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Abstract

In dynamic scenes, images often suffer from dynamic
blur due to superposition of motions or low signal-noise
ratio resulted from quick shutter speed when avoiding mo-
tions. Recovering sharp and clean results from the cap-
tured images heavily depends on the ability of restoration
methods and the quality of the input. Although existing re-
search on image restoration focuses on developing models
for obtaining better restored results, fewer have studied to
evaluate how and which input image leads to superior re-
stored quality. In this paper, to better study an image’s po-
tential value that can be explored for restoration, we pro-
pose a novel concept, referring to image restoration poten-
tial (IRP). Specifically, We first establish a dynamic scene
imaging dataset containing composite distortions and ap-
plied image restoration processes to validate the rationality
of the existence to IRP. Based on this dataset, we investigate
several properties of IRP and propose a novel deep model
to accurately predict IRP values. By gradually distilling
and selective fusing the degradation features, the proposed
model shows its superiority in IRP prediction. Thanks to the
proposed model, we are then able to validate how various
image restoration related applications are benefited from
IRP prediction. We show the potential usages of IRP as
a filtering principle to select valuable frames, an auxiliary
guidance to improve restoration models, and also an indica-
tor to optimize camera settings for capturing better images
under dynamic scenarios.

1. Introduction
In real world imaging scenarios with dynamic motions,

degradation is a common factor due to moving objects
or shaking devices. To avoid blur, the photographer can
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Figure 1. We show how the proposed concept IRP differs from
the traditional image metric visual quality. Given a sequence of
images captured under varying exposures in dynamic scenes (first
row), both IQA metric NIQE [23] and human observers favorite
either (a) or (b) as relatively good shots, but they do not neces-
sarily lead to better restored results (second row). As a compari-
son, a perceptually poor image (c) leads to the best restored image
quality. The result indicates the necessity of developing the IRP
metric which predicts if the restored image quality will be good
even before it is processed. All images are processed by the same
restoration model MPR [40] to ensure fairness.

shorten the exposure time, but result in low illumination re-
gions and notorious noises [5, 6, 32]. With varying camera
settings, the type of distortion may change, but hardly di-
minishes. To alleviate the annoying distortions, different
image restoration algorithms are required: one can apply
either deblurring approaches to remove motion blur in the
image captured from adequate exposure, or denoising meth-
ods to alleviate noise artifacts due to shortened exposure.
However, among the noise-blur trade-off, different kinds of
distorted input lead to different restored results. Naturally,
a question comes up that under the trade-off, which kind
of image leads to better restored results? The question is
fundamental, yet has not been well investigated in the liter-
ature. As far as we know, in order to obtain better restored
results, most researches focus on developing restoration al-
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gorithms [7, 13–15, 39, 40], but few are carried out to eval-
uate how and which input images lead to superior restored
quality. As restored image quality heavily depends on both
restoration models and inputs, in this paper, we propose the
concept of image restoration potential (IRP), denoting an
inherent image attribute that measures the potential value of
an image that can be explored for restoration.

Though intuitively, less distorted images with higher
quality lead to better restored results, the quality metric here
differs from the widely accepted concept of visual percep-
tual quality. As shown in the top row of Figure 1, giving
a sequence of images captured in dynamic scene, both im-
age quality assessment (IQA) metric NIQE [23] and human
observers tend to favorite image (a) or (b) as relatively bet-
ter shots, however, these “better” inputs do not necessarily
lead to better restored ones. In contrast, a perceptually poor
quality image (c) achieves the best restored result, shown
in the bottom row. The phenomenon therefore inspired us
the necessity of developing the IRP concept. As traditional
IQA metrics [28, 44] aim at measuring image quality at the
present view and extracting perceptual features which are
adapted to the human visual system (HVS), IRP is proposed
to forecast if the restored image quality will be good even
before they are processed, and focus more on the degrada-
tion that closely relates to the restoration process.

To investigate the proposed IRP, we first established
a dynamic scene imaging dataset by simulating 5500 de-
graded images captured under various camera settings. We
then conducted 4 representative restoration algorithms on
each of the images in the dataset, and validated that IRP
belonging to an inherent image attribute regardless of how
concrete restoration algorithms are applied. We further dig
into the distortions that exist in dynamic imaging scenarios
including noises, blurriness, and low illumination, and pro-
posed a deep model for accurate IRP prediction. By disen-
tangling distortion factors and selective fusing degradation
features, the proposed model showed its effectiveness in re-
vealing image potentials for restoration. Lastly, we applied
IRP prediction to various kinds of applications, including
filtering valuable frames in image sequences for efficiently
processing, guiding image processing models for adaptive
restoration, and optimizing camera settings for capturing
images leading to better restored quality.

To summary, the contributions of this paper include:

• We introduce a novel image attribute, named IRP, as
a criterion to measure the potential value of an im-
age that can be explored for restoration. By collecting
5500 images as well as their restored quality labels, we
investigate several properties of the proposed IRP.

• We analyze the key factors affecting IRP and develop a
deep model for IRP prediction. By gradually distilling
image distortions that exist in dynamic scenes and se-

lective fusing the features to form complement repre-
sentations, we verify the superior prediction accuracy
of the proposed model.

• We show potential usages of the proposed IRP to var-
ious image restoration related applications. IRP has
shown its effectiveness in filtering valuable frames for
the restoration process, providing auxiliary guidance
to restoration models, and also optimizing camera set-
tings when capturing images under dynamic scenarios.

2. Related work
2.1. Image Restoration

According to the leading type of degradation contained
in an image, different kinds of restoration tasks are pro-
posed. In dynamic scenes, when the camera exposure set-
ting is set long to ensure sufficient light, motions will be
apparent and deblurring methods are required. Represen-
tative models include conventional approaches [33, 36] and
CNN based models [7, 13, 19, 24, 29, 40, 42]. Meanwhile,
when exposure is set short to avoid the superposition of
motions, noise artifacts will be obvious due to insufficient
light, and denoising approaches are needed, including con-
ventional techniques [2, 9, 14, 35] and CNN based meth-
ods [3,15,40,41,43]. The above approaches, though achiev-
ing improving performances in their own field, are however
proposed to deal with separate image restoration tasks. As
a comparison, in this paper, we aim at developing a gen-
eral image measurement IRP, that adapts to both restoration
problems, and we are interested in finding out how image
restoration related tasks are benefited from IRP predictions.

2.2. Image Quality Assessment

The goal of IQA is to enable machines to perceive the
visual quality of images, being consistent with human per-
ceptual results. By assessing an image’s visual quality,
many vision related tasks could be quantitatively measured
and potentially optimized. Existing IQA approaches in-
cluding full-reference IQA [30, 31, 45], reduced-reference
IQA [12, 21, 37], and no-reference IQA [22, 28, 47], ac-
cording to the accessibility to the pristine reference image.
Though many works have been carried out in learning the
relationship between image features and their direct visual
quality [27,34,44], none of the work has studied an image’s
potential quality that can be explored for restoration. There-
fore, in this paper, we propose and investigate the concept
of IRP, analyze its properties, show its differences to IQA,
and evaluate its potential usages in real world applications.

3. Investigating on IRP
To investigate IRP, we first established a dataset called

Dynamic Scene-IRP (DS-IRP). The collection of DS-IRP
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mainly includes two stages. In the first stage, we collected
2,500 dynamic scenes and 11 images in each scene under
various camera settings. Since in dynamic scenes, it is im-
practical to acquire ground truth images by shooting in re-
ality, which are however required in stage 2, we thus chose
to simulate images following a dynamic imaging formation
and finally had 27,500 images in total. In the second stage,
we re-trained and tested 4 representative restoration algo-
rithms on each of the images collected from stage 1. The
IRP labels are then acquired by calculating restored image
quality by referencing ground truth images. With the es-
tablished DS-IRP dataset, we investigated IRP and revealed
several of its properties.

3.1. Dynamic imaging formation

In our dynamic imaging formation, we model the imag-
ing process starting with scene radiance ϕ and ending with
image value I in sRGB space, but paying particular atten-
tion to dynamic motions existing in scenes. Therefore, the
overall dynamic imaging formation can be expressed as the
joint result including radiant power ϕ, motion information
m and noise n during the exposure time ∆t:

I = G(ϕ,m, n,∆t) (1)

Specifically, we consider motions during exposure, then
convert the scene radiance into linear RGB pixel values, fol-
lowing [5, 10, 25]:

Il = yp(

∫ t0+∆t

t0

ϕtmt dt) + n (2)

where yp converts the received photoelectrons expressed by
exposed photosite during the exposure time ∆t into volt-
ages, which are further recorded by sensor as linear RGB
pixel values. mt denotes motion at t time, and n represents
the overall noise.

In practice, motions are considered in an equivalent but
simpler way after ϕ are converted into linear RGB signals.
Following [13], we apply optical flow to linear RGB sig-
nals as motion information. Specifically, we select consec-
utive image frames containing real scene motions from the
vimeo-triplet dataset [38] and estimate the optical flow by
ARflow [20], to represent motions mt0 that exist in dynamic
scenes. To cover various dynamic imaging results under
different camera exposure settings, we sample 11 diverse
exposure times in each scene and scale the motions mt0 ac-
cording to exposure time. In total, 2,500 scenes are selected
from the vimeo-triplet dataset, each containing 11 imaging
results corresponding to various exposure times. In each
scene, we also collect the original image from the vimeo-
triplet dataset, which serves as the ground truth image that
is used for generating IRP labels in the second stage.

In the dynamic imaging formation, we consider noise as
another inevitable degradation factor. The overall noise n

composes the combination of shot noise nshot and readout
noise nread, formulated as:

n = nshot + nread (3)

where nshot originates from the particle nature of light, and
follows a Poisson process as (Il + nshot) ∼ Poisson(Il)
[32], while nread associates with voltage fluctuation in sig-
nal processing flow, and follows a zero-mean Gaussian dis-
tribution with device-specific standard deviation, termed as
nread ∼ Gaussian(0, σ2).

Finally, image signals are converted from linear RGB to
sRGB space by quantization and bounded transformation,
expressed as:

I = min(⌊(Il)γ + 0.5⌋,Mmax) (4)

where ⌊·⌋, γ and Mmax indicate floor function, gamma
transformation, and the maximum value recorded by the
camera sensor respectively.

3.2. IRP Label Generation

After obtaining 27,500 dynamic imaging results, we fur-
ther collect their IRP labels. Since IRP is proposed to mea-
sure the potential that an image can be explored for restora-
tion, we thus first apply image restoration algorithms on the
images, then represent IRP value as the restored image qual-
ity, which is calculated by referencing the ground truth.

During IRP generation procedure, we select four rep-
resentative image restoration methods, being effective in
processing diverse image distortions, including Unet [26],
MIRnet [39] ,MPR [40] and HInet [7] for restoration. Since
we collected images under 11 diverse exposure settings, we
train and test each restoration model under separate expo-
sure settings across all scenes, leading to a total 4×11 = 44
times of training and testing procedures. Though it is plau-
sible to mix all images for training and testing, we found
that the models become less capable of handling all mix-
ing distortions from noise to blur integrated with one model
alone. As a result, we chose to train and test restoration
models under each individual exposure settings, expecting
that the max amount of “restoration potential” could be ex-
plored by the models. Specifically, among 2,500 scenes, we
take 2,000 scenes for training restoration models, leaving
the rest 500 scenes for testing and obtaining restoration re-
sults. To generate IRP values, we calculate both PSNR and
LPIPS [45] scores between restored images and the ground
truth to balance the trade-off between distortion and per-
ception [4]. After normalizing both criteria to the range of
[0, 1], we calculate their mean value as IRP measurement.
At last, for each image, we average the 4 IRP values cor-
responding to 4 restoration methods as the final IRP score.
The whole generation process collects 500×11 = 5500 IRP
labels in total. The labels, along with corresponding images
collected in stage 1, form the DS-IRP dataset. Examples of
data and IRP labels can be found in our supplementary.
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Figure 2. In the first three subfigures, we plot IRP values between
two arbitrary restoration models. The restored image quality is
highly correlated across different models, indicating IRP as an in-
herent image attribute. In the fourth subfigure, we plot IRP values
generated by four restoration models under one scene, the IRP val-
ues corresponding to four methods also keep consistent.

3.3. Investigation on IRP Properties

After establishing the DS-IRP dataset, we are now able
to investigate several properties of IRP. Specifically, we ex-
plored how IRP is affected by the selection of restoration
models, how distortion factors determine IRP values and
the difference between IRP and image visual quality.
Influence by Restoration Models. Apparently, even for
the same image, the selection of different restoration mod-
els results in different restored image quality. Therefore, we
are interested in finding out how IRP is influenced by the se-
lection of restoration models. To this end, we take IRP val-
ues generated under different restoration models to compare
their correlations, and we show the results in Figure 2. From
the first three subfigures, it can be observed that despite dif-
ferent restoration models being applied, the restored image
quality is highly correlated across all models. In the fourth
subfigure, we show IRP values generated by four restoration
models in one scene, containing 11 images captured under
varying exposure settings. As directly shown, for each im-
age, the relative IRP values keep consistent across restora-
tion models. The above results indicate that even if different
restoration models are used, a good image is a good image,
i.e. its potential that can be explored for restoration keeps
consistent. The result also demonstrates that IRP belongs to
an inherent image attribute which is majorly mapped from
image appearance, similar to existing image attributes in-
cluding visual quality, brightness, and sharpness, etc.
Analyse on Determinant IRP Factors. As shown in Equa-
tion (1), the dynamic imaging process is determined by
scene radiance ϕ, motion m, noise n and exposure time
∆t, reflected as illumination, blurriness and noise on im-
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Figure 3. Subjective study on relationship between degradation
factors and IRP values.
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Figure 4. Subjective study on relationship between degradation
factors and image visual quality.

age appearances. Therefore, we study on the three factors
to analyze how they affect IRP values. Concretely, we con-
ducted a subjective user study on three factors, by labeling
the degradation magnitudes corresponding to low illumina-
tion, blur, and noise in 110 images randomly selected from
the DS-IRP dataset. We then plot the relationship between
each degradation magnitude and IRP value in Figure 3. In
our experiment, 40 observers are invited to rate the degrada-
tion level ranging from [0, 1], where a larger rating indicates
less degradation detected. From Figure 3, we observe that
when illumination and noise problem is severe, IRP values
correlate with the magnitude of distortion. However, when
two degradations are becoming less, IRP does not increase
accordingly, due to the increasing motion blur resulted from
longer exposure time in most scenes. This indicates when
camera exposure setting varies, different kinds of distor-
tions are becoming determinant under composite degrada-
tion. Meanwhile, we also found that when image blur is
diminishing, IRP value consistently improves, suggesting
that blurriness always plays a determinant role for IRP.
Comparison between IRP and Image Visual Quality.
We further compare IRP with the widely studied image at-
tribute, i.e. image visual quality, to investigate their differ-
ences. We conducted a similar user study by labeling image
quality annotations, and plotting the relationship between
each degradation factors and visual quality labels in Fig-
ure 4. Compared with Figure 3, it can be easily observed
that image degradations, including low illumination, blurri-
ness and noise, affect image visual quality in a different way
from IRP. As can be seen, when composite distortions vary,
visual quality shows a monotonic correlation with illumina-
tion and noise problems, while less correlated to blurriness.
According to the above observation, we conclude the differ-
ences between IRP and visual quality: under the blur-noise
trade-off in dynamic scenes, illumination problem attributes
to a major factor determining image visual quality, but a rel-
atively “easy” distortion for IRP as the information could be
easily restored. Noise problem also implies relatively minor
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affects on IRP attribute, but is determinant to visual quality
to some degree. Among the degradation factors, blurriness
correlates most with IRP value, and serves as the “hardest”
distortion for restoration.

4. Learning to Predict IRP
In this section, we aim at developing a deep model for

accurately predicting IRP. The predicting model is expected
to serve as an indicator being applied in various dynamic
scene imaging or restoration tasks. As we have analysed the
major three factors and their mutual interactions in affecting
IRP values, we thus propose to gradually distill each of the
three factors in our model by individual branches, in order
to learn complimentary IRP representations. In addition, to
better understand the impact from each kind of degradation
among the composite distortions, we propose to selective
fuse the degradation features, which are finally regressed to
IRP scores by multi-layer perceptrons (MLP).

4.1. Gradually Distilling Degradation Components

Given input images contaminated by the composition of
illumination, noise and dynamic blur problems, we propose
to gradually distill the degradation components by a series
of pre-processing techniques, and extract each component’s
features one by one.

As image illumination mainly affects image visual pre-
sentation but a “easy to eliminate” component for IRP, we
thus use the original distorted image to extract illumination
features. Specifically, we adopt image histograms in an in-
dividual branch to extract illumination statistics. We com-
pute 256 bins of the histogram and apply 1 layer of 1D con-
volution with a kernel size of 7 to the bins. The histogram is
then spatially expanded to fit the size of features extracted
from the rest two branches, denoted as Fi. Next, to distill
noise and blur features from composite distortions, we scale
image signal in linear RGB space to alleviate the effect of
illuminations, and extract noise features by another branch.
Inside the noise feature extraction branch, we use the fea-
ture extractor from stage 1 of the ResNet50 backbone [17]
to extract low level features. The features are then fed into
3 ASPP blocks [8] to expand the receptive field. In this
way, we extract image features through a shallow branch,
which leans to learn low level noise features, denoted as
Fn. As last, to distill blur features, we apply guided fil-
tering [16] operation to the scaled image, and extract scene
features by the third branch, using the whole ResNet50 en-
coder. Depth-wise convolution are then applied to reduce
channel number. We denote the third part of feature Fb.

By extracting illumination features Fi from holistic
statistics, noise features Fn from low level representations,
and blurry scene features Fb from high level extractors,
we expect the features form complimentary representations,
being effective in accurately predicting IRP values.
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Figure 5. The proposed model architecture for IRP prediction.

4.2. Selective Fusing Degradation Features

As analysed above, when camera exposure setting varies,
different kinds of distortions become determinant for IRP
among the composite degradation. In order to dynamically
adjust to dominant distortion factors, we propose to selec-
tive fuse the three parts of distortion features through a self-
attention mechanism (also see supplementary for figure il-
lustration), motivated by [39].

Given three parts of extracted feature Fi, Fn and Fb, we
first combine them through element-wise summation and
global average pooling, to form a channel-wise feature rep-
resentation s:

s = GAP(Fi + Fn + Fb) (5)

where GAP denotes global average pooling, Fi,Fi,Fi ∈
RH×W×Cand s ∈ R1×1×C .

We then apply a depth-wise convolution with squeeze ra-
tio r to s, resulting a compact representation z ∈ R1×1×C

r .
z are then fed into three parallel 1 × 1 convolution layers
with expand ratio r to get three feature indicators u1, u2

and u3, which are further re-weighted to attention activa-
tions by channel-wise softmax operation:

vi =
eui∑
j e

uj
(6)

Finally, the degradation features Fi, Fn and Fb are
adaptively selected by multiplying u1, u2 and u3 respec-
tively. The selective fusion operation incorporates three
kinds of degradation features and refines each of them to ad-
just to the variation of scene exposures, thus adapting well
in the IRP prediction task.

4.3. Regression to IRP Scores

After distilling degradation components and extracting
corresponding features, we repeatedly selective fuse the fea-
tures by 3 times. The output features are then summed over
and globally average pooled into a vector representation. Fi-
nally, three full connection layers are applied to regress the
features into the IRP score. During training, we minimize
L1 loss for optimization.
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Table 1. IRP prediction accuracy comparisons on DS-IRP dataset.

Model Scene Average Overall
SRCC PLCC SRCC PLCC

BRISQUE [22] 0.3319 0.3560 0.1053 0.1877
IL-NIQE [44] 0.2631 0.3330 0.1869 0.2051
HOSA [34] 0.3360 0.3448 0.2269 0.2014

DBCNN [46] 0.8022 0.8008 0.6903 0.6956
KonCept512 [18] 0.8892 0.8984 0.7536 0.7839
HyperIQA [28] 0.8483 0.8578 0.7383 0.7550

Proposed 0.9340 0.9412 0.8461 0.8687
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Figure 6. IRP prediction accuracy comparisons on real world data.

5. Experiments
In this section, to demonstrate the superiority of the pro-

posed model, we evaluate IRP prediction accuracy on both
synthetic and real world data. Due to the lack of models in
the literature used for predicting the newly proposed IRP,
we select existing IQA models as competitors.

5.1. Evaluation on the DS-IRP Dataset

We split the proposed DS-IRP dataset into a training sub-
set, a validation subset and a testing subset, each containing
70%, 10% and 20% images according to scene contents.
All the competing models are trained following their default
settings and the best performing models in validation set
are selected for testing. During the evaluation, we calculate
Spearman’s rank order correlation coefficient (SRCC) and
Pearson’s linear correlation coefficient (PLCC) for compar-
ison. We compute SRCC and PLCC within each individ-
ual scene in DS-IRP and report their average value, denoted
as scene average. We also compute the two criteria on the
whole test set to evaluate the overall model performance.
As shown in Table 1, the proposed model outperforms com-
petitors by a large margin, indicating the effectiveness of the
proposed architecture.

5.2. Evaluation on Real World Data

We further compare model performances on images cap-
tured in real world scenarios. We first captured 20 scenes
containing dynamic motions in real world, using 8 differ-
ent exposures under each scene. The collection leads to
160 imaging results in total, and we use models that are
trained on the DS-IRP dataset to predict their IRP values.
Due to the lack of ground truth IRP to real world data, sev-
eral pre-trained restoration methods [7, 40, 42] are applied
to process real world data and we further collected subjec-
tive perceptual scores from 40 participants to the restored

results as substitutions of IRP values. We then calculate
SRCC and PLCC among the model prediction scores and
subjective scores, and show the results in Figure 6. Sim-
ilarly, the proposed model also outperformed competitors
on the challenging real world data.

Table 2. Ablation study for the proposed model.

Model Scene Average Overall
SRCC PLCC SRCC PLCC

Baseline 0.8594 0.8608 0.7435 0.7758
w/o illumination 0.9188 0.9222 0.8339 0.8543

w/o blur 0.8886 0.8992 0.7814 0.8188
w/o noise 0.8957 0.9029 0.7920 0.8242

w/o selective 0.9335 0.9385 0.8278 0.8476
Full 0.9340 0.9412 0.8461 0.8687

5.3. Ablation Study

We conduct ablation studies to validate the effective-
ness of each model component. We remove the illumina-
tion, noise and blur branch separately in our model, to ob-
serve the effect of individual degradation features. We then
remove the selective feature fusion in the model to vali-
date the effectiveness of feature selection among compos-
ite distortions. We also evaluate model performance using
a ResNet50 baseline, and the results are shown in Table 2.

6. Applications

With the proposed IRP prediction model, in this section,
we are able to demonstrate multiple applications that benefit
from IRP prediction.

6.1. Filtering Principle for Efficient Processing

There exist circumstances such as autonomous driving
and robot vision navigation, where images captured in dy-
namic scenes require to be processed and restored in real-
time. To meet time and computation requirement, image fil-
tering strategy becomes a solution for efficient processing.
Specifically, among the continuous frames showing similar
scene contents, only valuable frames are selected and pro-
cessed to avoid overmuch raw data. In this way, both time
cost and overall restored image quality could be improved.

Under the circumstance, IRP prediction can serve as a
filtering principle, and we evaluate its effectiveness on the
real world deblurring dataset GoPro [24]. Specifically, we
split the GoPro test set into 105 groups containing 10 con-
tinuous frames inside each group. We then select the best
frame inside each group according to the predicted IRP val-
ues, and process the selected frame by DMPHN [42]. We
evaluate overall model complexity, average time consump-
tion, restoration quality and the best frame selection ac-
curacy in Table 3. To make comparisons, we also adopt
two IQA models, which are trained on their own proposed
IQA datasets as filtering principles, including KonCept512
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Selected by MT-A Selected by IRPSelected by KonCept512

(b) 28.49 dB (c) 25.18 dB (d) 27.67 dB (e) 27.64 dB (f) 31.09 dB

(g) 32.38 dB (h) 31.22 dB (i) 30.75 dB (j) 29.51 dB (k) 27.47 dB

Figure 7. We show how IRP serves as a filtering principle on the GoPro dataset. Compared with KonCept512 and MT-A, IRP prediction
correctly select the most valuable frame in a sequence for efficiently restoring.

trained on the authentically distorted IQA dataset KonIQ-
10k [18] , and MT-A trained on the smartphone photogra-
phy and quality dataset SPAQ [11]. We also show qualita-
tive comparisons in Figure 7.

Table 3. Model evaluations on the GoPro dataset as a frame filter-
ing principle.

Model FLOPs(G) Time(s) PSNR SSIM Accuracy
DMPHN 1099.35 0.0521 30.453 0.9022 -

KonCept512 152.234 0.0342 31.849 0.9263 49/105
MT-A 9.394 0.0205 31.155 0.9116 34/105
IRP 41.895 0.0244 32.140 0.9351 57/105

From Table 3, we found that for all three filtering models,
the average restored image quality improved. This demon-
strates both the feasibility of the image filtering strategy
and the potential extended usages of existing IQA models.
Meanwhile, among the competing models, both restored
image quality and frame selection accuracy perform best
through our IRP prediction model. Although our model
is trained on the synthetic DS-IRP dataset, it outperforms
competitors which collect real world images and subjective
scores for model training. The result further proves the IRP
prediction as a superior filtering principle for image restora-
tion applications.

6.2. Auxiliary Guidance for Restoration Models

We also explore if IRP can also provide guidance for
training adaptive restoration models. The underlying as-
sumption is that by feeding both the image and its IRP in-

Table 4. Performance comparison on the proposed IRP as an aux-
iliary guidance for training restoration models.

Model PSNR SSIM
CBD baseline 40.227 0.9793

CBD full 40.722 0.9818
CBD + IRP 40.771 0.9821

(a) Noisy (b) CBD base (c) CBD base+IRP (d) Ground truth

Figure 8. Qualitative comparisons of IRP as an auxiliary guidance
for restoration models.

formation to restoration models, they are able to distinguish
images as easy or hard samples, thus learning adaptive map-
pings for images showing various restoration potentials.

To validate the assumption, we select small RGB data
from the image denoising dataset SIDD [1] for evaluation.
Given an input image, we extract its IRP features through
the proposed model trained in Section 5.1 and use a 1 × 1
convolution layer to adjust the feature map into 3 channels.
The feature map, concatenated with the original image, is
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(a) Auto-exposure (b) IRP-exposure (c) Auto-exposure restored (d) IRP-exposure restored

Figure 9. Comparison of IRP for optimizing exposure settings against conventional auto-exposure settings of camera.

then fed into the restoration model for either training or test-
ing. We compare model performance with CBDnet [15],
which also uses an auxiliary subnetwork, especially trained
on the mixture of synthetic and real noisy images, to es-
timate image noise levels for restoration guidance. We
also compare model performance when trained without any
auxiliary guidance, denoted as CBDnet baseline, and show
the results in Table 4, Figure 8. It can be found that by
adding an auxiliary guidance, both CBDnet and IRP boost
the image restoration baseline. Moreover, by extracting IRP
features, restoration models are even more benefited than
CBDnet. Though IRP is proposed to deal with composite
distortions and we do not explicitly train it on real noisy
images, we found it achieved impressive performance on
the denoising task. Furthermore, since IRP features are ex-
tracted separately from restoration models, it is expected
that IRP prediction can serve as a plug-and-play module in
improving many other image restoration tasks.

6.3. Indicator for Optimizing Camera Settings

In the above subsections, we show IRP applications on
single deblurring or denoising tasks, in this subsection, we
further show its usages under real world composite distor-
tions. We show the potential usage that applying IRP in
optimizing camera exposure settings in real world dynamic
imaging scenarios. As conventional auto-exposure settings
in existing camera devices guarantee sufficient illumination
as a priority, in dynamic scenes, whether the captured image

suits its best for restoration cannot be promised. We illus-
trate the application in Figure 9, where we show real world
images collected from Section 5.2, selected by camera auto
exposures and by IRP predictions. Both originally distorted
images and the restored results are presented for qualita-
tive comparisons. As can be seen, the conventional auto-
exposure setting tends to capture images with sufficient il-
lumination, they do not lead to satisfying restored quality.
As a comparison, by predicting the origin images’ IRP val-
ues, the selection leads to restoration results showing more
satisfying visual quality.

7. Conclusion

In this paper, we propose IRP, a novel image attribute
measuring its potential power that can be explored for
restoration. We first established a DS-IRP dataset and ex-
plored the properties of IRP. Based on the analysis, we fur-
ther proposed a deep model which gradually distills and se-
lective fuse degradation features to accurately predict IRP.
Experimental evaluations demonstrate the effectiveness of
the proposed model architecture. Finally, with the IRP pre-
diction model, we are able to apply it in various image
restoration related tasks. The IRP has shown its potential
usages in filtering valuable frames for efficient processing,
providing extended guidance for restoration models, and
even optimizing camera settings when capturing images un-
der dynamic scenarios.
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