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Abstract

Pose Guided Person Image Generation (PGPIG) is the
task of transforming a person image from the source pose
to a given target pose. Most of the existing methods only
focus on the ill-posed source-to-target task and fail to cap-
ture reasonable texture mapping. To address this problem,
we propose a novel Dual-task Pose Transformer Network
(DPTN), which introduces an auxiliary task (i.e., source-to-
source task) and exploits the dual-task correlation to pro-
mote the performance of PGPIG. The DPTN is of a Siamese
structure, containing a source-to-source self-reconstruction
branch, and a transformation branch for source-to-target
generation. By sharing partial weights between them, the
knowledge learned by the source-to-source task can effec-
tively assist the source-to-target learning. Furthermore,
we bridge the two branches with a proposed Pose Trans-
former Module (PTM) to adaptively explore the correla-
tion between features from dual tasks. Such correlation
can establish the fine-grained mapping of all the pixels be-
tween the sources and the targets, and promote the source
texture transmission to enhance the details of the gen-
erated target images. Extensive experiments show that
our DPTN outperforms state-of-the-arts in terms of both
PSNR and LPIPS. In addition, our DPTN only contains
9.79 million parameters, which is significantly smaller than
other approaches. Our code is available at: https://
github.com/PangzeCheung/Dual-task-Pose-
Transformer-Network.

1. Introduction
Pose Guided Person Image Generation (PGPIG) aims to

generate person images with arbitrary given poses. It has
various applications such as e-commerce, film special ef-
fects, person re-identification [5–7, 19, 34, 35, 40, 41], etc.
Due to the significant changes in texture and geometry dur-
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Figure 1. Visual comparison of our method with other approaches,
including vanilla CNN based [22], attention based [45], optical
flow based [24], and parsing map based [21] method. Compared
with other methods, our model can generate more realistic images.

ing the pose transfer, PGPIG is still a challenging task.
Driven by the improvement of generative models, e.g.,

Generative Adversarial Networks (GANs) [8] and Varia-
tional Autoencoders (VAEs) [17], PGPIG has made great
progress. However, early works [4, 22] are built on vanilla
Convolutional Neural Networks (CNNs), which lack the ca-
pability to perform complex geometry transformations [13]
(see Fig. 1 (c)). To tackle this problem, attention mech-
anisms [30, 45] and optical flow [18, 24, 29] are applied
to improve spatial transformation abilities. Some meth-
ods [21,39] introduce additional labels such as human pars-
ing maps to provide semantic guidance for pose variations.
However, the above mentioned methods solely focus on
training the generator G on the Source-to-Target Task that
transforms the source image xs from the source pose ps

to the target pose pt: G(xs,ps,pt) = x̃t. This is an ill-
posed problem, making it arduous to train a robust genera-
tor. Moreover, the existing methods cannot well capture the
reasonable texture mapping between the source and target
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images, especially when the person undergoes large pose
changes. Therefore, those methods often produce unrealis-
tic images, as shown in Fig. 1 (d)-(f).

In this paper, we seek to utilize an auxiliary task [26]
to improve the ill-posed source-to-target transformation.
Here, we instantiate the auxiliary task as the Source-to-
Source Task, which reconstructs the source image guided
by source pose: G(xs,ps,ps) = x̃s. We observe that si-
multaneously learning the dual tasks (i.e., source-to-target
task and source-to-source task) has the following two bene-
fits: (1) Compared with the source-to-target task, the pixel-
aligned source-to-source task is easier to learn because it
does not require complex spatial transformations. By shar-
ing weights between the dual tasks, the source-to-source
task can not only exploit its knowledge to assist the source-
to-target task, but also stabilize the training of the whole
network. (2) Since the intermediate features in dual tasks
are associated with their generated images x̃s and x̃t re-
spectively, we can further explore the correlation between
the dual tasks to establish the texture transformation from
the sources to the targets. In this way, the natural source
textures can be readily disseminated to enhance the details
of the generated target image.

Based on these ideas, we propose a novel Dual-task Pose
Transformer Network (DPTN) for PGPIG. The architecture
of DPTN is shown in Fig. 2. Specifically, our DPTN is
of a Siamese structure, incorporating two branches: a self-
reconstruction branch for the auxiliary source-to-source
task and a transformation branch for the source-to-target
task. These two branches share partial weights, and are
trained simultaneously with different loss functions. By
this means, the knowledge learned by the source-to-source
task can directly assist the optimization of the source-to-
target task. To explore the correlation between the dual
tasks, we bridge the two branches with a novel Pose Trans-
former Module (PTM). Our PTM consists of several Con-
text Augment Blocks (CABs) and Texture Transfer Blocks
(TTBs). CABs first selectively gather the information of
the source-to-source task. Then TTBs gradually capture the
fine-grained correlation between the features from the dual
tasks. With the help of such correlation, TTBs can produc-
tively promote the texture transmission from the real source
image to the source-to-target task, enabling the synthetic
image to preserve more source appearance details. (see
Fig. 1 (g)). In sum, the main contributions are:

• We propose a novel Dual-task Pose Transformer Net-
work (DPTN), which introduces an auxiliary task (i.e.,
source-to-source task) by Siamese architecture and ex-
ploits its knowledge to improve the PGPIG.

• We design a Pose Transformer Module (PTM) to ex-
plore the dual-task correlation. Such correlation can
not only establish the fine-grained mapping between

the sources and the targets, but also effectively guide
the source texture transmission to further refine the
feature in the source-to-target task.

• Results on the two benchmarks, i.e., DeepFashion [20]
and Market-1501 [43], have demonstrated that our
method exhibits superior performance on PSNR and
LPIPS [42]. Moreover, our model only contains 9.79
million parameters, which is relatively 91.6% smaller
than the state-of-the-art method SPIG [21].

2. Related Works
Pose guided person image generation. Ma et al. [22]

generated the fake image in a coarse-to-fine manner. Esser
et al. [4] combined the VAE and U-net [25] to disentangle
pose and appearance of the person. However, these methods
are based on vanilla CNNs, which cannot handle the com-
plex deformation. To address this problem, Zhu et al. [45]
proposed a Pose Attention Transfer Network (PATN) to op-
timize the appearance by pose relation. Furthermore, Tang
et al. [30] added more crossing ways between the pose and
appearance into PATN. Nevertheless, these attention based
methods do not explicitly learn the spatial transformation
between different poses, losing many source textures.

To boost the texture transformation, Li et al. [18], Ren
et al. [24] and Tabejamaat et al. [29] proposed to introduce
the warping operations to PGPIG. They first estimated the
dense optical flow, and then generated images by warping
the source image feature. Nevertheless, under the large pose
change and occlusion, these methods tended to produce in-
accurate optical flow, resulting in unsatisfied images.

Besides, both Zhang et al. [39] and Lv et al. [21] uti-
lized additional human parsing labels to improve the PG-
PIG. They first predicted the target parsing maps, and then
output person images with the help of semantic information.
However, the target parsing maps estimated by these meth-
ods are often unreliable, which will mislead the generation
of the synthetic images. Moreover, pixel-wise annotations
are hard to collect, which limits their applications.

In summary, all the above methods only focus on the
source-to-target task, and cannot accurately capture the tex-
ture mapping between the source and the target images.
Contrary to them, we show that introducing the auxiliary
source-to-source task through a Siamese structure and si-
multaneously exploring the dual-task correlation can further
improve the performance of PGPIG.

Dual-task learning. Dual-task learning is a popu-
lar learning framework for Natural Language Processing
(NLP) [9, 36, 37], which utilizes the different tasks to im-
prove the learning progress. For example, [9] leveraged
the closed-loop of the English-to-French translation and
French-to-English translation to enhance each other, mak-
ing it possible to train translation models without paired
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Figure 2. Overview of our model. It contains a self-reconstruction branch for auxiliary source-to-source task, and a transformation branch
for source-to-target task. These two branches share partial weights and are communicated by a pose transformer module.

data. Different from these methods, our dual tasks refer to
the source-to-source task and the source-to-target task. We
have verified that the source-to-source learning can promote
the training of the source-to-target task in PGPIG.

Transformers in vision tasks. Inspired by the success
of transformers [33] in NLP, many researchers had applied
transformer architecture to computer vision tasks such as
image recognition [3, 31], object detection [2, 44], and im-
age generation [12, 14]. Specially, for image generation
tasks, Jiang et al. [14] built a GAN with a pure transformer-
based architecture without convolutions. Hudson et al. [12]
proposed a GANformer to exchange information between
image features and latent variables. However, these GANs
were designed for unconditional generation tasks, and were
not well suitable for conditional generation tasks with com-
plex space deformation (i.e., PGPIG). In this work, inspired
by the core idea of the transformer, we design a novel pose
transformer module to explore the dual-task correlation.

3. Our Approach
Fig. 2 shows the overall framework of our DPTN. It

mainly contains Siamese branches for the dual tasks and
a pose transformer module for exploring the dual-task cor-
relation. In the following sections, we will describe each
component of DPTN and loss functions in detail.

3.1. Siamese Structure for Dual Tasks

Although the existing PGPIG methods attempt to learn
the source-to-target transformation through various ap-

Table 1. The comparisons of the basic network on whether using
the source-to-source learning. Both of the following two results
are tested on the source-to-source task.

Learning scheme PSNR ↑ LPIPS ↓
Source-to-target learning 19.1855 0.1962

+ Source-to-source learning 23.7606 0.1468

proaches, we argue that these methods ignore some es-
sential knowledge without the source-to-source learning,
thus limiting their potential improvement. To demonstrate
this, we conduct an experiment on a basic network (same
structure as the self-reconstruction branch in Fig. 2, in-
cluding Enc, ResBlocks and De) to explore the impact of
the source-to-source learning, and show the results tested
on the source-to-source task in Tab. 1. Compared with
source-to-target learning, the + source-to-source learning
in Tab. 1 only adds the self-reconstruction training, and
does not change the basic network structure. It can be
seen that there is a significant gap between these two learn-
ing schemes. Solely learning from the source-to-target task
cannot well reconstruct the source images, and lacks some
knowledge of PGPIG. Based on our analysis, in this paper,
we add the source-to-source task into PGPIG, and explore
its knowledge to assist the source-to-target transformation
in the training process.

To achieve this goal, we construct our DPTN with a
Siamese architecture, incorporating two branches: a self-
reconstruction branch for source-to-source reconstruction,
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Figure 3. The structure of the Pose Transformer Module (PTM). It contains two types of blocks: Context Augment Block (CAB) and
Texture Transfer Block (TTB). The CABs integrate the information of the feature Fs→s, while the TTBs transfer the real source image
textures from Fs to optimize Fs→t by capturing the correlation between features from the dual tasks.

and a transformation branch for source-to-target generation.
As shown in Fig. 2, the two branches share three parts: an
encoder Enc, a series of ResBlocks, and a decoder De. In
more detail, the encoder first extracts the feature of two
types of inputs, including the source-to-target input (the
concatenation of xs, ps and pt) and the source-to-source
input (the concatenation of xs, ps and ps). Then, Res-
Blocks are applied to gradually perform pose transforma-
tion. Outputs of ResBlocks are the feature Fs→s aligned
with the source pose, and the transformed feature Fs→t

aligned with the target pose. Finally, the De in the self-
reconstruction branch accepts the Fs→s to generate fake
source image x̃s, and the De in the transformation branch
accepts the refined feature F ∗

s→t (output of our pose trans-
former module) to produce the target generated image x̃t.

In conclusion, the proposed Siamese architecture has the
following advantages: (1) Our encoder, ResBlocks and de-
coder are shared by the dual tasks, so that the learned knowl-
edge can be easily transferred between these tasks. (2) In-
troducing self-reconstruction branch does not significantly
add extra parameters, as most of our model are reused in
different tasks. (3) The Siamese architecture enables the
intermediate outputs of the dual tasks close in feature dis-
tribution, facilitating the PTM in the next section to explore
the dual-task correlation.

3.2. Pose Transformer Module

In our Siamese structure, we have already obtained fea-
ture Fs→s aligned with the source pose ps, and Fs→t

aligned with the target pose pt respectively. However,
since the vanilla CNN based transformation branch (i.e.,
source-to-target) is hard to handle complex space deforma-
tion, Fs→t tends to lose many source appearance details, as
shown in Fig. 7. To tackle this problem, we propose a novel
Pose Transformer Module (PTM), which can further refine

Fs→t via capturing the pixel-wise source-to-target corre-
spondence between the features from dual tasks. Our PTM
is built upon the Multi-Head Attention (MHA) mechanism.
To be self-contained, we briefly introduce MHA as follows:

Attention(Q,K,V ) = softmax(QKT /
√
dk)V , (1)

headi = Attention(QW i
q ,KW i

k,V W i
v), (2)

MHA(Q,K,V ) = concat(head1, ...,headh). (3)

The Q, K, V are queries, keys and values. W i
q , W i

k,
W i

v are learnable parameters. h is the number of attention
heads. dk is the dimension of the keys. In particular, when
Q = K, the MHA functions as Multi-Head Self-Attention
(MHSA); otherwise it acts as Multi-Head Cross-Attention
(MHCA).

The proposed PTM is shown in Fig. 3. Unlike traditional
vision transformer [3], our PTM adopts a new architecture
to explore the relation among triple features (i.e., feature
from source-to-source task, source-to-target task and source
image texture), making it more suitable for PGPIG. In gen-
eral, PTM contains two types of blocks: Context Augment
Block (CAB) and Texture Transfer Block (TTB), which
can be formulated as: FN

s→s = CAB(...CAB(Fs→s)...),
F ∗
s→t = TTB(...TTB(Fs→t,F

N
s→s,Fs)...,F

N
s→s,Fs).

The superscript denotes the index of the feature. N is the
number of the blocks. Fs→s =F 0

s→s, Fs→t =F 0
s→t, and

F ∗
s→t = FN

s→t. Fs is the source image feature obtained
by an additional encoder Ens. In the proposed PTM, the
CABs gradually integrate the information of the feature
Fs→s from the self-reconstruction branch and produce
FN
s→s. Then, each TTB combines three kinds of features:

the source image texture feature Fs, the integrated source-
to-source feature Fs→s, and the previous TTB output
Fs→t. This combination is achieved by an MHCA module
to capture the correlation among all inputs. Next, we will
present the structure of the CAB and TTB respectively.
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3.2.1 Context Augment Block

The structure of the i-th CAB is shown in the right-top of
Fig. 3. It first applies an MHSA unit with residual connec-
tion to adaptively enhance the contextual representation of
the input feature F i−1

s→s:

F̃ i
s→s = IN(F i−1

s→s +MHSA(F i−1
s→s,F

i−1
s→s,F

i−1
s→s)),

(4)
where IN is the instance normalization [32]. Then a Multi-
Layer Perceptron (MLP) module with multiple fully con-
nected layers is used to increase the capacity in CAB:

F i
s→s = IN(F̃ i

s→s +MLP (F̃ i
s→s)). (5)

After N CABs, we obtain the final refined feature FN
s→s

and add this feature into each TTB for source-to-target task.

3.2.2 Texture Transfer Block

The structure of the i-th TTB is shown in the right-bottom
of Fig. 3. First, MHSA is applied to selectively focus on the
key information of the transformation branch feature F i−1

s→t:

F̃ i
s→t = IN(F i−1

s→t +MHSA(F i−1
s→t,F

i−1
s→t,F

i−1
s→t)).

(6)
Then an MHCA unit is employed to build correlation of
F̃ i
s→t, F

N
s→s, and F s. Specifically, we employ F̃ i

s→t as
queries and FN

s→s as keys to calculate the pixel-wise simi-
larity between the sources and the targets. With the aid of
such similarity, Fs is used as values in MHCA to transmit
the real source textures to refine F̃ i

s→t. This procedure can
be written as:

F̂ i
s→t = IN(F̃ i

s→t +MHCA(F̃ i
s→t,F

N
s→s,Fs)). (7)

In this way, F̂ i
s→t carries more real source textures, which

will foster the transformation branch to generate more deli-
cate patterns. Finally, similar to CAB, the i-th TTB output
F i
s→t is obtained as follows:

F i
s→t = IN(F̂ i

s→t +MLP (F̂ i
s→t)). (8)

After N time TTB blocks, the final output feature FN
s→t

will be fed into the decoder De to generate target image x̃t.

3.3. Loss Functions

Our network contains two branches for the source-to-
source task and source-to-target task. Thus, the overall loss
function can be simply formulated as:

L = Ls→s + Ls→t, (9)

where Ls→s and Ls→t stand for the loss of the dual tasks
respectively. Both of them contain an l1 loss Ll1 , a percep-
tual loss Lperc and a style loss Lstyle. In addition, we apply

an additional adversarial loss Ladv in the source-to-target
task to produce more realistic textures. In sum, Ls→s and
Ls→t can be written as:

Ls→s = λl1Ls
l1 + λpercLs

perc + λstyleLs
style, (10)

Ls→t = λl1Lt
l1 + λpercLt

perc + λstyleLt
style + λadvLadv,

(11)
where λl1 , λperc, λstyle and λadv are the loss weights for
the dual tasks. Specifically, the l1 loss penalizes the l1 dis-
tance between the generated image and the ground truth:

Ld
l1 = ∥xd − x̃d∥1, (12)

where d ∈ {s, t} represents the source or the target data.
The perceptual loss [15] calculates the feature distance:

Ld
perc =

∑
i

∥ϕi(xd)− ϕi(x̃d)∥1, (13)

where ϕi denotes the i-th feature from VGG network [28].
The style loss [15] compares the style similarity between
images:

Ld
style =

∑
j

∥Gramϕ
j (xd)−Gramϕ

j (x̃d)∥1, (14)

where Gramϕ
j is the Gram matrix of feature ϕj . Finally,

the adversarial loss with a discriminator D is employed to
penalize the distribution difference between the generated
target image x̃t and the ground truth xt:

Ladv = E[log(1−D(x̃t))] + E[logD(xt)]. (15)

4. Experiments
4.1. Implementation Details

We evaluate our proposed model on two datasets: Deep-
Fashion [20] and Market1501 [43]. The DeepFashion
dataset contains 52,712 high quality in-shop clothes images
(256 × 176) with clean backgrounds, while the Market1501
dataset contains 32,668 low-resolution images (128 × 64)
with various illumination and viewpoints. For a fair com-
parison, we split the datasets with the same setting as [45].
It collects 101,966 training pairs and 8,570 testing pairs for
DeepFashion, and 263,632 training pairs and 12,000 testing
pairs for Market1501. In addition, the human pose key-
points are extracted from Human Pose Estimator (HPE) [1].

In our experiment, Adam optimizer [16] is adopted to
train the proposed DPTN with the learning rate 1e-4. We
choose h = 2 and N = 2 in the PTM on both datasets. For
the loss functions in Eq. (10) and Eq. (11), we set λl1 = 2.5,
λperc = 0.25, λstyle = 250, λadv = 2.
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Table 2. Quantitative comparisons of image quality and model size with several state-of-the-art methods. * denotes the method using
additional human parsing labels. The best and second best results are shown in bold and underline respectively.

Model DeepFashion Market1501 Number of
Parameters ↓SSIM ↑ PSNR ↑ FID ↓ LPIPS ↓ SSIM ↑ PSNR ↑ FID ↓ LPIPS ↓

PG2 [22] (NeurIPS’17) 0.7730 17.5324 49.5674 0.2928 0.2704 14.1749 86.0288 0.3619 437.09 M
VU-net [4] (CVPR’18) 0.7639 17.6582 15.5747 0.2415 0.2665 14.4220 44.2743 0.3285 139.36 M
DSC [27] (CVPR’18) 0.7682 18.0990 21.2686 0.2440 0.3054 14.3081 27.0118 0.3029 82.08 M
PATN [45] (CVPR’19) 0.7717 18.2543 20.7500 0.2536 0.2818 14.2622 22.6814 0.3194 41.36 M
DIAF [18] (CVPR’19) 0.7738 16.9004 14.8825 0.2388 0.3052 14.2011 32.8787 0.3059 49.58 M
DIST [24] (CVPR’20) 0.7677 18.5737 10.8429 0.2258 0.2808 14.3368 19.7403 0.2815 14.04 M

XingGAN [30] (ECCV’20) 0.7706 17.9226 39.3194 0.2928 0.3044 14.4458 22.5198 0.3058 42.77 M
PISE∗ [39] (CVPR’21) 0.7682 18.5208 11.5144 0.2080 — — — — 64.01 M
SPIG∗ [21] (CVPR’21) 0.7758 18.5867 12.7027 0.2102 0.3139 14.4894 23.0573 0.2777 117.13 M

Ours 0.7782 19.1492 11.4664 0.1957 0.2854 14.5207 18.9946 0.2711 9.79 M

4.2. Metrics

Following previous works [21, 45], we adopt Structural
Similarity Index Measure (SSIM) [38], Peak Signal-to-
Noise Ratio (PSNR), Fréchet Inception Distance (FID) [11]
and Learned Perceptual Image Patch Similarity (LPIPS)
[42] as evaluation metrics. Moreover, we use rank-k and
Mean Average Precision (MAP) to further test the texture
consistency between the source images and the generated
target images through the state-of-the-art re-identification
(re-id) platform FastReID [10]. More precisely, we train a
re-id model on the training set. Then we use the generated
images as the query set and the real images as the gallery set
to calculate the metrics. High rank-k and MAP indicate that
the generated images do not lose much source appearance,
and can be easily recognized by the current re-id system.

4.3. Comparison with Previous Work

4.3.1 Quantitative Comparison

We compare our method with several state-of-the-art meth-
ods, including PG2 [22], VU-net [4], DSC [27], PATN [45],
DIAF [18], DIST [24], XingGAN [30], PISE [39] and SPIG
[21]. Tab. 2 shows the quantitative results on image qual-
ity and model size. As one can see, our method achieves
seven best and one second-best results among all compared
methods, including PISE and SPIG using additional parsing
labels. This verifies the superiority of our DPTN in gener-
ating high quality images. In addition, our DPTN only con-
tains 9.79 M parameters, which is 91.6% lower than that of
SPIG (117.13 M). It clearly demonstrates the efficiency of
our method in modeling pose transformations.

Tab. 3 provides the comparison of the texture consis-
tency on DeepFashion. First, we train the re-id system on
the DeepFashion training set. As shown in the last row
of Tab. 3, this re-id system achieves 99.08% rank-1 score.
Then, the same re-id system is applied to identify the person

Table 3. Quantitative comparisons of texture consistency. The best
results are shown in bold.

Methods rank-1 ↑ rank-5 ↑ rank-10 ↑ MAP ↑
PG2 60.12% 75.44% 81.95% 59.20%

VU-net 73.49% 87.49% 91.97% 72.01%
DSC 94.17% 98.19% 99.08% 90.40%
PATN 74.35% 87.95% 92.37% 73.17%
DIAF 94.87% 98.02% 99.13% 91.45%
DIST 90.84% 96.64% 98.11% 87.56%

XingGAN 59.63% 72.48% 81.19% 58.36%
PISE 90.09% 96.35% 98.02% 87.22%
SPIG 94.43% 98.23% 99.04% 91.60%
Ours 97.69% 99.35% 99.63% 95.04%

Real Data 99.08% 99.80% 99.88% 98.40%

in the fake images generated by different methods. From
the result, we can find that our method surpasses others in
all four metrics. In particular, we promote the best rank-1
performance of previous works by 3%. This indicates that
the images generated by our DPTN can effectively maintain
the discriminative texture of the source person.

4.3.2 Qualitative Comparison

The qualitative comparison results are shown in Fig. 4. For
the DeepFashion dataset, the attention based methods PATN
and XingGAN tend to generate blurred images (see 1st and
2nd rows). DIAF and DIST attempt to promote the tex-
ture transfer by using optical flow. However, in the case of
large pose changes, their predicted optical flow fails to rep-
resent such complex deformation, resulting in unacceptable
results (see 2nd and 3rd rows). PISE and SPIG introduce
the additional semantic parsing map to ease the difficulty of
PGPIG. Nevertheless, the target parsing maps estimated by
these methods are often inaccurate, which will mislead the
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Figure 4. Qualitative comparison with several state-of-the-art methods on DeepFashion (Left) and Market1501 (Right).

generation of the synthetic images. For example, in the 4th
row on the left of Fig. 4, PISE and SPIG improperly gen-
erate jackets in the synthetic images. Unlike the aforemen-
tioned methods, our DPTN optimizes the source-to-target
task with the help of the auxiliary source-to-source task,
making the generated image more vibrant. On the Mar-
ket1501 dataset, our DPTN can still generate finer and more
vivid textures than other methods. For instance, in the 4th
row on the right of Fig. 4, only our method retains the gar-
ment pattern of the source image.

4.4. Ablation Study

We conduct a series of experiments on DeepFashion to
verify the contribution of each component in our model.
The various options for removing the corresponding com-
ponents from our full model are listed as follows.
The model without Dual-Task Learning (w/o DTL). This
model is similar to the existing methods that only focus
on the source-to-target task. The entire self-reconstruction
branch, including De and the loss function, is removed.
The model without Pose Transformer Module (w/o
PTM). This model removes the PTM. In this way, the
source-to-target branch will lack the guidance of the dual-
task correlation, and will directly produce the target gener-
ated image (x̃t) from Fs→t.
The model without Contextual Augment Blocks (w/o
CABs). This model removes CABs in the PTM. In this way,
the feature from the source-to-source task (Fs→s) will be

�� 

Figure 5. Qualitative comparison of the ablation study.

simply fed into TTBs to calculate the dual-task correlation.
The model without encoder Ens (w/o Ens). This model
removes the encoder Ens, and directly uses the feature
Fs→s as the value in MHCA.
Full Model (Full). We use our proposed dual-task pose
transformer network in this model.

Fig. 5 and Tab. 4 show the qualitative and quantitative
results of the ablation study. As shown in Fig. 5, we can
see that (1) Compared with the full model, the model w/o
DTL is unstable and tends to generate heavy artifacts. This
demonstrates the significance of the source-to-source task
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Table 4. Quantitative comparisons of ablation study on the Deep-
Fashion dataset. The best results are shown in bold.

Methods SSIM ↑ PSNR ↑ FID ↓ LPIPS ↓
w/o DTL 0.7713 18.8134 14.7168 0.2143
w/o PTM 0.7755 18.8503 15.5281 0.2195
w/o CABs 0.7760 19.0489 12.0932 0.1989
w/o Ens 0.7778 19.1084 12.6858 0.1976

Full 0.7782 19.1492 11.4664 0.1957

Figure 6. Learning curves of FID score by using source-to-target
learning and dual-task learning on DeepFashion dataset.

during the training process. (2) Lack of texture mapping
between the sources and the targets, the model w/o PTM
cannot well utilize the textures of the real source image, re-
sulting in blurred images. (3) For the model w/o CABs, the
information of the source-to-source task is not well inte-
grated, which misleads the source-to-target task to generate
unrealistic patterns. (4) The images generated by the model
w/o Ens lose many appearance details, verifying the effect
of Ens in supplying fine source textures for PTM. (5) Com-
pared with others, our full model can not only generate sat-
isfactory global appearance but also produce realistic local
textures. In addition, the quantitative comparison in Tab. 4
further demonstrates the effectiveness of our full model.

4.5. Effect of dual-task learning on training stability

To explore the influence of dual-task learning on training
stability, following [23], we visualize the learning curves of
FID score under the source-to-target learning and dual-task
learning in Fig. 6. We can see that the FID score of the
DPTN with solely source-to-target learning plateaus around
50 epochs, while the DPTN with dual-task learning con-
tinues to improve even afterward. This verifies that the
knowledge brought by the source-to-source learning can ef-
fectively assist the learning of the source-to-target task. In
addition, compared with dual-task learning, the DPTN with
solely source-to-target learning tends to collapse after 130
epochs. This shows that by sharing partial weights between
the dual tasks, the training of the easier source-to-source
task can stabilize the training of the whole network to a cer-
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Figure 7. Visualization of the attention weight in MHCA and the
heatmaps of Fs→t and F ∗

s→t. The yellow star on the fake image
represents the query position.

tain extent, so as to better optimize the source-to-target task.

4.6. Visualization of PTM

To explore how the PTM works in our framework, we
also visualize the attention weight in MHCA as well as the
heatmaps of the Fs→t and F ∗

s→t in Fig. 7. As one can see,
the attention weight obtained in the PTM can accurately fo-
cus the area related to the query position. This verifies that
our PTM can effectively explore the pixel-wise transforma-
tion between the sources and targets. In addition, compared
with the heatmap of the Fs→t, the F ∗

s→t produced by PTM
contains more appearance cues. This manifests that our
PTM can transfer the natural source textures to refine Fs→t,
and facilitate the source-to-target task to generate more re-
alistic details.

5. Conclusions
In this paper, we propose a novel Dual-task Pose Trans-

former Network (DPTN) for PGPIG. Unlike most of the ex-
isting methods only focusing on the source-to-target task,
our DPTN introduces an auxiliary task (i.e., source-to-
source task) by a Siamese architecture, and exploits its
knowledge to assist the source-to-target learning. More-
over, we carefully design a Pose Transformer Model (PTM)
to explore the correlation between the dual tasks. Such cor-
relation can be employed as a strong guidance for transfer-
ring source textures to the target generated image. Both the
quantitative and qualitative results show that the proposed
DPTN can improve upon prior PGPIG methods.
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