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Abstract

We study the problem of weakly semi-supervised ob-
ject detection with points (WSSOD-P), where the training
data is combined by a small set of fully annotated images
with bounding boxes and a large set of weakly-labeled im-
ages with only a single point annotated for each instance.
The core of this task is to train a point-to-box regressor
on well-labeled images that can be used to predict cred-
ible bounding boxes for each point annotation. We chal-
lenge the prior belief that existing CNN-based detectors
are not compatible with this task. Based on the classic R-
CNN architecture, we propose an effective point-to-box re-
gressor: Group R-CNN. Group R-CNN first uses instance-
level proposal grouping to generate a group of proposals
for each point annotation and thus can obtain a high re-
call rate. To better distinguish different instances and im-
prove precision, we propose instance-level proposal assign-
ment to replace the vanilla assignment strategy adopted
in original R-CNN methods. As naive instance-level as-
signment brings converging difficulty, we propose instance-
aware representation learning which consists of instance-
aware feature enhancement and instance-aware parame-
ter generation to overcome this issue. Comprehensive ex-
periments on the MS-COCO benchmark demonstrate the
effectiveness of our method. Specifically, Group R-CNN
significantly outperforms the prior method Point DETR by
3.9 mAP with 5% well-labeled images, which is the most
challenging scenario. The source code can be found at
https://github.com/jshilong/GroupRCNN.

1. Introduction

Object detection has witnessed great improvements with
the development of network architectures and dataset con-
struction in the past few years. However, advanced ob-
ject detectors usually require training on a large number
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of images with accurate bounding box annotations, which
are very time-consuming and expensive to obtain. To re-
lieve the burden of human labeling, previous studies pro-
pose weakly- [2, 11, 13,21,32] and semi-supervised meth-
ods [8, 18, 24, 31] for object detection, which adopts a
small portion of well-annotated images alongside abun-
dant weakly-annotated images and unlabeled images, re-
spectively. Weakly semi-supervised object detection (WS-
SOD) [28] takes goods from both worlds. By replac-
ing the unlabeled images in semi-supervised detection with
weakly-labeled images, it achieves a good balance between
labeling costs and model performance. One step further,
WSSOD with point annotations (WSSOD-P) labels an in-
stance with a single point so as to provide both category
and location information with minimal labeling cost. The
time cost of labeling points is comparable with that of pro-
viding image-level annotations [ |,4], which is substantially
lower than bounding box annotations.

Prior work [4] proposes the following pipeline to lever-
age point annotations. (1) train a point-to-box regressor us-
ing images with only bounding box annotations. To simu-
late the process of translating points into bounding boxes,
points are randomly sampled within bounding boxes of in-
stances as point annotations. (2) After training, the regres-
sor is used to transform point annotations on weakly-labeled
images to pseudo bounding box annotations. (3) Finally,
any object detector can be trained with both well-labeled
images and pseudo-labeled images in a supervised fashion.
The core of this task then boils down to designing an accu-
rate point-to-box regressor.

Point DETR [4] claims that the CNN-based detector per-
forms poorly as a point-to-box regressor, but we argue it
does not hold true based on the following in-depth analysis.
On one hand, we find that CNN models in prior work only
generate a single proposal with the feature vector located
at the annotated point (projected on the feature map). The
quality of such a proposal can be quite low, resulting in a
low recall rate since annotated points can deviate from ob-
ject centers and are less informative for box regression. To
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Figure 1. An illustration of instance-level proposal grouping
and instance-level proposal assignment. Proposals in the same
group (i.e. belonging to the same instance) are denoted by the
same color. (a) to (b): Instance-level grouping: rather than just
only the annotated point, proposals generated by all points that are
close enough to the (projected) annotation point are collected to
form a group for each instance. (b) to (c): Instance-level assign-
ment: A proposal is assigned as positive if and only if the IoU with
its belonging instance is above a pre-defined threshold, regardless
of its IoU with any other instances.

improve the recall rate with arbitrarily annotated points, we
propose instance-level proposal grouping (Figure 1, (a) to
(b)) that generates a group of proposals rather than a sin-
gle proposal for each instance. That said, points on feature
maps that are close to the annotated point will be taken into
consideration, and all proposals generated from these points
form an instance-level group for a certain instance.

On the other hand, the original proposal assignment
strategy assigns a proposal to be positive if its maximal IoU
with any ground truth boxes surpasses a certain thresh-
old. However, proposals in one group may be assigned to
the ground-truth bounding box of another group when ob-
jects with the same category are close to each other (e.g.
in the crowded scene). Such a scenario is very common in
real-world datasets, for example, in MS-COCO over 50%
images have such a scene. Training with such a strategy
cannot ensure a high-quality proposal is produced for each
point annotation. Therefore, we propose instance-level as-
signment that assigns proposals in a group only to its be-
longing ground-truth box. A proposal will be treated as
negative if its IoU with the corresponding instance is low,
regardless that its IoU with another instance may surpass
the threshold (Figure 1, (b) to (c)).

Nevertheless, we find that the naive instance assign-
ment causes converging difficulty and thus leads to inferior
performance than the original assignment strategy. Since

proposals from different groups share the same feature
map and are also convolved with the same fixed param-
eters, positive proposals in one group and negative pro-
posals in another group can have similar convolution out-
puts. However, they are assigned to completely opposite
optimization targets, this contradiction can hinder model
convergence. To tackle this problem, we propose instance-
aware representation learning, consisting of instance-aware
feature enhancement and instance-aware parameter gener-
ation. Specifically, we use point annotations to compute
instance-aware relative coordinates, with which to construct
instance-aware feature maps. To further distinguish features
of proposals from different groups, we use both instance-
aware features and the annotated points’ category embed-
dings to generate instance-aware model parameters. By
convolving the instance-aware features and the instance-
aware parameters, we successfully mitigate the converg-
ing issue brought by naive instance assignment and obtain
superior performance.

To highlight our key designs and the proposed general
framework as a point-to-box regressor, we name our regres-
sor Group R-CNN. Compared with the previous state-of-
the-art method Point DETR which is based on the trans-
former architecture, our proposed Group R-CNN has the
following advantages: (1) Group R-CNN can take advan-
tage of the feature pyramid network [!4] for multi-scale
proposal generation, while Point DETR [4] can not naively
adopt FPN. (2) Group R-CNN inherits the convergence su-
periority from CNNs, and thus converges better and faster
than Point DETR, especially under the low well-labeled
data regime [0] (See Appendix for details).

We conduct extensive experiments on MS-COCO
dataset, using various percentages of labeled images to
showcase the effectiveness of Group R-CNN. Group R-
CNN outperforms the existing transformer-based method
Point DETR by a large margin under different experimen-
tal protocols while only requiring half of the training bud-
get. To be specific, our Group R-CNN outperforms Point
DETR by 3.9 mAP when only 5% images are well-labeled
by bounding boxes. Thus, Group R-CNN achieves both bet-
ter performance and faster convergence over previous state-
of-the-art.

2. Related Work

Supervised Object Detection. Supervised object de-
tection has made remarkable progress over the past few
years [3,12,15,20,26]. Based on the architecture design,
these object detectors can be mainly categorized as two-
stage detectors and single-stage detectors. Two-stage de-
tectors [20] first generate a large set of object proposals and
refine them in the second stage. In contrast, single-stage
detectors [15, 17, 19] directly predicts bounding boxes with
categories without refinement. In addition to designs of ob-
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Figure 2. The pipeline of Group R-CNN. The Vanilla R-CNN (the upper architecture) cannot leverage the point annotation and easily
produces false positive and false negative bounding boxes. In contrast, Group R-CNN (the lower architecture) achieves higher recall and
precision by incorporating relative coordinates (top-right) and dynamic group convolution (bottom-right) for the point-to-box translation
task. Instance-aware Features (top-right): a separate feature map is constructed for each instance to encode the relative coordinates
w.r.t. its point annotation, followed by the Rol-pooling procedure. Instance-aware Parameters (bottom-right): the average Rol feature
of each group is concatenated with the corresponding category embedding, acting as the input of a linear layer to generate parameters for

the dynamic group convolution.

ject detectors, multi-scale object detection is another popu-
lar line of work. Feature Pyramid Network [14] produces
multi-scale feature representation that can be used by both
single-stage and two-stage object detectors

Semi- and Weakly-Supervised Object Detection. To
reduce the annotation cost of producing large-scale well-
labeled images for object detection, two popular settings
were proposed. Semi-supervised object detection [18,22,
31] replaces the weakly-labeled images with unlabeled im-
ages and leverages pseudo-labeling for better performance.
The problem considered in this work is different from these
two classic learning paradigm as the point annotation is
added to weakly-labeled images. Weakly-supervised ob-
ject detection [2,9,13,21,23,27,28] proposes to use a large
set of weakly-labeled images (such as image-level annota-
tions without bounding boxes) alongside a small set of well-
labeled images. PCL [23] incorporates a concept of group-
ing and clusters proposals in an unsupervised manner to
prevent from focusing on discriminative parts of instances.

In contrast, Group R-CNN selects proposals around the
human-labeled points to improve the recall rate, which is
different from PCL in terms of motivation and implementa-
tion. Details of our method can be found in Section 3.

Weakly Semi-Supervised Object Detection with
Points (WSSOD-P). Recently, Point DETR [4] proposes
a new annotation format for weakly-supervised object de-
tection, which adds point annotations as a new form of
weak annotations. To leverage point annotations, Point
DETR introduces a transformer-based point-to-box regres-
sor to transform point annotations to bounding-box annota-
tions so that an actual object detector can be trained. How-
ever, transformer-based models usually have convergence
issues when training data is not sufficient [6], which is usu-
ally the case of WSSOD-P (See Appendix for details). In
contrast, we design a convolution-based regressor for this
task, which is considered challenging by prior work [4].

Dynamic Parameter Generation. Dynamic Parameter
Generation has been used in various computer vision tasks
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such as image classification [5,29,30] and instance segmen-
tation [25]. The key idea behind this line of work is to dy-
namically adjust network parameters based on inputs. Our
proposed dynamic group convolution is inspired by these
existing works and we propose to generate convolution pa-
rameters for each instance-level proposal groups. To the
best of our knowledge, this is the first time such an idea is
implemented under WSSOD-P setting.

3. Group R-CNN

In this section, we first review the problem of weakly
semi-supervised object detection with point annotations
(WSSOD-P). Next, we present our novel framework Group
R-CNN as a solution to this task.

3.1. Background

The problem of WSSOD-P proposes to train an ob-
ject detector using a small portion of well-labeled images
with instance-level annotations (e.g., bounding boxes and
class labels) and an abundant weakly-labeled images with
only one single point annotation for each instance. Com-
pared with vanilla weakly-supervised object detection, the
point annotation provides meaningful location information
for instances without introducing much labeling costs. A
common pipeline [4] to solve this problem is: (1) train-
ing a point-to-box regressor using well-labeled images with
bounding box annotations (2) generating pseudo bounding
boxes for images with point annotations, and (3) training
an object detector with the combination of well-labeled and
pseudo-labeled images. The core of this task is to design an
effective point-to-box regressor that translates point annota-
tions to credible pseudo bounding box annotations.

To design a better point-to-box regressor, we propose
Group R-CNN, a CNN-based architecture for this point-to-
box translation task. Group R-CNN inherits a multi-stage
architecture as in Cascade R-CNN [3], which consists of a
proposal generation stage and a proposal refinement stage.
We introduce our novel designs of our architecture in detail
in the next sections.

3.2. Instance-level Proposal Grouping

Previous attempts of using a CNN-based framework as
point-to-box regressors generate a single proposal using the
feature of the projected annotation point for an instance,
which may lead to a inferior recall rate resulting from in-
accurate point annotations. To boost the recall rate, we pro-
pose instance-level proposal grouping (Figure 3), which
aggregates proposals generated by feature points close to
a certain annotation point to form a group. This strategy
is based on the insight that points on feature maps corre-
sponding to high-quality proposals are often close to the
projection of annotation points on feature maps. Specifi-
cally, we collect k feature points around the projected anno-

Point annotations

Point in single group Point in multiple groups
Figure 3. Instance-level Proposal Grouping. Proposals gener-
ated by points that are adjacent to projected annotation points form
a single group. Such points can present in multiple groups.

tation point on each level of the feature pyramid. Proposals
produced by these km points then form a group for a given
instance, where m is the number of levels in FPN. Each
group finally produces nkm proposals where n is the num-
ber of anchors with different scales and aspect ratios at each
point in RPN. The proposed instance-level proposal group-
ing collects information from neighboring points around the
annotated point and thus can improve recall rate and is more
robust to the inaccurate annotation points.

3.3. Instance-aware Representation Learning

Instance-level Proposal Assignment. To achieve high
recall while retraining high precision, the regressor is sup-
posed to produce a single accurate bounding box for each
point annotation. Therefore, we only output one proposal
with the highest prediction score in a single group. How-
ever, the vanilla designs in classic R-CNN architectures
have difficulty achieving such a goal especially when ob-
jects with the same category are adjacent to each other
(crowded scene problem). First, in training, with the vanilla
assignment strategy, proposals are regarded as positive if
their maximal IoU with any ground truth boxes is greater
than a pre-defined threshold and are considered as nega-
tives otherwise. However, when objects of the same class
are close to each other, proposals within one group may be
matched to the ground-truth bounding box of another in-
stance and eventually harm the precision. To tackle this
problem, we propose instance-level assignment so that pro-
posals of a certain group can only be assigned to the corre-
sponding ground-truth bounding box of this group. Pro-
posals are treated as negative if the IoU between them
and the corresponding instance is below the threshold even
though they might reach the IoU threshold with ground-
truth bounding boxes of another group.

However, the crowded scene problem cannot be solved
by naive instance-level assignment (as in Table 1). Since

9420



A Positive
B Negative

D Negative

Figure 4. An illustration of overlapped instances with the same
category. All four proposals are in the group of the taller giraffe.
With the instance-level assignment, only proposal A and C are
treated as positive. However, proposal D exposes a high-level sim-
ilarity with positives of the group of the baby giraffe. Because
proposals in different groups share the feature pyramid and
shared network parameters are used to process these features,
the predictions of positive proposals in the group of the baby gi-
raffe and negative proposals in the group of tall giraffes are similar
to each other, which causes confusion in model training.

proposals in different groups share the same feature pyra-
mid and the network also uses the shared parameters of R-
CNN heads to process these features, positive proposals in
one group and negative proposals in another group can have
similar processed results, but are assigned to completely op-
posite optimization targets (as in Figure 4), which causes
difficulty in model training. To address this difficulty, we
propose our solutions from two different aspects: instance-
aware feature enhancement through relative coordinates
encoding and instance-aware parameters for a dynamic
group convolution.

Table 1. Failure of the naive instance-level assignment. Both
methods are equipped with instance-grouping and output the best
proposal of highest prediction score after NMS for each group.

mAP | AP@50 | AP@75
Vanilla Assign | 36.6 61.5 37.7
Instance Assign | 34.2 60.2 34.9

Instance-aware Feature Enhancement. To achieve
instance-aware feature enhancement, we introduce relative
coordinates encoding. Specifically, we leverage a prior that
proposals closer to a point annotation should have a higher
chance to be assigned to this instance. Specifically, a fea-
ture map f € RY*W*2 is constructed for each instance

to encode the relative coordinate offset to its point anno-
tation f;; = [Aw;j, Ay;;]7, where Az;; and Ay;; denote
the coordinate offset of each pixel at index ¢, j to the corre-
sponding point annotation. The feature f also follows the
same Rol pooling procedure for each proposal and then gets
concatenated with the normal Rol-pooled feature, as shown
in Figure 2. Due to the different coordinates of each group,
instance-aware Rol features for different groups are gener-
ated even they have similar appearances, which is not un-
common in crowded scenes.

Instance-aware Parameter Generation. We introduce
instance-aware model parameters so that feature representa-
tions of proposals in different groups can be further diversi-
fied. Although a single proposal may have a larger IoU with
the ground-truth bounding box of another group, for most
proposals in a group, the maximum IoU is still achieved
with the corresponding ground-truth instance. Thus, we cal-
culate the mean of all Rol features in a group as the repre-
sentation of the instance. More specifically, we first col-
lect Rol features of all proposals in a group and apply spa-
tial average pooling on them to produce vectorized features.
Then, we compute the mean over these features to form the
instance representation. Furthermore, to better leverage the
category information of the point annotation, we introduce
a class embedding matrix of shape C' x 256 where C'is the
number of classes. This embedding matrix is optimized to-
gether with other model parameters. The embedding vector
of the instance class and the constructed instance represen-
tation are concatenated, with which we produce instance-
aware model parameters. Then we convolve the dynami-
cally generated parameters with the above instance-aware
proposal features to produce the classification score in the
context of the instance-level assignment. This process is
illustrated in the bottom-right component in Figure 2 and
summarized in Equation (1) where 0 < ¢ < N — 1 and
0 < j < G-1. N and G are the number of instances and
size of groups respectively. f ; is the instance-aware feature
of j-th proposal in i-th instance group and fjfi is the corre-
sponding output feature of dynamic group convolution. P;
is the generated parameter of the i-th group and C; is the
category embedding of the group 7. F(-) stands for a linear
projection with learnable parameters. The dynamic group
convolution is a high-order transformation as the param-
eters are generated from averaged proposal features, which
makes features from different groups more discriminative.

f;i:f;@)Pz‘
> 0

Pi=F(=

,Ci) ey

The dynamic convolutions can be efficiently imple-
mented as a group convolution where the number of groups
is equal to the number of instances in the image. Through
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convolving instance-aware features with instance-aware pa-
rameters, we effectively increase the discrimination among
instances. The generated convolution layer is used to pro-
cess the Rol features of proposals in a certain group. The
classification and regression heads are attached after our
Dynamic Group Convolution to predict final class predic-
tions and regression offsets.

4. Experiments

Dataset. We evaluate the performance of Group R-
CNN on MS-COCO [16] dataset. MS-COCO contains 118k
training images with bounding box annotations and 5k im-
ages for validation. We randomly sample different percent-
ages of images from the training set with fixed random seed
0 as our well-labeled set and use the rest as weakly-labeled
sets with point annotation. To train our point-to-box regres-
sor with well-labeled images, we randomly sample points
within bounding boxes of instances at each iteration and use
bounding boxes as the optimization target. After training,
we run the inference process of the regressor on weakly-
labeled images with point annotations. Following prior
work [4], we synthesize the point annotations for weakly-
labeled images by randomly sampling a point from instance
masks of objects for one-shot. We also evaluate our method
on Pascal VOC [7] and the results are in Appendix.

Architecture Details. Group R-CNN is built on top of
Cascade R-CNN [3] and serves as the point-to-box regres-
sor in WSSOD-P tasks. To better leverage the category label
of point annotations, we adopt class-aware detector Reti-
naNet [15] as our region proposal network (RPN). Follow-
ing the original RetinaNet, we use feature pyramid levels
from Ps to Pr to extract region proposals. Notice that Reti-
naNet makes class-level predictions when extracting region
proposals whereas the original RPN only produces object-
ness scores as in Faster R-CNN [20]. For Rol pooling in the
second stage, we drop P and only use Ps to Py as candi-
dates. For proposal refinement, a normal Cascade R-CNN
head with three stages is used. Each stage has two shared
FC layers and two separated FC layers to do the regression
and classification, respectively. Unless otherwise specified,
the model hyper-parameters are set as default [3]. RPN runs
non-maximum suppression (NMS) with an IoU threshold
of 0.7 on proposals from all groups with the same category
based on the class prediction score and only 50 proposals
are kept in each group. As for the final prediction results, we
only select the proposal with the highest precision score in
each group after NMS. In our dynamic group convolution,
we always set the generated kernel size as 1 for simplicity.

Implementation Details. For a fair comparison, we fol-
low the training setting of Point DETR [4] as much as pos-
sible. To train our Group R-CNN, we use 8 RTX 2080Ti
GPUs with 2 images per GPU. Our data augmentation pol-
icy is also exactly the same as Point DETR. Though our
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Figure 5. Comparison with Point DETR. Our method con-
sistently outperforms Point DETR especially with limited well-
labeled images. When using 50% well-labeled images, the FCOS
model trained with well-labeled images and pseudo-labeled im-
ages produced by our method closely matches the supervised base-
line trained with 100% well-labeled images.

proposed Group R-CNN has a different overall architec-
ture with Point DETR [4], we use ResNet-50 [10] as our
backbone, which is consistent with Point DETR. We use
the learning rate of 0.02. We use SGD as our optimizer
with a momentum of 0.9 and weight decay of 1e~%. The
only difference in the training setting is the training sched-
ule. Point DETR trains the regressor with 108 epochs and
applies learning rate decay at the 72-th and 96-th epoch.
Our training schedule is substantially shorter than Point
DETR, we only train Group R-CNN by 50 epochs and de-
cay the learning rate at the 30-th and 40-th epoch.

4.1. Comparison with Point DETR

We also follow the evaluation setting of Point DETR
where we train our point-to-box regressor Group R-CNN
with well-labeled images and inference on weakly-labeled
images. As a final step, we train an FCOS detector with both
well-labeled images and weakly-labeled images, which is
also consistent with Point DETR. The training setting of
FCOS follows the standard 1x training schedule with ex-
actly the same hyper-parameters as in the standard super-
vised training setting. We report the performance of the
FCOS detector in Figure 5, which shows that Group R-CNN
outperforms Point DETR with all different well-label frac-
tions, especially when the well-labeled images are limited.
We find that the fewer images are well labeled, the more
Group R-CNN outperforms Point DETR. Specifically, in
the most challenging scenario when only 5% and 10% im-
ages are labeled with bounding boxes, we achieve an im-
provement of 3.9 mAP and 2.3 mAP, respectively. More-
over, Group R-CNN only requires 50% training epochs of
Point DETR to achieve such a large improvement. When
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training with 50% of well-labeled images, FCOS trained
with pseudo-labeled images produced by Group R-CNN
achieves comparable performance as the model trained with
100% well-labeled images. It shows that we can largely
close the gap between weakly semi-supervised detection
and supervised detection with only point annotations.

4.2. Ablation Study

To illustrate the effectiveness of our proposed compo-
nents, we conduct extensive ablation studies. In all of
our ablation studies, Group R-CNN is trained with 10%
well-labeled images. To eliminate interference factors and
demonstrate the effectiveness of our proposed components
on the point-to-box regressor, we report test results on the
COCO validation set with fixed point annotation. In other
words, we only evaluate the performance of the point-to-
box regressor instead of training an object detector with pro-
duced pseudo-labeled images. We train our Group R-CNN
only with 24 epochs in this section because it is already suf-
ficient to show the effectiveness of our design.

Table 2. Impacts of sizes of different groups. Results are computed
at [oU=0.5.

AR | AR, | AR,, | AR,

No Grouping | 80.4 | 61.1 | 86.8 95
k=1 82.7 | 75.0 | 86.0 | 91.6
k=3 90.6 | 85.1 | 93.7 | 96.9
k=6 92,5 | 86.1 | 95.8 | 98.9
k=9 92.3 | 84.8 | 955 | 99.2

Size of Instance Group. Recall that we select k points
around the projected annotation point on each level of the
feature map and collect the output proposals as a group. We
conduct experiments with different k£ values to study how
the size of instance groups impacts the recall of our point-
to-box regression. For the baseline with no proposal group-
ing, we run NMS on all proposals with ToU=0.7 and se-
lect the top-1000 proposals with the highest classification
score. For proposal grouping, we keep 50 proposals for
each group after NMS. On average, each image from COCO
contains roughly 7.27 objects. Thus, our method produces
7.27 x 50 = 363.5 proposals as expectation. As shown in
Table 2, the performance of our RPN is significantly im-
proved when instance grouping is adopted. With proposal
grouping, although the model only produces around 30%
proposals compared with that of the model without instance
grouping, the AR is improved by more than 10%. More-
over, the performance is further boosted when k increases
from 1 to 3. Although a larger £ yields better results, £ > 3
does not improve the recall by a large margin. Therefore,
for a better performance-complexity trade-off, we choose
k = 3 as the default choice in Group R-CNN.

Table 3. Ablation Study: Relative Coordinates

mAP | AP@50 | AP@75
w/o relative coordinates | 35.7 61.0 37.0
w/ relative coordinates 37.1 64.1 38.1

Table 4. Impact of additional projection layers.
#proj. layers | mAP | AP@50 | AP@75
34.2 60.2 349
35.7 61.0 37.0
35.8 60.9 36.9
35.7 60.6 36.7

W=D

Instance-Level Assignment. Now we compare our
instance-level proposal assignment with the vanilla pro-
posal assignment. For the vanilla assignment strategy, we
assign the proposals which have a maximal IoU with any
ground-truth bounding boxes larger than predefined thresh-
olds to be positive. The IoU thresholds are set as 0.5, 0.6,
and 0.7 for the three stages, respectively, following the de-
fault setting as Cascade R-CNN [3]. NMS with an IoU
threshold of 0.5 is applied at the last stage and only the pro-
posal with the highest class score for each group is kept. For
the instance-level assignment, we use the same IoU thresh-
olds as the vanilla counterpart.

However, we find that directly applying instance-level
assignment causes convergence difficulty. Although the R-
CNN refinement stages are trained with the instance-level
assignment. RPN is still trained by the vanilla assignment.
Then RPN and R-CNN will have conflict requirements for
the FPN. Therefore, we first detach FPN from the R-CNN
heads to block the back-propagated gradients. Then we add
additional projection layers on FPN to produce a separate
FPN designated for R-CNN.

We compare the effect of using different number of pro-
jection layers and the results are shown in Table 4. We
show the effectiveness of additional projection convolution
layers to process features with the detaching strategy. Us-
ing one additional projection layer lifts the mAP by 1.5
whereas more projection layers do not result in further im-
provements. Therefore, we simply use one additional pro-
jection layer so that the additional computation overheads
are minimal.

Effectiveness of Instance-aware Feature Enhance-
ment. As shown in Table 3, the mAP is improved from 35.7
to 37.1 when using relative coordinates. As discussed, al-
though proposals from different instance groups may share
similar appearances, enhancing the proposal feature with
the relative coordinates endow the proposal with the ability
to distinguish instances, given the prior that (ground truth)
objects are located at different positions in the image.

Effectiveness of Instance-aware Parameter Genera-
tion. Table 5 shows the results when generating convolution
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Table 5. Impact of Category Embedding (CE) and Rol Features
(Rol-Feat.) on dynamic group convolution. In the baseline with
37.1 AP, all Rols are not refined by dynamic convolution

CE Rol-Feat. | mAP AP@50 AP@75
371 64.1 38.1

v 38.5 64.7 39.9
v 38.2 64.5 39.7
v v 39.2 65.7 41.0

Table 6. Comparison between vanilla R-CNN with instance-
level grouping and Group R-CNN in crowded and non-crowded
scenes, “vanilla” stands for the Vanilla R-CNN and “Group” de-
notes our proposed Group R-CNN.

dataset Method | mAP AP@50 AP@75
crowded Vanilla | 32.2 56.9 324
54K images Group | 35.4 62.5 35.8

A +3.2 +5.6 +3.4
Vanilla | 46.9 73.9 50.7
Group | 48.5 75.0 52.7

A +1.6 +1.1 +2.0

non-crowded
52k images

parameters with Rol features, category embeddings, and the
concatenation of both, respectively. Clearly, generating pa-
rameters with both Rol features and category embeddings
substantially outperforms using only a single component.
Moreover, using a regular convolution layer in replacement
of our dynamic group convolution only achieves 38.0 mAP
(not included in the table), which is worse than dynamic
group generation no matter what features are used in param-
eter generation. Therefore, our dynamic group convolution
is a crucial design for Group R-CNN. We always set kernel
size to 1 in all experiments since using larger kernel sizes
such as 3 just gives marginal improvement (39.5 mAP for
kernel size equals 3).

Compare with Vanilla Assignment. In real-world
datasets, it is very common that objects of the same class
have overlaps. For example, more than 50% images from
MS-COCO contain crowded scenes. We compare the
performance of Group R-CNN and vanilla R-CNN with
instance-grouping under crowded scenes and non-crowded
scenes. The models are evaluated on 90% weakly-labeled
images. Table 6 shows that Group R-CNN(with our pro-
posed instance-level assignment, instance-aware feature en-
hancement and instance-aware parameter generation) sig-
nificantly outperforms the baseline by 3.2 mAP and 1.6
mAP respectively. It is obvious that Group R-CNN per-
forms particularly better in crowded scenes, which well-
supports the motivation of our method.

4.3. Visualization Results

We provide qualitative analysis on the validation dataset
and visualize the detection results of our point-to-box re-

Group R-CNN

Figure 6. Visualization of predicted pseudo bounding boxes
by Group R-CNN (ours) and vanilla R-CNN. Group R-CNN
achieves high precision and recall in the point-to-box regression
task ensuring one accurate bounding box is produced for each
point annotation. In contrast, vanilla R-CNN fails to capture lots
of instances even with point annotation.

gressor Group R-CNN compared with vanilla R-CNN. As
shown in Figure 6, each bounding box is generated with
one point annotation (indicated by the same color). Vanilla
R-CNN produces a number of bounding boxes that are
largely overlapped with other instances resulting in a low re-
call rate. In contrast, Group R-CNN successfully produces
bounding boxes for most point annotations even in crowded
scenes with objects of the same category.
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6. Conclusion

We propose Group R-CNN, a CNN-based point-to-box
regressor for weakly semi-supervised object detection task.
Group R-CNN leverages instance-level proposal group-
ing and instance-level representation learning(through
instance-aware feature enhancement and instance-aware pa-
rameter generation) to improve the recall and precision.
With these novel designs, Group R-CNN significantly out-
performs existing transformer-based regressor by a large
margin especially when well-labeled images are limited.
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