gray image and
color histogram from a low-light image, where the gray im-
age offers rich content information and the color histogram
provides color information. Since color histogram does not
consider spatial position, a new module PCE is further de-
signed to match color and content features, and progres-
sively embed color information. By the collaborative strat-
egy, DCC-Net can jointly preserve color information and
refine illumination. Extensive experiments show the superi-
ority and effectiveness of DCC-Net for obtaining more nat-
ural and colorful normal-light images. In future, we will
investigate more effective networks to further improve the
naturalness and color consistency for LLIE. Besides, how
to quantitatively assess the naturalness and image quality in
terms of contents and color difference still remains an open
problem, which is also an interesting future work.
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