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Abstract

Recent high-performing Human-Object Interaction
(HOI) detection techniques have been highly influenced
by Transformer-based object detector (i.e., DETR). Never-
theless, most of them directly map parametric interaction
queries into a set of HOI predictions through vanilla
Transformer in a one-stage manner. This leaves rich inter-
or intra-interaction structure under-exploited. In this work,
we design a novel Transformer-style HOI detector, i.e.,
Structure-aware Transformer over Interaction Proposals
(STIP), for HOI detection. Such design decomposes
the process of HOI set prediction into two subsequent
phases, i.e., an interaction proposal generation is first
performed, and then followed by transforming the non-
parametric interaction proposals into HOI predictions
via a structure-aware Transformer. The structure-aware
Transformer upgrades vanilla Transformer by encoding
additionally the holistically semantic structure among
interaction proposals as well as the locally spatial struc-
ture of human/object within each interaction proposal, so
as to strengthen HOI predictions. Extensive experiments
conducted on V-COCO and HICO-DET benchmarks have
demonstrated the effectiveness of STIP, and superior
results are reported when comparing with the state-
of-the-art HOI detectors. Source code is available at
https://github.com/zyong812/STIP.

1. Introduction
Human-Object Interaction (HOI) detection [5, 11] is

intended to localize the interactive human-object pairs
within an image and identify the interactions in be-
tween, yielding the HOI predictions in the form of
⟨human, object, interaction⟩ triplets. Practical HOI de-
tection systems perform the human-centric scene under-
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Figure 1. Comparison between existing Transformer-style HOI
detectors and our STIP. (a) Existing Transformer-style HOI de-
tectors directly transform the parametric interaction queries into
HOI predictions via vanilla Transformer in a one-stage fashion. (b)
STIP adopts a two-phase solution, i.e., first producing interaction
proposals via Interaction Proposal Network, and then mapping the
non-parametric interaction queries (i.e., interaction proposals) into
HOI predictions. Both of the inter- and intra-interaction structures
derived from interaction proposals are additionally exploited to
boost HOI set prediction through a structure-aware Transformer.

standing, and thus have a great potential impact for nu-
merous applications, such as surveillance event detection
[1, 7] and robot imitation learning [2]. In general, conven-
tional HOI detectors [8–10, 16, 24, 27, 32, 38–40] tackle the
HOI set prediction task in an indirect way, by formaliz-
ing it as surrogate regression and classification problems
for human/object/interaction. Such indirect approach needs
a subsequent post-processing by collapsing near-duplicate
predictions and heuristic matching [16, 24, 40], and thus
cannot be trained in an end-to-end fashion, resulting in a
sub-optimal solution. The intent to overcome the prob-
lem of sub-optimal solution leads to the development of re-
cent state-of-the-art HOI detectors [6, 17, 36, 50] that fol-
low the Transformer-based detector of DETR [3] to cast
HOI detection as a direct set prediction problem, and em-
brace the “end-to-end” philosophy (Figure 1 (a)). In par-
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ticular, a vanilla Transformer is commonly utilized to map
the parametric interaction queries (i.e., the learnable posi-
tional embedding sequence) into a set of HOI predictions in
a one-stage manner. However, these HOI detectors start the
HOI set prediction from the parametric interaction queries
with randomly initialized embeddings. That is, the corre-
spondence between parametric interaction queries and out-
put HOIs (commonly assigned by Hungarian algorithm for
training) is dynamic in which the interaction query corre-
sponding to each target HOI (e.g., “human hold bat”) is un-
known at the beginning of HOI set prediction. This can
adversely hinder the exploration of prior knowledge (i.e.,
inter-interaction or intra-interaction structure) which
would be very useful for relational reasoning among inter-
actions in HOI set prediction.

Specifically, by inter-interaction structure, we refer to
the holistic semantic dependencies among HOIs, which can
be directly defined by considering whether or not two HOIs
share the same human or object. Such structure implies
the common sense knowledge that shall facilitate the pre-
diction of one HOI by exploiting its semantic dependen-
cies against other HOIs. Taking the input image in Figure
1 as an example, the existence of “human wear (baseball)
glove” provides strong indication for “(another) human hold
bat”. Moreover, the intra-interaction structure can be inter-
preted as the local spatial structure for each HOI, i.e., the
layout of human and object, which acts as additional prior
knowledge to steer model’s attention over image areas for
depicting the interaction.

In this work, we design a novel scheme based on
Transformer-style HOI detector, namely Structure-aware
Transformer over Interaction Proposals (STIP). The design
innovation is to decompose the one-stage solution of set
prediction into two cascaded phases, i.e., first producing the
interaction proposals (i.e., the probably interactive human-
object pairs) and then performing HOI set prediction based
on the interaction proposals (Figure 1 (b)). By taking the in-
teraction proposals derived from Interaction Proposal Net-
work (IPN) as non-parametric interaction queries, STIP nat-
urally triggers the subsequent HOI set prediction with more
reasonable interaction queries, leading to static query-HOI
correspondence that capable of boosting HOI set prediction.
As a beneficial by-product, the predicted interaction pro-
posals offer a fertile ground for constructing a structured
understanding across interaction proposals or between hu-
man & object within each interaction proposal. A particu-
lar form of Transformer, i.e., structure-aware Transformer,
is designed accordingly to encode the inter-interaction or
intra-interaction structure for enhancing HOI predictions.

In sum, we have made the following contributions: (1)
The proposed two-phase implementation of Transformer-
style HOI detector is shown capable of seamless incorpo-
ration of potential interactions among HOI proposals to

overcome the problem associated with one-stage approach;
(2) The exquisitely designed structure-aware Transformer is
shown able to facilitate additional exploitation opportunity
for utilizing inter-interaction and intra-interaction structure
for enhanced performance of the vanilla Transformer; (3)
The proposed structure-aware Transformer approach has
been properly analyzed and verified through extensive ex-
periments over V-COCO and HICO-DET datasets to val-
idate its potential in solving the problems associated with
one-stage approach to achieve desirable HOI detection.

2. Related Work
The task of Human-Object Interaction (HOI) detection

has been primordially defined [5, 11] and recent develop-
ments of HOI detectors can be briefly divided into two cat-
egories: the two-stage methods and one-stage approaches.

Two-stage Methods. The first category schemes [4, 8–
10,14,15,22,23,27,28,32,37–39,43,47] mainly adopt two-
stage paradigm, i.e., first detect humans/objects via off-the-
shelf modern object detectors (e.g., Faster R-CNN [33])
and then carry out interaction classification. A number of
schemes have been proposed to strengthen the HOI feature
learning in the second stage for interaction classification.
Generally, similar to prior works for visual relationship de-
tection [18,29,42,45,46], HOI features are typically derived
from three perspectives [4, 9, 10]: appearance/visual fea-
tures of humans and objects, spatial features (e.g., the pair-
wise bounding boxes of human-object pair), and linguis-
tic feature (e.g., the semantic embeddings of human/object
labels). Various approaches [8, 13, 32, 37, 38, 44] further
capitalize on message passing mechanism to perform rela-
tional reasoning over instance-centric graph structure, aim-
ing to enrich HOI features with global contextual informa-
tion among human and object instances. The authors in [39]
devise contextual attention mechanism to facilitate the min-
ing of contextual cues. Moreover, the information about hu-
man pose [12, 23, 47], body parts [49] or detailed 3D body
shape [21] can also be exploited to enhance HOI feature rep-
resentation. In [28,41], additional knowledge from external
source and language domain are further exploited to boost
HOI feature learning. Most recently, the ATL scheme [14]
constructs the affordance feature bank across multiple HOI
datasets and injects affordance feature into object represen-
tations when inferring interactions.

One-stage Approaches. The second category schemes
mainly construct one-stage HOI detectors [6, 16, 17, 24, 36,
40,48,50] by directly predicting HOI triplets, which are po-
tentially faster and simpler than two-stage HOI detectors.
UnionDet [16] is one of first attempts that directly detects
the union regions of human-object pairs in a one-stage man-
ner. Other schemes [24, 40] formulate HOI detection as a
keypoint detection problem, and thus enable one-stage so-
lution for this task. Most recently, inspired by the success of
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Figure 2. An overview of our proposed STIP framework. (a) Given an input image, we adopt an off-the-shelf DETR to detect the human
and object instances within this image. (b) Based on the detected human and object instances, the Interaction Proposal Network (IPN)
constructs all possible human-object pairs and then predicts the interactiveness score of each human-object pair. The most interactive
human-object pairs with highest interactiveness scores are taken as the output interaction proposals. (c) Next, by taking all interaction
proposals as graph nodes and exploiting semantic connectivity as edges, we build an interaction-centric graph that unfolds rich inter-
interaction semantic structure and intra-interaction spatial structure. (d) Finally, a structure-aware Transformer is utilized to transform the
non-parametric interaction queries (i.e., interaction proposals) into a set of HOI predictions by additionally guiding relational reasoning
with the inter- or intra-interaction structure derived from interaction-centric graph.

Transformer-based object detectors (e.g., DETR [3]), there
has been a steady momentum of breakthroughs that push
the limits of HOI detection by using Transformer-style ar-
chitecture. In particular, the authors in [36, 50] employ a
single interaction Transformer decoder to predict a set of
HOI triplets, and the whole architecture can be optimized
in an end-to-end fashion with Hungarian loss. However, the
authors in [6, 17] design two parallel Transformer decoders
for detecting interactions and instances, and the outputs are
further associated to produce final HOI predictions.

This Scheme. The proposed STIP can also be consid-
ered as Transformer-style architecture that tackles HOI de-
tection as a set prediction problem, which eliminates the
post-processing and enables the architecture to be end-to-
end trainable. Unlike existing Transformer-style methods
[6,17,36,50] that perform HOI set prediction in a one-stage
manner, the proposed STIP decomposes this process into
two phases: the proposed scheme first produces interac-
tion proposals as high-quality interaction queries and then
takes them as non-parametric queries to trigger the HOI set
prediction. Moreover, this STIP scheme goes beyond the
conventional relational reasoning via vanilla Transformer
by leveraging a structure-aware Transformer to exploit the
rich inter- or intra-interaction structure, thereby boosting
the performance of the HOI detection.

3. Approach

In this work, we devise the Structure-aware Transformer
over Interaction Proposals (STIP) that casts HOI detection
as a set prediction problem in a two-phase fashion. Mean-
while, this scheme boosts HOI set prediction with the prior

knowledge of inter- and intra-interaction structures. Fig-
ure 2 depicts an overview of the proposed STIP. The whole
framework consists of four main components, i.e., DETR
for object detection, interaction proposal network for pro-
ducing interaction proposals, interaction-centric graph con-
struction, and structure-aware Transformer for HOI set pre-
diction. Specifically, an off-the-shelf DETR [3] is first
adopted to detect humans and objects within the input im-
age. Next, based on the detection results, we design the In-
teraction Proposal Network (IPN) to select the most interac-
tive human-object pairs as interaction proposals. After that,
we take all selected interaction proposals as graph nodes
to construct an interaction-centric graph to reveal the inter-
interaction semantic structure and intra-interaction spatial
structure. The selected interaction proposals are further
taken as non-parametric queries to trigger the HOI set pre-
diction via a structure-aware Transformer through exploit-
ing the structured prior knowledge derived from interaction-
centric graph to strengthen relational reasoning.

3.1. Interaction Proposal Network

Conditioned on the detected human and object instances
from DETR, the Interaction Proposal Network (IPN) targets
for producing interaction proposals, i.e., the probably inter-
active human-object pairs. Concretely, we first construct all
possible human-object pairs with pairwise connectivity be-
tween detected humans and objects. For each human-object
pair, the IPN further predicts the probability of interaction
existing in between (i.e., “interactiveness” score) through
a multi-layer perceptron (MLP). Only the top-K human-
object pairs with highest interactiveness scores are finally
emitted as the output interaction proposals.
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Figure 3. Definition of six kinds of inter-interaction semantic de-
pendencies ⟨HOI(i2)→HOI(i1)⟩ between interaction HOI(i1) and
HOI(i2) (square: human/object instance, circle: interaction).

Human-Object Pairs Construction. Here we connect
each pair of detected human and object instances, yield-
ing all possible human-object pairs within the input im-
age. Each human-object pair can be represented from three
perspectives, i.e., the appearance feature, spatial feature,
and linguistic feature of human and object. In particu-
lar, the appearance feature is directly represented as the
concatenation of human and object instance features de-
rived from DETR (i.e., the 256-dimensional region fea-
ture before final prediction heads). By defining the nor-
malized center coordinates of human and object bound-
ing boxes as (chx, c

h
y) and (cox, c

o
y), we measure the spa-

tial feature as the concatenation of all geometric properties,
i.e., [dx, dy, dis, arctan( dydx ), Ah, Ao, I, U ], where dx =

chx − cox, dy = chy − coy, dis =
√

dx2 + dy2. Ah, Ao, I, U
denote the areas of human, object, their intersection, and
union boxes, respectively. The linguistic feature is achieved
by encoding the label name of object (one-hot vector) into
300-dimensional vector. The final representation of each
human-object pair is calculated as the concatenation of ap-
pearance, spatial, and linguistic features.

Interactiveness Prediction. The interactiveness pre-
diction module in IPN takes the feature of each human-
object pair as input, and learns to predict the probability
whether interactions exist between this pair, i.e., interactive-
ness score. We frame this sub-task of interactiveness pre-
diction as binary classification problem, and implement this
module as MLP coupled with Sigmoid activation. During
training, for each input image, we sample at most K human-
object pairs, which consist of positive and negative pairs.
Note that if both IoUs of predicted human and object bound-
ing boxes in one human-object pair w.r.t ground-truths are
larger than 0.5, we treat this pair as positive sample, other-
wise it is a negative sample. One natural way to fetch neg-
ative pairs is to use randomly sampling strategy. Instead,
here we employ hard mining strategy [35] to sample nega-
tive pairs with high predicted interactiveness scores, aiming
to facilitate the learning of interactiveness prediction. After
feeding all the N sampled human-object pairs in a mini-
batch into interactiveness prediction module, we optimize
this module with focal loss [25] (FL):

Lproposal =
1∑N

i=1 zi

N∑
i=1

FL(ẑi, zi), (1)

(a) Interaction proposal (b) Spatial structure (c) Assigned label for each location
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Figure 4. Definition of intra-interaction spatial structure for each
interaction: (a) interaction proposal in an image; (b) the spatial
structure, i.e., the layout of each component in this interaction; (c)
the assigned label for each location in image.

where zi ∈ {0, 1} indicates whether interactions exist in
ground-truth and ẑi is the predicted interactiveness score.
At inference, only the top-K human-object pairs with high-
est interactiveness scores are taken as interaction proposals.

3.2. Interaction-Centric Graph

Based on all the selected interaction proposals of each
input image via IPN, we next present how to construct an
interaction-centric graph that fully unfolds the rich prior
knowledge of inter- and intra-interaction structures. Techni-
cally, we take each interaction proposal as one graph node,
and the interaction-centric complete graph is thus built by
densely connecting every two nodes as graph edges.

Inter-interaction Semantic Structure. Intuitively,
there exists a natural semantic structure among interac-
tions within a same image. For example, when we find
the interaction of “human hold mouse” in an image, it is
very likely that the mentioned “human” is associated with
another interaction of “human look-at screen.” This moti-
vates us to exploit such common sense knowledge implied
in the inter-interaction semantic structure to boost rela-
tional reasoning among interactions for HOI detection. For-
mally, we express the directional semantic connectivity as
⟨HOI(i2)→HOI(i1)⟩, which denotes the relative semantic
dependency of interaction proposal HOI(i1) against inter-
action proposal HOI(i2). Six kinds of inter-interaction se-
mantic dependencies are thus defined according to whether
two interaction proposals share the same human or object
instance, as shown in Figure 3.

Concretely, if HOI(i1) and HOI(i2) do not share any
human/object instance, we classify their dependency as
“disjunctive” (class 0). If HOI(i1) and HOI(i2) only share
the same human/object instance, we set the label of de-
pendency as “same-human” (class 1) or “same-object”
(class 2). When the human/object instance of HOI(i1) is ex-
actly the object/human instance of HOI(i2), the dependency
is classified as “series-opposing” (class 3) and “series”
(class 4), respectively. If both of the human and object in-
stances of HOI(i1) and HOI(i2) are same, the label of this
dependency is “same-pair” (class 5).

Intra-interaction Spatial Structure. The inter-
interaction semantic structure over the whole interaction-
centric graph only unfolds the holistically semantic depen-
dencies across all interaction proposals, while leaving the
locally spatial structure of human/object within each in-
teraction proposal unexploited. Therefore, we characterize
each graph node with an intra-interaction spatial structure,

19551



which can be interpreted as the layout of each component
in the corresponding interaction proposal (see Figure 4).
Specifically, we first identify the spatial location of each
component (i.e., background, union, human, object, and
intersection) for this interaction over the whole image, and
then assign layout label lij ∈ {0, 1, 2, 3, 4} to each location
in this image according to the corresponding component.

3.3. Structure-aware Transformer

With the K interaction proposals and the interaction-
centric graph, we next present how to integrate the prior
knowledge of inter- and intra-interaction structures into re-
lational reasoning for HOI set prediction in STIP. In partic-
ular, a structure-aware Transformer is devised to contextu-
ally encode all interaction proposals with additional guid-
ance of inter- and intra-interaction structures via structure-
aware self-attention and cross-attention modules, yielding
structure-aware HOI features for predicting HOI triplets.

Preliminary. We first briefly recall the widely adopted
vanilla Transformer in vision tasks [19, 20, 30, 31] that cap-
italizes on attention mechanism, which aims to transform
a sequence of queries q = (q1, ..., qm) plus a set of key-
value pairs (k = (k1, ...,kn),v = (v1, ...,vn)) into the
output sequence o = (o1, ...,om). Each output element oi
is computed by aggregating all values weighted with atten-
tion: oi =

∑
j αij(W vvj), where each attention weight

αij is normalized with softmax (αij =
exp(eij)∑
j exp(eij)

). Here
the primary attention weight eij is measured as the scaled
dot-product between each key kj and query qi:

eij =
(W qqi)

T (W kkj)√
dkey

. (2)

Note that dkey is the dimension of keys, andW q,W k,W v

are learnable embedding matrices.
Structure-aware Self-attention. Existing Transformer-

type HOI detectors perform relational reasoning among in-
teractions via self-attention module in vanilla Transformer
for HOI set prediction. However, the relational reasoning
process in vanilla Transformer is triggered by the paramet-
ric interaction queries, and leaves the prior knowledge of
inter-interaction structure under-exploited. As an alterna-
tive, our structure-aware Transformer starts HOI set predic-
tion from the non-parametric queries (i.e., the selected in-
teraction proposals), and further upgrades the conventional
relation reasoning with inter-interaction semantic structure
through structure-aware self-attention module.

Specifically, by taking the K interaction proposals q
as interaction queries, keys, and values, the structure-
aware self-attention module conducts the inter-interaction
structure-aware reasoning among interactions to strengthen
the HOI representation of each interaction. Inspired by rel-
ative position encoding in [34], we supplement each key qj
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with the encodings of its inter-interaction semantic depen-
dency with regard to query qi, which is measured as the
concatenation of qj and the corresponding semantic depen-
dency label dij ∈ {0, 1..., 5}. In this way, we incorporate
the inter-interaction semantic structure into the learning of
attention weight by modifying Eq. (2) as:

eselfij =
(W qqi)

T (W kqj +ψ(qj ,Edep(dij)))√
dkey

, (3)

where Edep denotes the embedding matrix of semantic de-
pendency label and ψ is implemented as a 2-layer MLP to
encode the inter-interaction semantic dependency. Accord-
ingly, the output intermediate HOI features q̂ of structure-
aware self-attention module are endowed with the holisti-
cally semantic structure among interactions.

Structure-aware Cross-attention. Next, based on
the intermediate HOI features q̂, a structure-aware cross-
attention module (see Figure 5) is utilized to further en-
hance HOI features by exploiting contextual information
between interactions and the original image feature map
in DETR. Formally, we take the K intermediate HOI fea-
tures q̂ = (q̂1, ..., q̂K) as queries, and the image feature
map x = (x1, ...,xn) as keys and values. The structure-
aware cross-attention module performs the intra-interaction
structure-aware reasoning over the image feature map to
strengthen the HOI feature of each interaction. Similar to
structure-aware self-attention module, each key xj is sup-
plemented with the encodings of the intra-interaction spa-
tial structure with regard to query q̂i (i.e., the concatena-
tion of xj and its assigned layout label lij ∈ {0, 1, 2, 3, 4}).
The learning of attention weight in structure-aware cross-
attention module is thus integrated with the intra-interaction
spatial structure, which is measured as:

ecrossij =
(W q̂q̂i)

T (W k̂xj + posj + ϕ(xj ,Elay(lij)))√
dkey

, (4)

where posj is the position encoding,Elay is the embedding
matrix of layout label, and we implement ϕ as a 2-layer
MLP to encode the intra-interaction spatial structure.

3.4. Training Objective

During training, we feed the final output HOI represen-
tations of structure-aware Transformer into the interaction
classifier (implemented as a 2-layer MLP) to predict the in-
teraction classes of each interaction proposal. The objective
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of interaction classification is measured via focal loss:

Lcls =
1∑N

i=1

∑C
c=1 yic

N∑
i=1

C∑
c=1

FL(ŷic, yic), (5)

where C is the number of interaction classes, yic ∈ {0, 1}
indicates whether the labels of i-th proposal contain the c-
th interaction class, and ŷic is the predicted probability of
c-th interaction class. Accordingly, the overall objective of
our STIP integrates the interactiveness prediction objective
in Eq. (1) and interaction classification objective in Eq. (5):

LSTIP = Lproposal + Lcls. (6)

4. Experiments
Here we empirically evaluate STIP on two common HOI

detection datasets, i.e., V-COCO [11] and HICO-DET [4].

4.1. Datasets and Experimental Settings

V-COCO is a popular dataset for benchmarking HOI
detection, which is a subset of MS-COCO [26] covering
29 action categories. This dataset consists of 2,533 train-
ing images, 2,867 validation images, and 4,946 testing im-
ages. Following the settings in [17], we adopt Average Pre-
cision (AProle) over 25 interactions as evaluation metric.
Two kinds of AProle, i.e., AP#1

role and AP#2
role, are reported

under two scenarios with different scoring criterions for ob-
ject occlusion cases. Specifically, in the scenario of AP#1

role,
the model should manage to infer the occluded object cor-
rectly by predicting the 2D location of its bounding box as
[0,0,0,0], meanwhile precisely localizing the corresponding
human bounding box and recognizing the interaction in be-
tween. In contrast, for the scenario of AP#2

role, there is no
need to infer the occluded object.

HICO-DET is a larger HOI detection benchmark, which
contains 37,536 and 9,515 images for training and testing,
respectively. The whole dataset covers 600 categories of
⟨human, object, interaction⟩ triplets, covering the same
80 object categories as in MS-COCO [26] and 117 verb cat-
egories. We follow [4] and report mAP in two different set-
tings (Default and Known Object). Here the Default
setting represents that the mAP is calculated over all test-
ing images, while KnownObject measures the AP of each
object solely over the images containing that object class.
For each setting, we report the AP over three different HOI
category sets, i.e., Full (all 600 HOI categories), Rare (138
HOI categories where each one contains less than 10 train-
ing samples), and Non-Rare (462 HOI categories where
each one contains 10 or more training samples).

Implementation Details. For fair comparison with
state-of-the-art baselines, we adopt the same object detec-
tor DETR pre-trained over MS-COCO (backbone: ResNet-
50) and all learnable parameters in DETR are frozen dur-

Method Backbone Feature AP#1
role AP#2

role

One-stage methods
UnionDet [16] R50 A 47.5 56.2
IPNet [40] HG-104 A 51.0 -
GGNet [48] HG-104 A 54.7 -
HOITrans [50] R50 A 52.9 -
AS-Net [6] R50 A 53.9 -
HOTR [17] R50 A 55.2 64.4
QPIC [36] R50 A 58.8 61.0
Two-stage methods
InteractNet [10] R50-FPN A 40.0 48.0
GPNN [32] R101 A 44.0 -
TIN [23] R50 A+S+P 48.7 -
DRG [8] R50-FPN A+S+L 51.0 -
FCMNet [27] R50 A+S+L+P 53.1 -
ConsNet [28] R50-FPN A+S+L 53.2 -
IDN [22] R50 A+S 53.3 60.3
STIP (Ours) R50 A 65.1 69.7
STIP (Ours) R50 A+S+L 66.0 70.7

Table 1. Performance comparison on V-COCO dataset. The let-
ters in Feature column indicate the input features: A (Appear-
ance/Visual features), S (Spatial features [9]), L (Linguistic fea-
ture of label semantic embeddings), P (Human pose feature).

ing training as in [17]. On HICO-DET dataset, we addi-
tionally report the results by fine-tuning DETR on HICO-
DET and the performances by further jointly fine-tuning
object detector and HOI detector. In the experiments, we
select the top-32 probably interactive human-object pairs
as the output interaction proposals of Interaction Proposal
Network. Our proposed structure-aware Transformer con-
sists of 6 stacked layers (structure-aware self-attention plus
cross-attention modules). The whole architecture is trained
over 2 Nvidia 2080ti GPUs with AdamW optimizer. The
mini-batch size is 8 and we set the initial learning rate as
5× 10−5. The maximum training epoch number is 30.

4.2. Performance Comparisons

V-COCO. Table 1 summarizes the performance compar-
isons in terms of AP#1

role and AP#2
role on V-COCO. In gen-

eral, the results across all metrics under the same backbone
(ResNet-50, R50 in short) consistently demonstrate that our
STIP exhibits better performances against existing tech-
niques, including both one-stage methods (e.g., UnionDet,
AS-Net, HOTR, and QPIC) and two-stage methods (e.g.,
FCMNet, ConsNet, and IDN). The results generally high-
light the key advantage of two-phase HOI set prediction and
the exploitation of inter- and intra-interaction structures.
In particular, the conventional two-stage HOI detectors
(e.g., GPNN, TIN, DRG) commonly construct instance-
centric graph to mine contextual information among in-
stances. Instead, recent Transformer-style HOI detec-
tors (e.g., HOITrans, AS-Net, HOTR, QPIC) fully capi-
talize on vanilla Transformer to perform relational reason-
ing among instances/interactions, thereby leading to per-
formance boosts. However, when only using appearance
features (A), the AP#1

role and AP#2
role of HOTR and QPIC
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Method Backbone Feature
Default Known Object

Full Rare Non-Rare Full Rare Non-Rare

Object detector pre-trained on MS-COCO
InteractNet [10] R50-FPN A 9.94 7.16 10.77 - - -
GPNN [32] R101 A 13.11 9.41 14.23 - - -
UnionDet [16] R50 A 14.25 10.23 15.46 19.76 14.68 21.27
TIN [23] R50 A+S+P 17.22 13.51 18.32 19.38 15.38 20.57
IPNet [40] R50-FPN A 19.56 12.79 21.58 22.05 15.77 23.92
DRG [8] R50-FPN A+S+L 19.26 17.74 19.71 23.40 21.75 23.89
FCMNet [27] R50 A+S+L+P 20.41 17.34 21.56 22.04 18.97 23.12
ConsNet [28] R50-FPN A+S+L 22.15 17.12 23.65 - - -
IDN [22] R50 A+S 23.36 22.47 23.63 26.43 25.01 26.85
HOTR [17] R50 A 23.46 16.21 25.60 - - -
AS-Net [6] R50 A 24.40 22.39 25.01 27.41 25.44 28.00
STIP (Ours) R50 A 28.11 25.85 28.78 31.23 27.93 32.22
STIP (Ours) R50 A+S+L 28.81 27.55 29.18 32.28 31.07 32.64
Object detector fine-tuned on HICO-DET
DRG [8] R50-FPN A+S+L 24.53 19.47 26.04 27.98 23.11 29.43
ConsNet [28] R50-FPN A+S+L 24.39 17.10 26.56 - - -
IDN [22] R50 A+S 26.29 22.61 27.39 28.24 24.47 29.37
HOTR [17] R50 A 25.10 17.34 27.42 - - -
STIP (Ours) R50 A 29.76 26.94 30.61 32.84 29.05 33.85
STIP (Ours) R50 A+S+L 30.56 28.15 31.28 33.54 30.93 34.31
Jointly fine-tune object detector & HOI detector on HICO-DET
UnionDet [16] R50 A 17.58 11.72 19.33 19.76 14.68 21.27
PPDM [24] HG104 A 21.73 13.78 24.10 24.58 16.65 26.84
GGNet [48] HG104 A 29.17 22.13 30.84 33.50 26.67 34.89
HOITrans [50] R50 A 23.46 16.91 25.41 26.15 19.24 28.22
AS-Net [6] R50 A 28.87 24.25 30.25 31.74 27.07 33.14
QPIC [36] R50 A 29.07 21.85 31.23 31.68 24.14 33.93
STIP (Ours) R50 A 31.60 27.75 32.75 34.41 30.12 35.69
STIP (Ours) R50 A+S+L 32.22 28.15 33.43 35.29 31.43 36.45

Table 2. Performance comparison on HICO-DET dataset. The letters in Feature column indicate the input features: A (Appearance/Visual
features), S (Spatial features [9]), L (Linguistic feature of label semantic embeddings), P (Human pose feature).

Method
V-COCO HICO-DET (Default)

AP#1
role AP#2

role Full Rare Non-Rare
Base 52.49 58.25 21.74 18.09 22.83
+HM 58.45 62.64 24.16 19.45 25.57
+HM+TR 63.50 68.07 28.62 26.09 29.38
+HM+TRSS 64.99 69.94 29.65 26.52 30.59
+HM+TRSC 65.04 69.76 29.74 27.07 30.54
+HM+TRSS+SC (STIP) 66.04 70.65 30.56 28.15 31.28

Table 3. Performance contribution of each component in our
STIP. HM: Hard Mining strategy for training interaction proposal
network. TR: vanilla TRansformer. TRSS: TRansformer with
only Structure-aware Self-attention that exploits inter-interaction
structure. TRSC: TRansformer with only Structure-aware Cross-
attention that exploits intra-interaction structure.

are still lower than our STIP, which not only takes inter-
action proposals as non-parametric interaction queries to
trigger HOI set prediction, but also leverages a structure-
aware Transformer to exploit the prior knowledge of inter-
interaction and intra-interaction structures. For our STIP, a
further performance improvement is attained when utilizing
more kinds of features (e.g., spatial and linguistic features).

HICO-DET. We further evaluate our STIP on the more
challenging HICO-DET dataset. Table 2 reports the mAP
scores over three different HOI category sets for each set-
ting (Default/Known Object) in comparison with the state-
of-the-art methods. Here we include three different train-
ing settings, i.e., pre-train object detector on MS-COCO,

fine-tune object detector on HICO-DET, and jointly fine-
tune object detector and HOI detector on HICO-DET, for
fair comparison. Similar to the observations on V-COCO,
our STIP achieves consistent performance gains against ex-
isting HOI detectors across all the metrics for each training
setting. The results basically demonstrate the advantage of
triggering HOI set prediction with the non-parametric inter-
action proposals and meanwhile exploiting the holistically
semantic structure among interaction proposals & the lo-
cally spatial structure within each interaction proposal.

4.3. Experimental Analysis

Ablation Study. To examine the impact of each de-
sign in STIP, we conduct ablation study by comparing
different variants of STIP on V-COCO and HICO-DET
datasets in Table 3. Note that all experiments on HICO-
DET here are conducted under the training setting of ob-
ject detector fine-tuned on HICO-DET. We start from the
basic model (Base), which utilizes a basic interaction pro-
posal network (randomly sampling negative samples for
training, without hard mining strategy). The generated in-
teraction proposals in Base model are directly leveraged
for interaction classification, without any Transformer-style
structure for boosting HOI prediction. Next, we extend
Base model by leveraging hard mining strategy to select
the hard negative human-object pairs with higher interac-
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# of selected interaction
proposals (K)

V-COCO HICO-DET (Default)

AP#1
role AP#2

role Full Rare Non-Rare
8 64.20 69.11 29.03 28.16 29.29
16 65.68 70.63 30.18 28.66 30.64
32 66.04 70.65 30.56 28.15 31.28
64 65.93 70.50 30.72 28.96 31.24

100 65.78 70.45 30.40 27.89 31.14

Table 4. Performance comparison by using different number of se-
lected interaction proposals (K) for interaction-centric graph con-
struction in our STIP.

tiveness scores for training interaction proposal network,
yielding Base+HM which achieves better performances.
After that, by additionally involving a vanilla Transformer
to perform relational reasoning among interaction propos-
als, another variant of our model (Base+HM+TR) leads
to performance improvements across all metrics. Further-
more, we upgrade the vanilla Transformer with structure-
aware self-attention that exploits the holistically seman-
tic structure among interaction proposals, and this ab-
lated run (Base+HM+TRSS) outperforms Base+HM+TR.
Meanwhile, the vanilla Transformer can be upgraded
with structure-aware cross-attention that exploits the lo-
cally spatial structure within each interaction proposal, and
Base+HM+TRSC also exhibits better performances. These
observations basically validate the merit of exploiting the
structured prior knowledge, i.e., inter-interaction or intra-
interaction structure, for HOI detection. Finally, when
jointly upgrading the vanilla Transformer with structure-
aware self-attention and structure-aware cross-attention
(i.e., our STIP), the highest performances are attained.

Effect of Selected Interaction Proposal Number K
for Interaction-centric Graph Construction. Recall that
the interaction proposal network in our STIP selects only
the top-K human-object pairs with highest interactiveness
scores as the output interaction proposals for construct-
ing the interaction-centric graph. Such K selected interac-
tion proposals are also taken as non-parametric interaction
queries to trigger HOI set prediction in the structure-aware
Transformer. Here we vary K from 8 to 100 to explore the
relationship between the performance and the select inter-
action proposal number K. As shown in Table 4, the best
performances across most metrics are attained when K is
set as 32. In particular, enlarging the number of selected
interaction proposals (until K = 32) can generally lead to
performance boosts on two datasets. Once K is larger than
64, the performances slightly decrease. We speculate that
the increase of selected interaction proposals result in more
invalid proposals, which may affect the overall stability of
relational reasoning among interaction proposals. Accord-
ingly, we empirically set K as 32.

Effect of Layer Number L in Structure-aware Trans-
former. To explore the effect of layer number L in
structure-aware Transformer, we show the performances
on two benchmarks by varying this number from 0 to 8.
The best performances across most metrics are achieved

# of layers (L)
V-COCO HICO-DET (Default)

AP#1
role AP#2

role Full Rare Non-Rare
0 58.45 62.64 24.16 19.45 25.57
1 64.83 69.57 29.21 26.37 30.06
2 65.55 70.39 30.02 28.11 30.59
4 66.02 70.61 30.47 29.28 30.83
6 66.04 70.65 30.56 28.15 31.28
8 65.44 70.11 30.93 29.78 31.27

Table 5. Performance comparison with different layer numbers of
the structure-aware Transformer in our STIP.

when the layer number is set to L = 6. Specifically, in
the extreme case of L = 0, no self-attention and cross-
attention module is utilized, and the model degenerates to
a Base+HM model that directly performs interaction clas-
sification over interaction proposals without any relational
reasoning via Transformer-style structure. When increasing
the layer number in structure-aware Transformer, the per-
formances are gradually increased in general. This basically
validates the effectiveness of enabling relational reasoning
among interaction proposals through structure-aware Trans-
former. In practice, the layer number L is generally set to 6.

Time Analysis. We evaluate the inference time of our
STIP on a single Nvidia 2080ti GPU by constructing each
batch with single testing image. Specifically, for each input
batch, object detection via DETR, interaction proposal gen-
eration through interaction proposal network, HOI set pre-
diction with structure-aware Transformer, and the other pro-
cessing (e.g., data loading) takes 41.9ms, 7.8ms, 20.4ms,
and 3.8ms, respectively. Consequently, the overall infer-
ence stage of STIP finishes in 73.9ms on average, which
is comparable to existing one-stage Transformer-style HOI
detectors (e.g., the inference time of AS-Net [6] is 71ms).

5. Conclusion and Discussion
In this paper, we have presented STIP, a new end-to-end

Transformer-style model for human-object interaction de-
tection. Instead of performing HOI set prediction derived
from parametric interaction queries in a one-stage man-
ner, the proposed STIP capitalizes on a two-phase solu-
tion for HOI detection by first producing interaction pro-
posals and then taking them as non-parametric interaction
queries to trigger HOI set prediction. Furthermore, by go-
ing beyond the commonly adopted vanilla Transformer, a
novel structure-aware Transformer is designed to exploit
two kinds of structured prior knowledge, i.e., inter- and
intra-interaction structures, to further boost HOI set pre-
diction. We validate the proposed scheme and analysis
through extensive experiments conducted on V-COCO and
HICO-DET datasets. More importantly, the proposed STIP
achieves new state-of-the-art results on both benchmarks.

Broader Impact. STIP has high potential impact in
human-centric applications, such as sports analysis and self-
driving vehicles. However, such HOI detection technology
can be deployed in human monitoring and surveillance as
well which might raise ethical and privacy issues.
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