
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed
Instance Segmentation

Tao Zhang
Wuhan University

Wuhan China
zhang tao@whu.edu.cn

Shiqing Wei
Wuhan University

Wuhan China
wei sq@whu.edu.cn

Shunping Ji
Wuhan University

Wuhan China
jishunping@whu.edu.cn

Abstract

Contour-based instance segmentation methods have de-
veloped rapidly recently but feature rough and hand-
crafted front-end contour initialization, which restricts the
model performance, and an empirical and fixed backend
predicted-label vertex pairing, which contributes to the
learning difficulty. In this paper, we introduce a novel
contour-based method, named E2EC, for high-quality in-
stance segmentation. Firstly, E2EC applies a novel learn-
able contour initialization architecture instead of hand-
crafted contour initialization. This consists of a con-
tour initialization module for constructing more explicit
learning goals and a global contour deformation module
for taking advantage of all of the vertices’ features bet-
ter. Secondly, we propose a novel label sampling scheme,
named multi-direction alignment, to reduce the learning dif-
ficulty. Thirdly, to improve the quality of the boundary de-
tails, we dynamically match the most appropriate predicted-
ground truth vertex pairs and propose the corresponding
loss function named dynamic matching loss. The experi-
ments showed that E2EC can achieve a state-of-the-art per-
formance on the KITTI INStance (KINS) dataset, the Se-
mantic Boundaries Dataset (SBD), the Cityscapes and the
COCO dataset. E2EC is also efficient for use in real-time
applications, with an inference speed of 36 fps for 512×512
images on an NVIDIA A6000 GPU. Code will be released
at https://github.com/zhang-tao-whu/e2ec.

1. Introduction

Instance segmentation is a fundamental computer vision
task and the cornerstone of many downstream computer vi-
sion applications, such as autonomous driving and robotic
grasping. The classic instance segmentation methods are
based on a two-stage pipeline, where the bounding boxes
(bboxes) of the instances are first generated, and then pixel-
wise segmentation is performed within the bboxes. Typi-
cal examples are methods such as Mask R-CNN [14] and

Figure 1. The ideal deformation paths of several contour-based
methods. White boundaries and points are the initial contours,
blue lines are the deformation paths, and black points are the align-
ment points.
PANet [23]. These methods can achieve an excellent ac-
curacy, but are inefficient, which restricts their applica-
tion in real-time tasks. With the rapid development of
one-stage detectors [29, 39], many one-stage mask-based
instance segmentation methods have now been proposed,
such as YOLACT [2], BlendMask [3], TensorMask [4], and
CenterMask [17]. However, these one-stage methods con-
sume a lot of storage, require costly post-processing, and
hardly perform in real time. The quality of the instance
boundary prediction is also unsatisfactory as these methods
usually use limited feature information (for example, Mask
R-CNN only segments instances in a 28×28 feature map).
The contour-based methods have recently received renewed
attention and have shown great potential. Examples of such
methods are Curve GCN [21], Deep Snake [27], Point-Set
Anchors [31], DANCE [25], PolarMask [33], and LSNet
[9]. The contour-based methods treat the instance segmen-
tation as a regression task, i.e., regressing the vertex co-
ordinates of a contour represented by a series of discrete
vertices. A contour composed of N (e.g., N = 128) ver-
tices is sufficient to describe most of the instances well [27].
Compared with the mask-based methods, which require in-
tensive processing of each pixel, the contour-based methods
are simpler and require less calculation. The contour-based
methods can also directly obtain the boundaries of the in-
stances, without any complicated post-processing.

However, the existing contour-based methods still have

4443



many obvious shortcomings. First, all of the existing multi-
stage methods adopt a manually designed shape for the ini-
tial contour. As shown in Figure 1, the difference between
the manually designed initial contour and the ground-truth
instance boundary can lead to many unreasonable defor-
mation paths (the route from initial to ground-truth vertex)
and huge training difficulty. It is also impossible to sam-
ple the manually designed initial contour to achieve a uni-
form angle and uniform vertex spacing at the same time.
The Point-Set Anchors and DANCE methods attempt to ad-
dress this problem by changing the intuitive vertex pairing
method [25, 31], but the results are not satisfactory.

Second, local or limited information is popularly applied
in contour adjustment. For example, the one-stage Polar-
Mask [33] and LSNet [9] methods directly regress the co-
ordinates of the contour vertices based on only the limited
features at the instance center, resulting in the loss of the
predicted contour details. The multi-stage methods itera-
tively adjust the initial contour based on the features of the
contour vertices to obtain a more refined segmentation re-
sult. However, Curve GCN and Deep Snake utilize a lo-
cal information aggregation mechanism that propagates the
features of the local adjacent contour vertices to refine the
contour, which can fail in correcting large prediction errors.
Moreover, the local aggregation has to be inefficiently re-
peated to access global information. Instead, we propose a
global contour deformation method based on the features of
all the contour vertices.

Third, the pairing of the ground-truth and predicted ver-
tices in the current contour-based methods is fixed, regard-
less of the continuous position adjustment of a predicted
vertex (e.g., it is already on the ground-truth boundary or
close to another ground-truth vertex, but far from the given
one). Hence, the pre-fixed vertex pairing is not optimal, and
can result in a slower convergence speed, and even wrong
predictions.

In this paper, we propose a multi-stage and highly
efficient end-to-end contour-based instance segmentation
model named E2EC, which can completely overcome these
shortcomings. E2EC incorporates three novel components:
1) a learnable contour initialization architecture; 2) multi-
direction alignment (MDA); and 3) a dynamic matching
loss (DML) function.

E2EC replaces the manually designed initial contour
with a learnable contour initialization architecture, which
handles the first and second problem. This architecture con-
tains two novel modules: 1) a contour initialization module;
and 2) a global contour deformation module. The contour
initialization module directly regresses the complete initial
contour based on the center point features, which differs
from regressing lengths along given fixed rays [33]. The
global contour deformation module then refines the initial
contour based on all of the features of the initial contour

Figure 2. Overview of E2EC. E2EC consists of a learnable con-
tour initialization architecture including a contour initialization
and a global deformation module that produces the coarse con-
tour, and a contour refinement module that produces the final con-
tour with the supervision of DML.
vertices and center point instead of using features of local
vertices. As shown in Figure 1, the learnable initial con-
tour architecture does not rely on a manually designed ini-
tial contour (e.g., the ellipse of Curve GCN or the octagon
of Deep Snake), and directly deforms from the midpoint
of the object instance to the contour with more reasonable
paths.

The difficulty in predicted-label vertex pairing roots in
the fact that no simple differentiable calculation can mea-
sure the distance between the predicted and ground-truth
boundaries. To address the third problem, on the one hand,
we propose multi-direction alignment (MDA), which fixes
the directions of the selected multiple contour vertices with
respect to the center point (the black points in Figure 1
(E2EC)), and then uniformly samples between the fixed ver-
tices to generate ground-truth vertices. MDA appropriately
restricts the possible vertex pairing and deformation paths,
and greatly reduces the difficulty of learning while ensur-
ing the upper bound of the performance. The combination
of the learnable initial contour architecture and MDA elim-
inates the unreasonable deformation paths that commonly
exist in the current contour-based methods.

On the other hand, we propose a matching strategy that
dynamically matches the predicted vertices and the most ap-
propriate label vertices instead of fixed pairing, and the cor-
responding dynamic matching loss (DML) function. DML
eliminates the problems of an over-smooth boundary and
poor fitting of the inflection points in the contour-based
methods, and greatly improves the quality of the predicted
boundary details.

In the experiments conducted in this study, E2EC exhib-
ited a state-of-the-art performance on the KITTI INStance
(KINS) dataset [28], the Semantic Boundaries Dataset
(SBD) [13] and the Cityscapes [6] dataset. For 512×512
images, E2EC achieved a 36 fps inference speed on an
NVIDIA A6000 GPU. If the iterative deformation module
is disabled, E2EC can reach a speed of 50 fps, with an ac-
curacy comparable to that of Deep Snake.

4444



Figure 3. Global deformation
(b) vs. circular convolution
[27] (a). The green points rep-
resent the features of the contour
vertices, the yellow points repre-
sent the local kernel function of
the circular convolution, and the
blue points represent the offsets
of the contour vertices, and red is
MLP.

Figure 4. Multi-direction alignment. M is the number of vertices
fixed in the direction with respect to the center point. When M in-
creases, the learning difficulty of the task gradually decreases, but
the unevenness of the vertex distribution also gradually increases.

2. Related Work

Mask-based instance segmentation methods. The
classic mask-based instance segmentation methods, such as
Mask R-CNN [14] and PANet [23], include a bbox extrac-
tion stage and a mask segmentation stage. These meth-
ods can achieve a good performance, but with a very slow
speed. In recent years, one-stage methods such as Center-
Mask [17], YOLACT [2], SOLO [30], and BlendMask [3]
that follow the above process have developed rapidly, and
have greatly improved in speed. However, dense pixel-wise
classification requires a huge amount of calculation. Al-
though these methods try to sacrifice performance and per-
form segmentation on the down-sampled feature maps, to
reduce the amount of calculation, they still cannot meet the
requirement of real-time performance. The methods pro-
posed in [12, 26] follow another pipeline, where they first
perform semantic segmentation and then cluster the pixels
to generate instances. However, these methods require com-
plex post-processing and cannot be applied to amodal in-
stance segmentation tasks.

Contour-based instance segmentation methods.
Compared with the mask-based methods, the contour-
based methods have an absolute advantage in speed.
PolarMask [33] and LSNet [9] directly regress the coordi-
nates of the instance vertices based on the features at the
center point, and can reach a speed that is almost equivalent
to that of the detector; however, the corresponding seg-
mentation quality is quite rough. Curve GCN [21], Deep
Snake [27], Point-Set Anchors [31], and DANCE [25]
use the vertex features of the contour for the boundary
regression, which greatly improves the performance. These

Figure 5. Dynamic matching loss. The yellow points are the
predicted contour vertices, the green points are the label vertices,
the red points are the key label vertices, and the arrows represent
the deformation path (the relationship of the pairing). (a) The first
part of DML, where each prediction point is adjusted to the nearest
point on the ground-truth boundary. (b) The second part of DML,
where the key label point pulls the nearest prediction point toward
its position.

methods first initialize the contour, and then iteratively de-
form the initial contour to obtain the final instance contour.
However, the initial contour shapes of these methods are all
manually designed, such as the ellipse of Curve GCN, the
octagonal of Deep Snake, and the rectangle of Point-Set
Anchors and DANCE. The huge difference between the
manually designed initial contour and the ground-truth
contour leads to many inappropriate vertex pairs, as shown
in Figure 1. For example, there are many intersections
between the deformation paths of Curve GCN and Deep
Snake at different vertices that confuse the training process.
The segment-wise matching strategy proposed by DANCE
slightly alleviates the above problem, but the intersections
still exist. The deformation paths of Point-Set Anchors
seem reasonable, but its vertex paring strategy seriously
reduces the upper bound of the performance. The proposed
E2EC method eliminates the unreasonable deformation
path of the contour-based methods and does not reduce the
upper bound of the performance.

Other instance segmentation methods. Dense Rep-
Points [37] uses a discrete point set to model the instance,
but the instance representation of Dense RepPoints can-
not be directly converted to a mask or contour represen-
tation, and requires complex post-processing. Polytrans-
form [19] combines a mask-based method and a contour-
based method. Poly Transform first generates the mask rep-
resentation of the instance, then converts the mask into a
contour through post-processing, and finally refines the con-
tour by a deformation module. However, Poly Transform
cannot be trained end-to-end, and the speed is too slow for
it to be applied to real-time scenes.

3. The proposed E2EC method

In this section, we describe the three main parts of the
proposed end-to-end contour-based (E2EC) instance seg-
mentation method, i.e., the learnable contour initialization
architecture, the multi-direction alignment (MDA), and the
dynamic matching loss (DML) function. The workflow of
E2EC is shown in Figure 2. E2EC first generates a heatmap

4445



to locate the instance centers, and then learns the initial
contour by regressing the initial offsets based on the cen-
ter point features. The initial contour is first deformed by a
global deformation module, and evolves to the coarse con-
tour. The deformation modules [27] then deform the coarse
contour twice to the final contour.

3.1. Learnable contour initialization architecture

The learnable contour initialization architecture includes
a contour initialization module and a global deformation
module.

Initial contour. Unlike the manually designed initial-
ization used in the existing contour-based methods, it is not
necessary to specify the shape of the initial contour as this is
learned by the network. Inspired by Dense RepPoints [37],
the offsets of each initial contour vertex are directly re-
gressed with respect to the center point, based on the center
point features, which is denoted as {(∆xiinit,∆yiinit)|i =
1, 2, ..., N}, where N is the number of vertices of the ini-
tial contour. The initial contour vertices are computed by
adding the center point coordinates and the offsets, which
is denoted as {(xiinit, yiinit)|i = 1, 2, ..., N}. Dense Rep-
Points regresses an unordered point set and then converts
the point set into a contour or mask representation through
complex post-processing. In contrast, E2EC directly re-
gresses the contour (an ordered point set) without any re-
quirement for post-processing. Compared with the other
manually designed initial contours (e.g., ellipse or octagon),
the learnable initial contour is closer to the ground-truth
contour. In addition, the direction of the deformation path
of the learnable initial contour is from the center point to
the contour vertex (as shown in Figure 1), guaranteeing that
no unfavorable intersections between the deformation paths
to impact the convergence.

Global deformation. It is challenging to directly regress
the contour vertices with only the center point features.
Meanwhile, it is also difficult to effectively deform the con-
tour based only on the local features of a single contour
vertex or several adjacent ones. The circular convolution
proposed in Deep Snake uses a local aggregation mecha-
nism to supplement the global information. However, the
circular convolution operating on the local adjacent ver-
tices needs to be repeated multiple times to aggregate the
global information, and it cannot effectively correct large
errors in the contour. We propose a simple but more effec-
tive global aggregation mechanism named global deforma-
tion to deform the initial contour based on both the center
point features and all of the contour vertex features. As
illustrated in Figure 3(b), the features of the N initial con-
tour vertices and the center point are first concatenated into
a vector of length (N + 1) × C (where C is the chan-
nel number of the vertex feature). The vector is then in-
put into the MLP module (channels of hidden layer and

Figure 6. The actual deformation paths with different numbers
(M) of fixed vertices. The blue line is the initial contour, the green
line is the final contour, and the black lines are the deformation
paths.

output layer is N × 2) to obtain the offset predictions of
the contour vertices (a vector of length N × 2, denoted
as {(∆xicoarse,∆yicoarse)|i = 1, 2, ..., N}). The offsets
and the initial contour coordinates are summed to obtain
the adjusted coarse instance contour, which is denoted as
{(xicoarse, yicoarse)|i = 1, 2, ..., N}. In our experiments,
we set N = 128 and C = 64.

3.2. Multi-direction alignment (MDA)

Due to the challenge of the contour initialization and
predicted-label vertex pairing, deviation may exist between
the actual vertex deformation path and the ideal deformation
path, which leads to the adjustment of some vertices tending
toward the along-contour direction with a slower conver-
gence speed, and even wrong predictions. MDA addresses
this problem by fixing the direction of several selected ver-
tices with respect to the center point, and then samples the
ground truth uniformly between the fixed vertices. The
sampling results for different numbers of alignment ver-
tices are shown in Figure 4. MDA can effectively reduce
the learning difficulty of the contour adjustment, without re-
ducing the upper bound of the performance. Interestingly,
PolarMask and LSNet are two extreme cases of MDA. If
we suppose that the number of contour vertices is N and
the number of alignment vertices is M , when M = N ,
the strategy degenerates to PolarMask, which has the lowest
learning difficulty but the lowest upper bound of the perfor-
mance. When M = 0, the strategy degenerates to LSNet,
which is the most difficult case to learn, with a high up-
per bound of the performance. We experimentally found
that M = 4 obtains the best performance. When M = 4,
the learning difficulty is significantly reduced, but the upper
bound of the performance is not reduced.

3.3. Dynamic matching loss (DML)

As the pre-fixed vertex pairing used in previous studies
is not optimal and can cause learning difficulty, we pro-
pose DML, which dynamically adjusts the relationship of
the vertex pairing to supervise output of the last deforma-

4446



tion module [27] as shown in Figure 2. The loss consists of
two parts: 1) the predicted vertex points toward the nearest
points on the label boundary, as shown in Figure 5(a), and
then 2) the key label vertex pulls the nearest predicted ver-
tex toward its position, as shown in Figure 5(b). The full
details of DML are described below.

In the best case, the vertices should be adjusted to the
target contour with the least cost. For each predicted vertex,
it is a complicated process to dynamically find the nearest
correspondence in the label contour line. Firstly, in order
to simplify the calculation, the adjacent ground-truth ver-
tices are split into 10 equal sub-segments. The problem is
then transformed into discovering the nearest interpolated
ground-truth contour vertex. Equation (1) describes the
process of matching the nearest interpolated ground-truth
vertex (gtipt) for each predicted contour vertex by mini-
mizing the L2 distance of predicted i-th point and x-th
(0 < x < N + 1) label point. Equation (2) is the corre-
sponding and first component of DML. Secondly, the clos-
est predicted vertex is dynamically matched to the key ver-
tices (obtained by the Douglas-Peucker algorithm [8]) of the
label contour to preserve the details of the predicted con-
tour. Equation (3) describes the process of matching each
key vertex to the nearest predicted vertex to best preserve
the details of a boundary. Equation (4) is the corresponding
and second component of DML. DML is the average of the
above two components, as shown in Equation (5). DML can
greatly improve the quality of the predicted boundary and
address the over-smoothing problem found in Deep Snake
and DANCE.

x∗i = argmin
x
‖predini − gtiptx ‖2 (1)

L1(pred, gt) =
1

N

N∑
i=1

‖predouti − gtiptx∗
i
‖1 (2)

y∗i = argmin
y
‖prediny − gtkeyi ‖2 (3)

L2(pred, gt) =
1

nkey

nkey∑
i=1

‖predouty∗
i
− gtkeyi ‖1 (4)

L(pred, gt) =
L1(pred, gt) + L2(pred, gt)

2
(5)

4. Implementation details
Detector. E2EC can be constructed based on any detec-

tor, and it is only necessary to change the output size of the
bbox branch from H × W × 2 to H × W × (N × 2) to
directly regress the initial contour with N vertices. In the
experiments conducted in this study, for a fair comparison
with the other methods, CenterNet [39] was used as the de-
tector for E2EC.

Loss function. Smooth L1 loss is used to supervise the
contour initialization branch, the global deformation branch
and the first refinement deformation module. The losses are
defined as:

Linit =
1

N

N∑
i=1

smooth l1(x̃init
i − xgti ) (6)

Lcoarse =
1

N

N∑
i=1

smooth l1(x̃coarsei − xgti ) (7)

Liter1 =
1

N

N∑
i=1

smooth l1(x̃iter1i , xgti ) (8)

WhereN is the number of contour vertices, x̃initi is the pre-
dicted initial contour vertex, x̃coarsei is the predicted coarse
contour vertex, xgti is the label contour vertex, and x̃iter1i is
the contour vertex after being deformed with the first defor-
mation module in the refinement step.

The DML function is used to supervise the last deforma-
tion module, as shown in equation (9), where x̃iter2i is the
contour vertex after being deformed with the second defor-
mation module. The loss of refinement deformation mod-
ules is then defined as equation (10).

Liter2 = LDML(x̃
iter2
i , xgti ) (9)

Liter = Liter1 + Liter2 (10)

The overall loss is as follows:
Loverall = Ldet + αLinit + βLcoarse + Liter (11)

Both α and β are set to 0.1. Ldet is the loss of the center
point detection.

5. Experiments
5.1. Datasets and metrics

Datasets. The KINS [28], SBD [13], Cityscapes [6],
and COCO [20] datasets were used in the experiments. The
KINS dataset is used for amodal instance segmentation, and
has seven instance classes, with 7,474 training images and
7,517 testing images. The SBD dataset has 20 instance
classes and is split into 5,623 training images and 5,732
testing images. The SBD dataset is made up of 11,355
reannotated images from the PASCAL VOC [10] dataset,
with instance-level boundaries. The Cityscapes dataset has
eight instance classes and contains 2,975 training, 500 val-
idation, and 1,525 testing images with high-quality annota-
tions. The COCO dataset has eighty instance classes and
contains 115k training, 5k validation, and 20k testing im-
ages.

Metrics. In this paper, the mask quality is evaluated in
terms of the standard AP metric. To distinguish the standard
AP metric from other metrics, it is denoted as APmsk. For
all the datasets, all the settings of APmsk were the same as
for Deep Snake.

The boundary quality is evaluated in terms of the bound-
ary AP metric proposed by [5]. This is denoted as APbdy

and focuses on the boundary quality.

5.2. Ablation experiments

To quantitatively analyze the effect of each component of
the proposed E2EC method and verify the design details, we
conducted ablation experiments on the SBD dataset, with

4447



Method APmsk APmsk
50 APmsk

70 APbdy APbdy
50 APbdy

75
Baseline 54.4 62.1 48.3 10.8 35.3 2.6
+Arch 57.5 64.3 52.2 17.0 44.9 9.4
+MDA 58.8 65.4 53.9 18.0 46.8 10.4
+DML 59.2 65.8 54.1 19.1 47.9 11.7

(a) Ablation experiments on the SBD dataset. Baseline method is
Deep Snake [27]. Arch denotes the learnable contour initialization archi-
tecture. MDA denotes multi-direction alignment. DML denotes dynamic
matching loss.

M APmsk APmsk
50 APmsk

70 APbdy APbdy
50 APbdy

75
1 57.5 64.3 52.2 17.0 44.9 9.4
2 58.9 65.8 54.1 17.1 45.8 9.3
4 58.8 65.4 53.9 18.0 46.8 10.4
8 58.4 65.3 53.8 17.2 45.7 9.3

(b) Results with different alignment numbers (M). The highest accu-
racy is bolded and the second-hignest accuracy is italicized.

Loss APmsk APmsk
50 APmsk

70 APbdy APbdy
50 APbdy

75
smooth l1 58.8 65.4 53.9 18.0 46.8 10.4
Chamfer 58.2 65.0 52.9 18.4 47.4 11.1

DML 59.2 65.8 54.1 19.1 47.9 11.7
(c) The results of the last deformation module being supervised by
different loss functions. The proposed DML outperforms smooth L1
loss and chamfer loss in terms of both the mask and boundary quality.

Stage APmsk APmsk
50 APmsk

70 APbdy APbdy
50 APbdy

75 FPS
Initial 49.8 61.3 34.4 1.7 7.5 0.2 58
Coarse 55.7 64.6 49.5 8.7 29.4 2.6 56
Final 59.2 65.8 54.1 19.1 47.9 11.7 36

(d) Accuracy/speed trade-off. Figure 2 shows how E2EC generates the
contours at these different stages.

Table 1. Ablation experiments for E2EC. All models are trained on SBD train set and tested on SBD val set, using DLA-34 backbone.

Method APmsk APmsk
50 APmsk

70
MNC [7] × 63.5 41.5
FCIS [18] × 65.7 52.1
STS [16] 29.0 30.0 6.5
ESE-20 [36] 35.3 40.7 12.1
Deep Snake [27] 54.4 62.1 48.3
DANCE [25] 56.2 63.6 50.4
E2EC 59.2 65.8 54.1
Table 2. Results on SBD val set.

Method backbone AP AP50 AP75 FPS
E2EC DLA-34 33.8 52.9 35.9 30.1
E2EC∗ DLA-34 31.7 52.2 32.8 54.3
Deep Snake [27] DLA-34 30.3 - - 27.3
PolarMask [33] ResNet-101-FPN 30.4 51.9 31.0 15.0
PolarMask++ [34] ResNet-50-FPN 30.2 52.6 30.8 20.5
YOLACT [2] ResNet-101-FPN 29.8 48.5 31.2 33.5

Table 3. Results obtained on the COCO test-dev. ∗

means the two deformation modules are removed.

Datasets Method APbdy APbdy
50 APbdy

75

Kins Deep Snake 30.2 53.0 31.2
E2EC 33.3 54.9 35.6

SBD Deep Snake 10.8 35.3 2.6
E2EC 19.1 47.9 11.7

Cityscapes Deep Snake 34.5 62.9 32.1
E2EC 36.3 62.3 36.5

Table 4. Comparison of the bound-
ary quality for the different datasets.

Deep Snake as the baseline. The network was trained end-
to-end for 150 epochs with multi-scale data augmentation.
The learning rate started from 1e-4 and was decayed by 0.5
at 80 and 120 epochs. The results of the ablation experi-
ments are given in Table 1.

The learnable contour initialization architecture.
When the learnable contour initialization architecture is
used to replace the contour initialization method of the base-
line method, this yields improvements of 3.1 APmsk, 2.2
APmsk

50 and 3.9 APmsk
70 . For the APbdy metric, which is sen-

sitive to the boundary quality, the learnable contour initial-
ization architecture brings improvements of 6.2 APbdy , 9.6
APbdy

50 , and 6.8 APbdy
75 . Such a huge improvement in AP

fully proves the importance of a reasonable initial deforma-
tion path for the contour-based method.

Multi-direction alignment. When the uniform label
sampling scheme used by the baseline method is replaced
with the MDA strategy, this yields improvements of 1.3
APmsk, 1.1 APmsk

50 and 1.7 APmsk
70 over the baseline with

the learnable contour initialization architecture. For the
APbdy metric, also results in improvements of 1.0 APbdy ,
1.1 APbdy

50 and 1.3 APbdy
75 . It can be seen in Figure 6 that, as

the number of alignments increases, the deviation between
the actual and ideal deformation paths becomes smaller and
smaller, and the actual deformation path becomes more op-
timal. We also conducted quantitative experiments with dif-
ferent alignment numbers, to explore the most appropriate
number of alignment directions. The ablation results are
shown in Table 1b. The most appropriate alignment num-

ber is 4, which achieves the highest APbdy and the second-
highest APmsk. As the number increases further, the dif-
ficulty of the learning decreases, but too many alignment
operations also affects the upper bound of the performance
and exacerbates the unevenness of the vertex distribution,
as shown in Figure 4. The proposed MDA label sampling
scheme makes a good balance between the learning diffi-
culty and the upper bound of the performance.

Dynamic matching loss. Smooth L1 loss, chamfer loss
[15], and DML were used to supervise the last deformation
module. The results obtained with the different loss func-
tions are shown in Table 1c. Replacing smooth L1 loss with
chamfer loss brings about a deterioration of 0.6 APmsk and
an improvement of 0.4 APbdy . Chamfer loss improves the
quality of the predicted boundary, but also reduces the qual-
ity of the mask, because the order of the contour vertices
has been destroyed. The proposed DML function can dy-
namically match all the predicted vertices with the most ap-
propriate label vertices. DML yields improvements of 0.4
APmsk and 1.1 APbdy . The prediction results obtained with
and without DML are also illustrated in Figure 7, where it
can be seen that DML significantly improves the fitting de-
gree between the predicted contour and the instance (such
as the motorcycle helmet). As shown in Figure 8, the model
supervised by DML predicts the best contour, without de-
stroying the order of the vertices.

Speed vs. accuracy. The accuracy and inference speed
of the contours at different stages are listed in Table 1d, and
Figure 7 illustrates the predicted contour at different stages.

4448



Method Training data backbone fps APval AP AP50 preson rider car truck bus train mcycle bicycle
mask-based
SGN [22] Fine+coarse VGG16 0.6 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4
Mask R-CNN [14] Fine ResNet50 2.2 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0
GMIS [24] Fine+coarse ResNet101 - - 27.6 49.6 29.3 24.1 42.7 25.4 37.2 32.9 17.6 11.9
Spatial [26] Fine ERFNet 11 - 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9
PANet [23] Fine ResNet50 <1 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8
UPSNet [35] Fine+COCO ResNet50 4.4 37.8 33.0 59.6 35.9 27.4 51.8 31.7 43.0 31.3 23.7 19.0
contour-based
Polygon RNN++ [1] Fine ResNet50 - - 25.5 45.5 29.4 21.8 48.3 21.1 32.3 23.7 13.6 13.6
Deep Snake [27] Fine DLA-34 - - 28.2 - - - - - - - - -
E2EC Fine DLA-34 6.2 34.0 30.3 54.0 40.7 27.9 55.4 28.4 35.8 20.1 20.9 13.2
Deep Snake* [27] Fine DLA-34 4.6 37.4 31.7 58.4 37.2 27.0 56.0 29.5 40.5 28.2 19.0 16.4
E2EC* Fine DLA-34 4.9 39.0 32.9 59.2 39.0 27.8 56.0 29.5 41.2 29.1 21.3 19.6

Table 5. Results obtained on the Cityscapes test set. * means that the multi-component detection is
used to integrate several components into a complete instance. The proposed E2EC method outperforms
Deep Snake [27] in all the categories.

Method APdet APmsk

mask-based
MNC [7] 20.9 18.5
FCIS [18] 25.6 23.5
ORCNN [11] 30.9 29.0
Mask R-CNN [14] 31.3 29.3
Mask R-CNN* [28] 32.7 31.1
PANet [23] 32.3 30.4
PANet* [28] 33.4 32.2
VRS&SP [32] × 32.1
ARCNN [38] × 32.9
contour-based
Deep Snake [27] 32.8 31.3
E2EC 36.5 34.0
Table 6. Results obtained on
the KINS test set. * denotes
with ASN proposed by [28].

Figure 7. The prediction contours at different stages. The initial contour of E2EC fits the instance better than the octagonal initialization
of Deep Snake. The quality of the coarse contour predicted by E2EC is comparable to the final contour predicted by Deep Snake. The final
contour predicted by E2EC with DML perfectly outlines the motorcycle.

Figure 8. The prediction results supervised by different loss
functions. Chamfer loss slightly improved the quality of bound-
ary details but produced a serious jagged phenomenon (especially
the red and purple instances). Dynamic matching loss heavily im-
proved the quality of boundary details and did not cause any harm.

E2EC can generate an initial contour at a high speed, but
the quality of the result is rough for instance segmentation.
The coarse contour is obtained from the global deforma-
tion of the initial contour. The coarse contour predicted by
E2EC has the same accuracy as the final output of Deep
Snake. The inference speed of 56 fps on a 512×512 image
far exceeds the speed of Deep Snake (33 fps). The com-
plete E2EC achieves an inference speed of 36 fps, which
is slightly higher than Deep Snake, and the final contour
predicted by E2EC has a huge advantage in terms of both
the mask and boundary quality. The experimental results
show that E2EC predicts the coarse contour 55.5% faster
than the final contour. However, APmsk only reduced by
3.5. Therefore, in the case of the requirement for extremely
high speed, removing the deformation components can be a
good choice.

5.3. Comparison with the state-of-the-art methods
Performance on the KINS dataset. The KINS dataset

is used for amodal instance segmentation, and is annotated
with inference completion information for the occluded
parts of the instances. E2EC was trained for 150 epochs
with the Adam optimizer, and the learning rate started from
1e-4 and was decayed by 0.5 at 80 and 120 epochs. Multi-
scale training was conducted, and the models were tested at
a single resolution of 768×2496.

In Table 6, the performance of the different instance seg-
mentation methods on the KINS dataset is compared. E2EC
does not use the bbox branch to generate the initial con-
tour, so the detection result is calculated from the predicted
contour. E2EC achieves a state-of-the-art performance in
both the detection and segmentation tasks. E2EC achieves
36.5 APdet, 34.0 APmsk and 33.3 APbdy (see 4), and out-
performs Deep Snake by 3.7 APdet, 2.7 APmsk and 3.1
APbdy . Figure 9 shows some representative results of E2EC
obtained on the KINS dataset.

Performance on the SBD dataset. For the SBD dataset,
the details of the model training were the same as for the
KINS dataset. Multi-scale training was conducted and the
models were tested at a single resolution of 512×512.

The SBD dataset has more instance categories and more
complicated instance contours than the KINS dataset, so
that the advantage of the proposed E2EC method with more
optimal deformation paths is more obvious. E2EC outper-

4449



Figure 9. The qualitative results obtained by E2EC. The first row shows some examples of the prediction results for the SBD dataset, the
second row shows some examples of the prediction results for the KINS dataset, and the third row shows some examples of the prediction
results for the Cityscapes dataset.
forms Deep Snake by 4.8 APmsk (see Table 2) and 8.3
APbdy (see Table 4). The contour details predicted by E2EC
are remarkable, and APmsk

75 is 9.1 higher than Deep Snake.
E2EC uses the lighter DLA-34 as the backbone, and it out-
performs the fully convolutional instance-aware semantic
segmentation (FCIS) method, which uses ResNet-101 as the
backbone, by 2.0 APmsk

75 . Figure 9 shows some examples of
the results of E2EC on the SBD dataset. It can be seen that
instances with complex contours, such as legs and chairs,
are well segmented by the proposed method, but they can-
not be well segmented by Deep Snake.

Performance on the Cityscapes dataset. The details
of the model training for the Cityscapes dataset were the
same as for the previous two datasets. It is worth mention-
ing that it is not necessary to train the detector separately
with E2EC, but it is necessary to train the detector alone for
140 epochs and then train the whole network end-to-end for
200 epochs with Deep Snake. Multi-scale training was con-
ducted, and the models were tested at a single resolution of
1216×2432.

Table 5 compares the results of the proposed E2EC
method with those of the other state-of-the-art methods on
the Cityscapes validation and test sets. E2EC achieves 30.3
APmsk on the test set, without the multi-component detec-
tion used in [27], outperforming Deep Snake by 2.1 APmsk.
With the multi-component detection strategy, the proposed
method achieves 39.0 APmsk on the validation set and 32.9
APmsk on the test set, outperforming Deep Snake by 1.6
APmsk and 1.2 APmsk respectively. E2EC also outperforms
the classic mask-based method of PANet by 2.5 APmsk on
the validation set and 1.1 APmsk on the test set, and is al-
most five times faster. The performance of the proposed
method is on a par with UPSNet [36]; however, the lat-
ter was trained on the additional large Common Objects in
Context (COCO) dataset [20].

Table 4 compares the boundary quality of the results

obtained by the proposed E2EC method and Deep Snake.
E2EC achieves 36.3 APbdy and 36.5 APbdy

75 on the valida-
tion set, outperforming Deep Snake by 1.8 APbdy and 4.4
APbdy

75 . Some of the results obtained by E2EC are shown in
Figure 9, where it can be seen that the proposed method seg-
ments the details of the instances well (such as the rearview
mirror and tires), which cannot be achieved by Deep Snake.

Performance on the COCO dataset. For the COCO
dataset, the model is trained end-to-end for 140 epochs with
Adam optimizer and 20 epochs with SGD optimizer. The
learning rate starts from 1e-4 and drops by half at 80 and
120 epochs, respectively. The model tested at the original
image resolution without any tricks.

As shown in Table 3, E2EC achieves 33.8 APmsk

with 30.1 fps, which outperforms Deep Snake by 3.5
APmsk. When the deformation modules are removed,
E2EC∗ achieves 31.7 APmsk with 54.3 fps, which is almost
2× faster than Deep Snake and outperforms Deep Snake by
1.4 APmsk.

6. Conclusion
In this paper, we have proposed an end-to-end contour-

based instance segmentation method named E2EC. E2EC
introduces three novel components: 1) the learnable contour
initialization architecture; 2) the multi-direction alignment
(MDA) label sampling scheme; and 3) the dynamic match-
ing loss (DML) function. E2EC greatly improves the con-
tour extraction quality of the contour-based instance seg-
mentation. In this study, E2EC achieved state-of-the-art
results on the KINS, SBD, and Cityscapes datasets, with
a beyond real-time performance. We also introduced a
faster variant, where, by only retaining the learnable con-
tour initialization architecture, the accuracy can be com-
parable to that of Deep Snake, and the speed is almost as
fast as that of the backbone one-stage detector CenterNet.
The modules proposed in E2EC could be easily applied to
other contour-based instance segmentation methods. We
hope that E2EC will serve as a fundamental and strong
baseline for contour-based instance segmentation research.

4450



References
[1] David Acuna, Huan Ling, Amlan Kar, and Sanja Fidler. Ef-

ficient interactive annotation of segmentation datasets with
polygon-rnn++. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pages 859–868,
2018. 7

[2] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee.
Yolact: Real-time instance segmentation. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 9157–9166, 2019. 1, 3, 6

[3] Hao Chen, Kunyang Sun, Zhi Tian, Chunhua Shen, Yong-
ming Huang, and Youliang Yan. Blendmask: Top-down
meets bottom-up for instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8573–8581, 2020. 1, 3

[4] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár.
Tensormask: A foundation for dense object segmentation.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2061–2069, 2019. 1

[5] Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C
Berg, and Alexander Kirillov. Boundary iou: Improving
object-centric image segmentation evaluation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15334–15342, 2021. 5

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 2, 5

[7] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware se-
mantic segmentation via multi-task network cascades. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3150–3158, 2016. 6, 7

[8] David H Douglas and Thomas K Peucker. Algorithms for
the reduction of the number of points required to represent a
digitized line or its caricature. Cartographica: the interna-
tional journal for geographic information and geovisualiza-
tion, 10(2):112–122, 1973. 5

[9] Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qing-
ming Huang, and Qi Tian. Location-sensitive visual recog-
nition with cross-iou loss. arXiv preprint arXiv:2104.04899,
2021. 1, 2, 3

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010. 5

[11] Patrick Follmann, Rebecca König, Philipp Härtinger,
Michael Klostermann, and Tobias Böttger. Learning to see
the invisible: End-to-end trainable amodal instance segmen-
tation. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1328–1336. IEEE, 2019. 7

[12] Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu,
Ming Yang, and Kaiqi Huang. Ssap: Single-shot instance
segmentation with affinity pyramid. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 642–651, 2019. 3

[13] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In 2011 International Conference on Com-
puter Vision, pages 991–998. IEEE, 2011. 2, 5

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1,
3, 7

[15] Namdar Homayounfar, Wei-Chiu Ma, Shrinidhi Kowshika
Lakshmikanth, and Raquel Urtasun. Hierarchical recurrent
attention networks for structured online maps. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3417–3426, 2018. 6

[16] Saumya Jetley, Michael Sapienza, Stuart Golodetz, and
Philip HS Torr. Straight to shapes: real-time detection of
encoded shapes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6550–
6559, 2017. 6

[17] Youngwan Lee and Jongyoul Park. Centermask: Real-
time anchor-free instance segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 13906–13915, 2020. 1, 3

[18] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei.
Fully convolutional instance-aware semantic segmentation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2359–2367, 2017. 6, 7

[19] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Yuwen
Xiong, Rui Hu, and Raquel Urtasun. Polytransform: Deep
polygon transformer for instance segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9131–9140, 2020. 3

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 5, 8

[21] Huan Ling, Jun Gao, Amlan Kar, Wenzheng Chen, and Sanja
Fidler. Fast interactive object annotation with curve-gcn. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5257–5266, 2019. 1,
3

[22] Shu Liu, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. Sgn:
Sequential grouping networks for instance segmentation. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3496–3504, 2017. 7

[23] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 8759–8768, 2018. 1, 3, 7

[24] Yiding Liu, Siyu Yang, Bin Li, Wengang Zhou, Jizheng Xu,
Houqiang Li, and Yan Lu. Affinity derivation and graph
merge for instance segmentation. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages 686–
703, 2018. 7

[25] Zichen Liu, Jun Hao Liew, Xiangyu Chen, and Jiashi Feng.
Dance: A deep attentive contour model for efficient instance
segmentation. In Proceedings of the IEEE/CVF Winter Con-

4451



ference on Applications of Computer Vision, pages 345–354,
2021. 1, 2, 3, 6

[26] Davy Neven, Bert De Brabandere, Marc Proesmans, and
Luc Van Gool. Instance segmentation by jointly optimizing
spatial embeddings and clustering bandwidth. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8837–8845, 2019. 3, 7

[27] Sida Peng, Wen Jiang, Huaijin Pi, Xiuli Li, Hujun Bao,
and Xiaowei Zhou. Deep snake for real-time instance seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8533–
8542, 2020. 1, 3, 4, 5, 6, 7, 8

[28] Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia.
Amodal instance segmentation with kins dataset. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3014–3023, 2019. 2, 5, 7

[29] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019. 1

[30] Xinlong Wang, Tao Kong, Chunhua Shen, Yuning Jiang, and
Lei Li. Solo: Segmenting objects by locations. In European
Conference on Computer Vision, pages 649–665. Springer,
2020. 3

[31] Fangyun Wei, Xiao Sun, Hongyang Li, Jingdong Wang, and
Stephen Lin. Point-set anchors for object detection, instance
segmentation and pose estimation. In European Conference
on Computer Vision, pages 527–544. Springer, 2020. 1, 2, 3

[32] Yuting Xiao, Yanyu Xu, Ziming Zhong, Weixin Luo, Jiawei
Li, and Shenghua Gao. Amodal segmentation based on vis-
ible region segmentation and shape prior. arXiv preprint
arXiv:2012.05598, 2020. 7

[33] Enze Xie, Peize Sun, Xiaoge Song, Wenhai Wang, Xuebo
Liu, Ding Liang, Chunhua Shen, and Ping Luo. Polarmask:
Single shot instance segmentation with polar representation.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 12193–12202, 2020. 1,
2, 3, 6

[34] Enze Xie, Wenhai Wang, Mingyu Ding, Ruimao Zhang, and
Ping Luo. Polarmask++: Enhanced polar representation for
single-shot instance segmentation and beyond. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.
6

[35] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,
Min Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A
unified panoptic segmentation network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8818–8826, 2019. 7

[36] Wenqiang Xu, Haiyang Wang, Fubo Qi, and Cewu Lu. Ex-
plicit shape encoding for real-time instance segmentation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5168–5177, 2019. 6

[37] Ze Yang, Yinghao Xu, Han Xue, Zheng Zhang, Raquel Ur-
tasun, Liwei Wang, Stephen Lin, and Han Hu. Dense rep-
points: Representing visual objects with dense point sets. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI
16, pages 227–244. Springer, 2020. 3, 4

[38] Xunli Zeng and Jianqin Yin. Amodal segmentation just like
doing a jigsaw. arXiv preprint arXiv:2107.07464, 2021. 7

[39] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. arXiv preprint arXiv:1904.07850, 2019. 1,
5

4452


