
Efficient Two-Stage Detection of Human–Object Interactions
with a Novel Unary–Pairwise Transformer

Frederic Z. Zhang1,3 Dylan Campbell2,3 Stephen Gould1,3

1The Australian National University 2University of Oxford
3Australian Centre for Robotic Vision

https://fredzzhang.com/unary-pairwise-transformers

Abstract

Recent developments in transformer models for visual
data have led to significant improvements in recognition
and detection tasks. In particular, using learnable queries
in place of region proposals has given rise to a new class
of one-stage detection models, spearheaded by the De-
tection Transformer (DETR). Variations on this one-stage
approach have since dominated human–object interaction
(HOI) detection. However, the success of such one-stage
HOI detectors can largely be attributed to the represen-
tation power of transformers. We discovered that when
equipped with the same transformer, their two-stage coun-
terparts can be more performant and memory-efficient,
while taking a fraction of the time to train. In this work, we
propose the Unary–Pairwise Transformer, a two-stage de-
tector that exploits unary and pairwise representations for
HOIs. We observe that the unary and pairwise parts of our
transformer network specialise, with the former preferen-
tially increasing the scores of positive examples and the lat-
ter decreasing the scores of negative examples. We evaluate
our method on the HICO-DET and V-COCO datasets, and
significantly outperform state-of-the-art approaches. At in-
ference time, our model with ResNet50 approaches real-
time performance on a single GPU.

1. Introduction

Human–object interaction (HOI) detectors localise inter-
active human–object pairs in an image and classify the ac-
tions. They can be categorised as one- or two-stage, mirror-
ing the grouping of object detectors. Exemplified by Faster
R-CNN [24], two-stage object detectors typically include
a region proposal network, which explicitly encodes po-
tential regions of interest in the form of bounding boxes.
These bounding boxes can then be classified and further re-
fined via regression in a downstream network. In contrast,
one-stage detectors, such as RetinaNet [18], retain the ab-

(a) Image with human and object detections.
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(b) Unary and pairwise tokens with predicted scores (riding a motorcycle).

Figure 1. Our Unary–Pairwise Transformer encodes human and
object instances individually and in pairs, allowing it to reason
about the data in complementary ways. In this example, our net-
work correctly identifies the interactive pairs for the action riding a
motorcycle, while suppressing the visually-similar non-interactive
pairs and those with different associated actions.

stract feature representations of objects throughout the net-
work, and decode them into bounding boxes and classifica-
tion scores at the end of the pipeline.

In addition to the same categorisation convention, HOI
detectors need to localise two bounding boxes per instance
instead of one. Early works [2, 8, 16, 23] employ a pre-
trained object detector to obtain a set of human and object
boxes, which are paired up exhaustively and processed by
a downstream network for interaction classification. This
methodology coincides with that of two-stage detectors and
quickly became the mainstream approach due to the acces-
sibility of high-quality pre-trained object detectors. The
first instance of one-stage HOI detectors was introduced by
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Figure 2. Mean average precision as a function of the number of
epochs (left) and training time (right) to convergence. The back-
bone networks for all methods have been initialised with the same
weights and trained on 8 GeForce GTX TITAN X GPUs.

Table 1. The performance discrepancy between existing state-
of-the-art one-stage and two-stage HOI detectors is largely at-
tributable to the choice of backbone network. We report the mean
average precision (×100) on the HICO-DET [2] test set.

Method Type Detector Backbone mAP

SCG [28] two-stage Faster R-CNN R-50-FPN 24.88
SCG [28] two-stage DETR R-50 28.79
SCG [28] two-stage DETR R-101 29.26

QPIC [25] one-stage DETR R-50 29.07
QPIC [25] one-stage DETR R-101 29.90

Ours two-stage DETR R-50 31.66
Ours two-stage DETR R-101 32.31

Liao et al. [17]. They characterised human–object pairs as
interaction points, represented as the midpoint of the human
and object box centres. Recently, due to the great success
in using learnable queries in transformer decoders for local-
isation [1], the development of one-stage HOI detectors has
been greatly advanced. However, HOI detectors that adapt
the DETR model rely heavily on the transformer, which is
notoriously difficult to train [20], to produce discriminative
features. In particular, when initialised with DETR’s pre-
trained weights, the decoder attends to regions of high ob-
jectness by default. The heavy-weight decoder stack then
has to be adapted to attend to regions of high interactive-
ness. Consequently, training such one-stage detectors of-
ten consumes large amounts of memory and time as shown
in Fig. 2. In contrast, two-stage HOI detectors do not re-
purpose the backbone network, but maintain it as an object
detector. Since the first half of the pipeline already func-
tions as intended at the beginning of training, the second
half can be trained quickly for the specific task of HOI de-
tection. Furthermore, since the object detector can be de-
coupled from the downstream interaction head during train-
ing, its weights can be frozen, and a lighter-weight network
can be used for interaction detection, saving a substantial
amount of memory and computational resources.

Despite these advantages, the performance of two-stage
detectors has lagged behind their one-stage counterparts.
However, most of these two-stage models used Faster R-
CNN [24] rather than more recent object detectors. We

found that simply replacing Faster R-CNN with the DETR
model in an existing two-stage detector (SCG) [28] resulted
in a significant improvement, putting it on par with a state-
of-the-art one-stage detector (QPIC), as shown in Tab. 1.
We attribute this performance gain to the representation
power of transformers and bipartite matching loss [1]. The
latter is particularly important because it resolves the mis-
alignment between the training procedure and evaluation
protocol. The evaluation protocol dictates that, amongst all
detections associated with the same ground truth, the high-
est scoring one is the true positive while the others are false
positives. Without bipartite matching, all such detections
will be labelled as positives. The detector then has to resort
to heuristics such as non-maximum suppression to mitigate
the issue, resulting in procedural misalignment.

We propose a two-stage model that refines the output
features from DETR with additional transformer layers for
HOI classification. As shown in Fig. 1, we encode the
instance information in two ways: a unary representation
where individual human and object instances are encoded
separately, and a pairwise representation where human–
object pairs are encoded jointly. These representations pro-
vide orthogonal information, and we observe different be-
haviours in their associated layers. The unary encoder layer
preferentially increases the predicted interaction scores for
positive examples, while the pairwise encoder layer sup-
presses the negative examples. As a result, this comple-
mentary behaviour widens the gap between scores of posi-
tive and negative examples, particularly benefiting ranking
metrics such as mean average precision (mAP).

Our primary contribution is a novel and efficient two-
stage HOI detector with unary and pairwise encodings. Our
secondary contribution is demonstrating how pairwise box
positional encodings—critical for HOI detection—can be
incorporated into a transformer architecture, enabling it to
jointly reason about unary appearance and pairwise spa-
tial information. We further provide a detailed analysis
on the behaviour of the two encoder layers, showing that
they have complementary properties. Our proposed model
not only outperforms state-of-the-art methods, but also con-
sumes much less time and memory to train. The latter al-
lows us to employ more memory-intensive backbone net-
works, further improving the performance.

2. Related work
Transformer networks [27], initially developed for ma-

chine translation, have recently become ubiquitous in com-
puter vision due to their representation power, flexibility,
and global receptive field via the attention mechanism. The
image transformer ViT [4] represented an image as a set
of spatial patches, each of which was encoded as a to-
ken through simple linear transformations. This approach
for tokenising images rapidly gained traction and inspired
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Figure 3. Flowchart for our unary–pairwise transformer. An input image is processed by a backbone CNN to produce image features, which
are partitioned into patches of equal size and augmented with sinusoidal positional encodings. These tokens are fed into the DETR [1]
transformer encoder–decoder stack, generating new features for a fixed number of learnable object queries. These are decoded by an MLP
as object classification scores and bounding boxes, and are also passed to the interaction head as unary tokens. The interaction head also
receives pairwise positional encodings computed from the predicted bounding box coordinates. A modified transformer encoder layer
then refines the unary tokens using the pairwise positional encodings. The output tokens are paired up and fused with the same positional
encodings to produce pairwise tokens, which are processed by a standard transformer encoder layer before an MLP decodes the final
features as action classification scores.

many subsequent works [21]. Another key innovation of
transformers is the use of learnable queries in the decoder,
which are initialised randomly and updated through alter-
nating self-attention and cross-attention with encoder to-
kens. Carion et al. [1] use these as object queries in place of
conventional region proposals for their object detector. To-
gether with a bipartite matching loss, this design gave rise
to a new class of one-stage detection models that formulate
the detection task as a set prediction problem. It has since
inspired numerous works in HOI detection [3, 13, 25, 29].

To adapt the DETR model to HOI detection, Tamura et
al. [25] and Zou et al. [29] add additional heads to the trans-
former in order to localise both the human and object, as
well as predict the action. As for bipartite matching, ad-
ditional cost terms are added for action prediction. On the
other hand, Kim et al. [13] and Chen et al. [3] propose an
interaction decoder to be used alongside the DETR instance
decoder. It is specifically responsible for predicting the ac-
tion while also matching the interactive human–object pairs.
These aforementioned one-stage detectors have achieved
tremendous success in pushing the state-of-the-art perfor-
mance. However, they all require significant resources to
train the models. In contrast, this work focuses on exploit-
ing novel ideas to produce equally discriminative features
while preserving the memory efficiency and low training
time of two-stage detectors.

Two-stage HOI detectors have also undergone significant
development recently. Li et al. [15] studied the integration
and decomposition of HOIs in an analogy to the superposi-
tion of waves in harmonic analysis. Hou et al. explored few-
shot learning by fabricating object representations in feature
space [12] and learning to transfer object affordance [11].
Finally, Zhang et al. [28] proposed to fuse features of dif-
ferent modalities within a graphical model to produce more

discriminative features. We make use of this modality fu-
sion in our transformer model and show that it leads to sig-
nificant improvements.

3. Unary–pairwise transformers
To leverage the success of transformer-based detectors,

we use DETR [1] as our backbone object detector and fo-
cus on designing an effective and efficient interaction head
for HOI detection, as shown in Fig. 3. The interaction head
consists of two types of transformer encoder layers, with
the first layer modified to accommodate additional pairwise
input. The first layer operates on unary tokens, i.e., individ-
ual human and object instances, while the second layer op-
erates on pairwise tokens, i.e., human–object pairs. Based
on our analysis and experimental observations in Sec. 4.3
and Sec. 4.4, self-attention in the unary layer preferen-
tially increases the interaction scores for positive HOI pairs,
whereas self-attention in the pairwise layer decreases the
scores for negative pairs. As such, we refer to these layers
as cooperative and competitive layers respectively.

3.1. Cooperative layer

A standard transformer encoder layer takes as input a set
of tokens and performs self-attention. Positional encodings
are usually indispensable to compensate for the lack of or-
der in the token set. Typically, sinusoidal functions of the
position [27] or learnable embeddings [1] are used for this
purpose. It is possible to extend sinusoidal encodings to
bounding box coordinates, however, our unary tokens al-
ready contain positional information, since they were de-
coded into bounding boxes. Instead, we take this as an
opportunity to inject pairwise spatial information into the
transformer, something that has been shown to be helpful
for the task of HOI detection [28]. Specifically, we com-
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Figure 4. Architecture of the modified transformer encoder layer
(left) and its attention module (right). FFN stands for feedforward
network [27]. “Pairwise concat.” refers to the operation of pairing
up all tokens and concatenating the features. “Duplicate” refers to
the operation of repeating the features along a new dimension.

pute the unary and pairwise spatial features used by Zhang
et al. [28] from the bounding boxes, including the unary box
centre, width and height, and pairwise intersection-over-
union, relative area, and direction, and pass this through an
MLP to obtain the pairwise positional encodings. We defer
the full details to the appendix. We also found that the usual
additive approach did not perform as well for our positional
encodings. So we slightly modified the attention operation
in the transformer encoder layer to allow directly injecting
the pairwise positional encodings into the computation of
values and attention weights.

More formally, given the detections returned by DETR,
we first apply non-maximum suppression and threshold-
ing. This leaves a smaller set {di}ni=1, where a detec-
tion di = (bi, si, ci,xi) consists of the box coordinates
bi ∈ R4, the confidence score si ∈ [0, 1], the object class
ci ∈ K for a set of object categoriesK, and the object query
or feature xi ∈ Rm. We compute the pairwise box posi-
tional encodings {yi,j ∈ Rm}ni,j=1 as outlined above. We
denote the collection of unary tokens byX ∈ Rn×m and the
pairwise positional encodings by Y ∈ Rn×n×m. The com-
plete structure of the modified transformer encoder layer is
shown in Fig. 4. For brevity of exposition, let us assume
that the number of heads h is 1, and define

Ẋ ∈ Rn×n×m, Ẋi , X ∈ Rn×m, (1)

Ẍ ∈ Rn×n×2m, ẍi,j , xi ⊕ xj ∈ R2m, (2)

where ⊕ denotes vector concatenation. That is, the tensors
Ẋ and Ẍ are the results of duplication and pairwise con-
catenation. The equivalent values and attention weights can
then be computed as

V = Ẋ ⊗ Y, (3)

W = softmax((Ẍ ⊕ Y )w + b), (4)

where ⊗ denotes elementwise product and w ∈ R3m and
b ∈ R are the parameters of the linear layer. The output of
the attention layer is then computed as W ⊗ V . Additional
details can be found in the appendix.

3.2. Competitive layer

To compute the set of pairwise tokens, we form all pairs
of distinct unary tokens and remove those where the first
token is not human, as object–object pairs are beyond the
scope of HOI detection. We denote the resulting set as
{pk = (xi,xj ,yi,j) | i 6= j, ci = “human”}. We then
compute the pairwise tokens from the unary tokens and po-
sitional encodings via multi-branch fusion (MBF) [28] as

zk = MBF(xi ⊕ xj ,yi,j). (5)

Specifically, the MBF module fuses two modalities in multi-
ple homogeneous branches and return a unified feature rep-
resentation. For completeness, full details are provided in
the appendix. Last, the set of pairwise tokens are fed into
an additional transformer encoder layer, allowing the net-
work to compare the HOI candidates, before an MLP pre-
dicts each HOI pair’s action classification logits s̃.

3.3. Training and inference

To make full use of the pre-trained object detector, we
incorporate the object confidence scores into the final scores
of each human–object pair. Denoting the action logits of the
kth pair pk as s̃k, the final scores are computed as

sk = (si)
λ · (sj)λ · σ(s̃k), (6)

where λ > 1 is a constant used during inference to suppress
overconfident objects [28] and σ is the sigmoid function.
We use focal loss1 [18] for action classification to counter
the imbalance between positive and negative examples. Fol-
lowing previous practice [8, 28], we only compute the loss
on valid action classes for each object type, specified by the
dataset. During inference, scores for invalid combinations
of actions and objects (e.g., eating a car) are zeroed out.

4. Experiments
In this section, we first demonstrate that the proposed

unary–pairwise transformer achieves state-of-the-art per-
formance on both the HICO-DET [2] and V-COCO [7]
datasets, outperforming the next best method by a signifi-
cant margin. We then provide a thorough analysis on the
effects of the cooperative and competitive layers. In partic-
ular, we show that the cooperative layer increases the scores
of positive examples while the competitive layer suppresses

1Final scores in Eq. (6) are normalised to the interval [0, 1]. In training,
we instead recover the scale prior to normalisation and use the correspond-
ing loss with logits for numerical stability. See details in the appendix.
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Table 2. Comparison of HOI detection performance (mAP×100) on the HICO-DET [2] and V-COCO [7] test sets. The highest result in
each section is highlighted in bold.

HICO-DET V-COCO

Default Setting Known Objects Setting

Method Backbone Full Rare Non-rare Full Rare Non-rare APS1
role APS2

role

HO-RCNN [2] CaffeNet 7.81 5.37 8.54 10.41 8.94 10.85 - -
InteractNet [6] ResNet-50-FPN 9.94 7.16 10.77 - - - 40.0 -
GPNN [23] ResNet-101 13.11 9.34 14.23 - - - 44.0 -
TIN [16] ResNet-50 17.03 13.42 18.11 19.17 15.51 20.26 47.8 54.2
Gupta et al. [8] ResNet-152 17.18 12.17 18.68 - - - - -
VSGNet [26] ResNet-152 19.80 16.05 20.91 - - - 51.8 57.0
DJ-RN [14] ResNet-50 21.34 18.53 22.18 23.69 20.64 24.60 - -
PPDM [17] Hourglass-104 21.94 13.97 24.32 24.81 17.09 27.12 - -
VCL [10] ResNet-50 23.63 17.21 25.55 25.98 19.12 28.03 48.3 -
ATL [11] ResNet-50 23.81 17.43 27.42 27.38 22.09 28.96 - -
DRG [5] ResNet-50-FPN 24.53 19.47 26.04 27.98 23.11 29.43 51.0 -
IDN [15] ResNet-50 24.58 20.33 25.86 27.89 23.64 29.16 53.3 60.3
HOTR [13] ResNet-50 25.10 17.34 27.42 - - - 55.2 64.4
FCL [12] ResNet-50 25.27 20.57 26.67 27.71 22.34 28.93 52.4 -
HOI-Trans [29] ResNet-101 26.61 19.15 28.84 29.13 20.98 31.57 52.9 -
AS-Net [3] ResNet-50 28.87 24.25 30.25 31.74 27.07 33.14 53.9 -
SCG [28] ResNet-50-FPN 29.26 24.61 30.65 32.87 27.89 34.35 54.2 60.9
QPIC [25] ResNet-101 29.90 23.92 31.69 32.38 26.06 34.27 58.8 61.0

Ours (UPT) ResNet-50 31.66 25.94 33.36 35.05 29.27 36.77 59.0 64.5
Ours (UPT) ResNet-101 32.31 28.55 33.44 35.65 31.60 36.86 60.7 66.2
Ours (UPT) ResNet-101-DC5 32.62 28.62 33.81 36.08 31.41 37.47 61.3 67.1

those of the negative examples. We then visualise the at-
tention weights for specific images, and show how these
behaviours are achieved by the attention mechanism. At
inference time, our method with ResNet50 [9] runs at 24
FPS on a single GeForce RTX 3090 device.

Datasets: HICO-DET [2] is a large-scale HOI detection
dataset with 37 633 training images, 9 546 test images,
80 object types, 117 actions, and 600 interaction types.
The dataset has 117 871 human–object pairs with annotated
bounding boxes in the training set and 33 405 in the test
set. V-COCO [7] is much smaller in scale, with 2 533 train-
ing images, 2 867 validation images, 4 946 test images, and
only 24 different actions.

4.1. Implementation details

We fine-tune the DETR model on the HICO-DET and V-
COCO datasets prior to training and then freeze its weights.
For HICO-DET, we use the publicly accessible DETR mod-
els pre-trained on MS COCO [19]. However, for V-COCO,
as its test set is contained in the COCO val2017 subset, we
first pre-train DETR models from scratch on MS COCO,
excluding those images in the V-COCO test set. For the
interaction head, we filter out detections with scores lower
than 0.2, and sample at least 3 and up to 15 humans and

objects each, prioritising high scoring ones. For the hidden
dimension of the transformer, we use m = 256, the same as
DETR. Additionally, we set λ to 1 during training and 2.8
during inference [28]. For the hyperparameters used in the
focal loss, we use the same values as SCG [28].

We apply a few data augmentation techniques used in
other detectors [1, 25]. Inputs images are scaled such that
the shortest side is at least 480 and at most 800 pixels. The
longest side is limited at 1333 pixels. Additionally, each
image is cropped with a probability of 0.5 to a random rect-
angle with each side being at least 384 pixels and at most
600 pixels before being scaled. We also apply colour jit-
tering, where the brightness, contrast and saturation values
are adjusted by a random factor between 0.6 to 1.4. We use
AdamW [22] as the optimiser with an initial learning rate of
10−4. All models are trained for 20 epochs with a learning
rate reduction at the 10th epoch by a factor of 10. Training
is conducted on 8 GeForce GTX TITAN X devices, with a
batch size of 2 per GPU—an effective batch size of 16.

4.2. Comparison with state-of-the-art methods

The performance of our model is compared to existing
methods on the HICO-DET [2] and V-COCO [7] datasets
in Tab. 2. There are two different settings for evaluation
on HICO-DET. Default Setting: A detected human–object
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Table 3. Comparing the effect of the cooperative (coop.) and competitive (comp.) layers on the interaction scores. We report the change
in the interaction scores as the layer in the ∆ Architecture column is added to the reference network, for positives, easy negatives and hard
negatives, with the number of examples in parentheses. As indicated by the bold numbers, the cooperative layer significantly increases the
scores of positive examples while the competitive layer suppresses hard negative examples. Together, these layers widen the gap between
scores of positive and negative examples, improving the detection mAP.

∆ Positives (25 391) ∆ Easy Negatives (3 903 416) ∆ Hard Negatives (510 991)

Reference ∆ Architecture Mean Median Mean Median Mean Median

Ours w/o coop. layer + coop. layer +0.1487 +0.1078 +0.0001 +0.0000 +0.0071 +0.0000
Ours w/o comp. layer + comp. layer -0.0463 -0.0310 -0.0096 -0.0024 -0.1080 -0.0922
Ours w/o both layers + both layers +0.0799 +0.0390 -0.0076 -0.0018 -0.0814 -0.0748

(a) Tab. 3 first row (b) Tab. 3 second row (c) Tab. 3 third row

Figure 5. Change in the interaction score (delta) with respect to the reference score. (a) The distribution of score deltas when adding the
cooperative layer (first row of Tab. 3). (b) Adding the competitive layer to the model (second row). (c) Adding both layers (last row). For
visualisation purposes, only 20% of the negatives are sampled and displayed.

pair is considered matched with a ground truth pair, if the
minimum intersection over union (IoU) between the human
boxes and object boxes exceeds 0.5. Amongst all matched
pairs, the one with the highest score is considered the true
positive while others are false positives. Pairs without a
matched ground truth are also considered false positives.
Known Objects Setting: Besides the aforementioned crite-
ria, this setting assumes the set of object types in ground
truth pairs are known. Therefore, detected pairs with an
object type outside the set are removed automatically, thus
reducing the difficulty of the problem. For V-COCO, the
average precision (AP) is computed under two scenarios,
differentiated by the superscripts S1 and S2. This is to ac-
count for missing objects due to occlusion. For scenario 1,
empty object boxes should be predicted in case of occlusion
for a detected pair to be considered a match with the corre-
sponding ground truth, while for scenario 2, object boxes
are always assumed to be matched in such cases.

We report our model’s performance for three different
backbone networks. Notably, our model with the lightest-
weight backbone already outperforms the next best method
by a significant margin in almost every category. This gap
is further widened with more powerful backbone networks.
In particular, since the backbone CNN and object detection
transformer are detached from the computational graph, our

model has a small memory footprint. This allows us to use
a higher-resolution feature map by removing the stride in
the 5th convolutional block (C5) of ResNet [9], which has
been shown to improve detection performance on small ob-
jects [1]. We denote this as dilated C5 (DC5).

4.3. Macroscopic effects of the interaction head

In this section, we compare the effects of the unary (co-
operative) and pairwise (competitive) layers on the HICO-
DET test set, with ResNet50 [9] as the CNN backbone.
Since the parameters in the object detector are kept frozen
for our model, the set of detections processed by the down-
stream network remains the same, regardless of any archi-
tectural changes in the interaction head. This allows us to
compare how different variants of our model perform on
the same human–object pairs. To this end, we collected the
predicted interaction scores for all human–object pairs over
the test set and compare how adding certain layers influ-
ence them. In Tab. 3, we show some statistics on the change
of scores upon an architectural modification. In particular,
note that the vast majority of collected pairs are easy neg-
atives with scores close to zero. For analysis, we divide
the negative examples into easy and hard, where we define
an easy negative as one with a score lower than 0.05 as pre-
dicted by the “Ours w/o both layers” model, which accounts
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Table 4. Effect of the cooperative and competitive layers on the
HICO-DET test set under the default settings.

Model Full Rare Non-rare

Ours w/o both layers 29.22 23.09 31.05
Ours w/o comp. layer 30.78 24.92 32.53
Ours w/o coop. layer 30.68 24.69 32.47
Ours w/o pairwise pos. enc. 29.98 23.72 31.64

Ours (1× coop., 1× comp.) 31.33 26.02 32.91
Ours (1× coop., 2× comp.) 31.62 26.18 33.24
Ours (2× coop., 1× comp.) 31.66 25.94 33.36

for 90% of the negative examples. In addition, we also show
the distribution of the change in score with respect to the
reference score as scatter plots in Fig. 5. The points are
naturally bounded by the half-spaces 0 ≤ x+ y ≤ 1.

Notably, adding the cooperative layer results in a signif-
icant average increase (+0.15) in the scores of positive ex-
amples, with little effect on the negative examples. This can
be seen in Fig. 5a as well, where the score changes for al-
most all positive examples are larger than zero. In contrast,
adding the competitive layer leads to a significant average
decrease (−0.11) in the scores of hard negative examples,
albeit with a small decrease in the score of positive exam-
ples as well. This minor decrease is compensated by the
cooperative layer as shown in the last row of Tab. 3. Fur-
thermore, looking at Fig. 5b, we can see a dense mass near
the line y = −x, which indicates that many negative exam-
ples have had their scores suppressed to zero.

Ablation study: In Tab. 4, we ablate the effect of dif-
ferent design decisions on performance. Adding the co-
operative and competitive layers individually improves the
performance by around 1.5 mAP, while adding both layers
jointly improves by over 2 mAP. We also demonstrate the
significance of the pairwise position encodings by remov-
ing them from the modified encoder and the multi-branch
fusion module. This results in a 1.3 mAP decrease. Finally,
we observe a slight improvement (0.3 mAP) when adding
an additional cooperative or competitive layer, but no fur-
ther improvements with more layers. As the competitive
layer is more costly, we use two cooperative layers.

4.4. Microscopic effects of the interaction head

In this section, we focus on a specific image and visualise
the effect of attention in our cooperative and competitive
layers. In Fig. 6, we display a detection-annotated image
and its associated attention map from the unary (coopera-
tive) layer. The human–object pairs (1, 4), (2, 5) and (3, 6)
are engaged in the interaction riding a horse. Excluding
attention weights along the diagonal, we see that the cor-
responding human and horse instances attend to each other.

Figure 6. Detected human and object instances (left) and the unary
attention map for these instances (right).

Figure 7. Pairwise attention map for the human and object in-
stances in Fig. 6.

We hypothesise that attention between pairs of unary tokens
(e.g., 1 and 4) helps increase the interaction scores for the
corresponding pairs. To validate this hypothesis, we manu-
ally set the attention logits between the three positive pairs
to minus infinity, thus zeroing out the corresponding atten-
tion weights. The effect of this was an average decrease of
0.06 (8%) in the interaction scores for the three pairs, sup-
porting the hypothesis.

In Fig. 7, we visualise the attention map of the pairwise
(competitive) layer. Notably, all human–object pairs attend
to the interactive pairs (1, 4), (2, 5) and (3, 6) in decreasing
order, except for the interactive pairs themselves. We hy-
pothesise that attention is acting here to have the dominant
pairs suppress the other pairs. To investigate, we manually
set the weights such that the three interactive pairs all attend
to (1, 4) as well, with a weight of 1. This resulted in a de-
crease of their interaction scores by 0.08 (11%). We then
instead zeroed out the attention weights between the rest of
the pairs and (1, 4), which resulted in a small increase in
the scores of negative pairs. These results together suggest
that attention in the competitive layer is acting as a soft ver-
sion of non-maximum suppression, where pairs less likely
to foster interactions attend to, and are suppressed by, the
most dominant pairs. See appendix for more examples.
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(a) standing on a snowboard (b) holding an umbrella (c) carrying a suitcase (d) sitting at a dining table (e) sitting on a bench

(f) flying an airplane (g) holding a surfboard (h) wielding a baseball bat (i) riding a bike (j) holding a wineglass

Figure 8. Qualitative results of detected HOIs. Interactive human–object pairs are connected by red lines, with the interaction scores
overlaid above the human box. Pairs with scores lower than 0.2 are filtered out.

(a) driving a truck (b) buying bananas (c) repairing a laptop (d) washing a bicycle (e) cutting a tie

Figure 9. Failure cases often occur when there is ambiguity in the interaction (a), (b), (c) or a lack of training data (c), (d), (e).

4.5. Qualitative results and limitations

In Fig. 8, we present several qualitative examples of
successful HOI detections, where our model accurately lo-
calises the human and object instances and assigns high
scores to the interactive pairs. For example, in Fig. 8b, our
model correctly identifies the subject of an interaction (the
lady in red) despite her proximity to a non-interactive hu-
man (the lady in black). We also observe in Fig. 8a that our
model becomes less confident when there is overlap and oc-
clusion. This stems from the use of object detection scores
in our model. Confusion in the object detector often trans-
lates to confusion in action classification. We also show
five representative failure cases for our model, illustrating
its limitations. In Fig. 9a, due to the indefinite position of
drivers in the training set (and real life), the model strug-
gled to identify the driver. For Fig. 9d, the model failed to
recognise the interaction due to a lack of training data (1
training example), even though the action is well-defined.
Overall, ambiguity in the actions and insufficient data are
the biggest challenges for our model. Another limitation,
specific to our model, is that the computation and memory
requirements of our pairwise layer scale quadratically with
the number of unary tokens. For scenes involving many
interactive humans and objects, this becomes quite costly.
Moreover, since the datasets we used are limited, we may
expect poorer performance on data in the wild, where image
resolution, lighting condition, etc. may be less controlled.

5. Conclusion
In this paper, we have proposed a two-stage detector of

human–object interactions using a novel transformer archi-
tecture that exploits both unary and pairwise representa-
tions of the human and object instances. Our model not
only outperforms the current state-of-the-art—a one-stage
detector—but also consumes much less time and memory
to train. Through extensive analysis, we demonstrate that
attention between unary tokens acts to increase the scores of
positive examples, while attention between pairwise tokens
acts like non-maximum suppression, reducing the scores of
negative examples. We show that these two effects are com-
plementary, and together boost performance significantly.

Potential negative societal impact: Transformer models
are large and computationally-expensive, and so have a sig-
nificant negative environmental impact. To mitigate this, we
use pre-trained models and a two-stage architecture, since
fine-tuning an existing model requires less resources, as
does training a single stage with the other stage fixed. There
is also the potential for HOI detection models to be misused,
such as for unauthorised surveillance, which disproportion-
ately affects minority and marginalised communities.
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