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Abstract

Hyperspectral imaging is an essential imaging modal-
ity for a wide range of applications, especially in remote
sensing, agriculture, and medicine. Inspired by existing
hyperspectral cameras that are either slow, expensive, or
bulky, reconstructing hyperspectral images (HSIs) from a
low-budget snapshot measurement has drawn wide atten-
tion. By mapping a truncated numerical optimization al-
gorithm into a network with a fixed number of phases, re-
cent deep unfolding networks (DUNs) for spectral snapshot
compressive sensing (SCI) have achieved remarkable suc-
cess. However, DUNs are far from reaching the scope of
industrial applications limited by the lack of cross-phase
feature interaction and adaptive parameter adjustment. In
this paper, we propose a novel Hyperspectral Explicable
Reconstruction and Optimal Sampling deep Network for
SCI, dubbed HerosNet, which includes several phases un-
der the ISTA-unfolding framework. Each phase can flexibly
simulate the sensing matrix and contextually adjust the step
size in the gradient descent step, and hierarchically fuse
and interact the hidden states of previous phases to effec-
tively recover current HSI frames in the proximal mapping
step. Simultaneously, a hardware-friendly optimal binary
mask is learned end-to-end to further improve the recon-
struction performance. Finally, our HerosNet is validated
to outperform the state-of-the-art methods on both simula-
tion and real datasets by large margins. The source code is
available at https://github.com/jianzhangcs/HerosNet.

1. Introduction

With the development of artificial intelligence and
robotics, the demand for capturing and sensing hyper-
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Figure 1. The schematic of CASSI system and some visual results
of the proposed HerosNet and DGSM [13] on the real dataset. Our
reconstructed HSIs have clearer edges and more detailed textures,
while the results of DGSM have more noise and artifacts.

spectral images has dramatically increased in recent years
[3, 6, 12, 47]. Based on the traditional compressive sens-
ing (CS) [51, 54], spectral snapshot compressive sensing
(SCI) system aims to record 3D scenes via a 2D detector.
It has the advantages of low bandwidth, low cost, and high
data throughput, which has played an increasingly pivotal
role in a wide range of applications, such as remote sens-
ing, object detection, super-resolution, and medical diagno-
sis [2, 8, 14, 18, 25, 36, 38, 55]. In this paper, we focus on
a typical imaging system named coded aperture snapshot
spectral imager (CASSI) [11,21,30], which modulates spec-
tral frames via a coded aperture (i.e. physical mask) and
shifts them across the spectral dimension via a disperser.

In the past few years, there have been a great amount
of reconstruction methods for HSIs compressed by CASSI,
including model-based methods and deep learning-based
methods. Traditional model-based methods [5, 15, 16, 29,
34, 40, 41, 46] often search for the optimal solution it-
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eratively and refine the results to the desired signal do-
main via the image priors. Although these methods are
highly interpretable, they are limited by the hand-crafted
priors and slow reconstruction speed. Owing to the de-
velopment of deep learning, several learning-based meth-
ods [20, 22–24, 26, 39, 43, 56, 57] have been used to re-
construct HSIs, which directly learn an end-to-end inverse
mapping from the 2D measurement to the 3D hyperspec-
tral cube. Compared to model-based methods, they tend to
drastically reduce time complexity and achieve better per-
formance. However, they do not explicitly embody the sys-
tem imaging model and are just trained as a black box.

Most recently, some researchers have introduced the
DUNs to the HSI reconstruction task, which merge the ad-
vantages of both model-based and learning-based methods
[13, 17, 19, 31, 32, 53]. DUNs perform the iterative process
via a gradient descent module and refine the intermediate
result via a deep prior module. Although existing DUNs al-
leviate some drawbacks of model-based and learning-based
methods to some extent, there are still several bottlenecks
to be solved. Firstly, how to effectively interact and fuse the
features between phases is the key to the enhancement of
the reconstruction quality. Most existing DUNs do not es-
tablish the connections between the proceeding and follow-
ing phases. As the number of phases increases, beneficial
information tends to be lost in the process of information
transmission. Furthermore, inspired by the memory mecha-
nism in the CS [28], the hidden states of the previous phases
can provide complementary information for the computa-
tion of the current phase. Therefore, it is essential to in-
troduce a feature interaction mechanism between different
phases to obtain enhanced feature representation. Secondly,
how to dynamically learn the parameters in the gradient de-
scent module has been ignored in the past. Previous re-
searchers usually treat these parameters as fixed constants
to compress HSIs. However, the fixed parameters can not
be adjusted adaptively and contextually in different scenes,
which will lead to sub-optimal reconstruction and restrict
the flexibility of DUNs. Thirdly, targeted at HSIs, the exist-
ing DUN does not combine mask optimization and image
reconstruction into a united framework, which can not re-
tain the structure and information of HSIs completely.

Inspired by the ISTA, a novel Hyperspectral Explicable
Reconsturction and Optimal Sampling deep Network for
SCI, dubbed HerosNet, is proposed for joint mask opti-
mization and HSI reconstruction. Particularly, the network
consists of a sampling subnet, an initialization subnet, and a
recovery subnet. Fueled by the success of ISTA-Net and its
variant [37, 44, 49], the recovery phase updates the current
estimate via a dynamic gradient descent module (DGDM)
and refine the rough estimate via a hierarchical feature in-
teraction module (HFIM). Since each recovery phase cor-
responds to an ISTA iteration and all the parameters are

learned end-to-end, the network enjoys the merits of high-
quality reconstruction with strong interpretability. For ex-
ample, in Fig. 1, the results of the proposed HerosNet have
clearer detailed textures than those of DGSM [13]. Overall,
our contributions are summarized as follows.

• A novel ISTA inspired deep unfolding network,
dubbed HerosNet, is proposed for jointly learning bi-
nary optimal masks and recovering high-quality HSIs.

• A dynamic gradient descent module (DGDM) is intro-
duced to flexibly simulate the sensing matrix and con-
textually adjust the step size in gradient descent step.

• A hierarchical feature interaction module (HFIM) is
designed, which fuses and interacts the hidden states
of previous phases to recover the HSI frames of the
current phase in proximal mapping step.

• Our HerosNet outperforms the state-of-the-art meth-
ods on simulation and real datasets by large margins.

2. Related Works

2.1. HSI Reconstruction Algorithms

Model-based Methods: The model-based methods employ
the regularization term inspired by the image prior to solve
the ill-posed inverse problem iteratively. In [5], a two-step
iterative shrinkage/thresholding (TwIST) algorithm was de-
signed to keep the good reconstruction performance and
improve the speed of convergence. In [46], the total vari-
ation optimization was applied in the HSI reconstruction
and the generalized alternating projection (GAP) algorithm
was utilized to solve the optimization problem. In [15], an
overcomplete dictionary was learned to exploit the sparsity
representation and reconstruct the HSIs. In [40, 41], the
HSI reconstruction task was treated as the maximum like-
lihood estimation and the Gaussian mixture model (GMM)
was introduced to model the data distribution of the HSIs.
Recently, in [16], the non-local self-similarity of HSIs
and rank minimization strategy were incorporated into the
framework of alternating direction method of multipliers
(ADMM), which has achieved the best performance among
the traditional model-based methods. Although these meth-
ods produce decent results in specific applications, it is dif-
ficult to design hand-crafted priors suitable for all scenes.
Deep Learning-based Methods: Relying on the powerful
representation ability of deep networks, the learning-based
HSI reconstruction methods have attracted more and more
attention. The learning-based methods are divided into two
categories generally according to whether they are unfolded
from the optimization process. Among the methods with-
out deep unfolding, the end-to-end deep networks tend to
directly learn a non-linear mapping from the 2D measure-
ment to the 3D hyperspectral cube. For instance, Miao et
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Figure 2. Illustration of the proposed HerosNet, including sampling subnet, initialization subnet and recovery subnet. The recovery subnet
consists of K phases. Each phase is composed of the dynamic gradient descent module (DGDM) and the hierarchical feature interaction
module (HFIM). In the training procedure, the HerosNet takes the 3D hyperspectral cube x as input to obtain the compressed measurement
y, and generates the reconstructed HSI frames x(K) and the optimal mask M. In the testing procedure, the HerosNet compresses the
hyperspectral cube x via the optimized binary mask M and reconstructs HSI frames x(K).

al. [24] introduced the dual-stage generative model to ex-
tract both spectral and spatial information. Meng et al. [20]
embedded three self-attention modules into the U-Net back-
bone, thus achieving high-quality and real-time reconstruc-
tion. Apart from the end-to-end networks, the plug-and-
play (PnP) framework [48, 57] incorporated the pre-trained
deep denoisers into the optimization process and effectively
projected the image signal to the desired domain. Most re-
cently, deep image prior was integrated with the PnP regime
to construct an untrained self-supervised network [22]. Al-
though these methods perform a certain role in reconstruct-
ing HSIs, they all face some unavoidable challenges. For
instance, the end-to-end deep networks are lack of inter-
pretability and the PnP frameworks are very slow.

Among the deep unfolding methods, Wang et al. [31]
unfolded the half-quadratic splitting (HQS) method and de-
signed a spatial-spectral deep priors to boost the data fi-
delity. Furthermore, the local and non-local correlations of
HSIs [32] were considered in the prior design. Zhang et
al. [53] learned the tensor low-rank spectral prior via the
deep CP decomposition. Most recently, Huang et al. [13]
proposed a deep Gaussian scale mixture model to learn the
scale prior and estimate the local means of images via the
3D filter. Although these methods have achieved great suc-
cess, the lack of cross-phase feature interaction and content-
aware parameter adjustment are still major bottlenecks for
the reconstruction performance. Hereby, a novel DUN is
proposed to effectively exploit the cross-phase correlation
and update the parameters adaptively in this paper.

2.2. Mask Optimization Algorithms

Some existing works on traditional CS have explored
the possibility of joint mask optimization and image recon-
struction. For instance, Zhang et al. [50] proposed a con-
strained optimization-inspired network for adaptive sam-
pling and recovery. You et al. [45] introduced the ran-

dom projection augmentation strategy to learn the arbitrary-
sampling matrices and improve the generalization ability of
the model. In the spectral SCI, Arguello et al. [4] trans-
formed mask optimization into a rank minimization prob-
lem based on the theory of the Restricted Isometry Prop-
erty (RIP) [10]. Furthermore, Wang et al. [33] rearranged
the shifted 3D data cube and divided it into four parameter-
sharing sub-patches for sampling mask learning. Simulta-
neously, Zhang et al. [52] designed an end-to-end learnable
auto-encoder to optimize the illumination pattern and com-
press the HSIs. Although the above-mentioned methods re-
alize the adaptive sampling to a certain extent, combining
mask optimization with the DUN in the spectral SCI is still
challenging and worth exploring.

3. Proposed Method

3.1. Problem Formulation

In CASSI system, the 3D hyperspectral cube is firstly
modulated via a coded aperture (i.e. a physical mask) and
then dispersed via a dispersive prism. Mathematically, con-
sidering a sequence {Xi}Ci=1 ∈ R

H×W composed of C HSI
frames, they are modulated via a mask M ∈ R

H×W :

X′
i = M�Xi, (1)

where X′
i is the modulated HSI frame and � is the

Hadamard (element-wise) product. After that, modulated
HSI frames with different wavelengths are shifted spatially
and summed in an element-wise manner. Therefore, the
modulated HSI frames {X′

i}Ci=1 ∈ R
H×W are compressed

to a coded measurement as follows:

Y(m,n) =

C∑

i=1

X′
i(m,n+ di) +N, (2)

where m, n denote the spatial coordinates, and di denotes
the shifting distance of the ith channel. N∈RH×(W+C−1)
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Figure 3. Details of the recovery phase in HerosNet. The recovery phase is composed of a dynamic gradient descent module (DGDM) and
a hierarchical feature interaction module (HFIM). The DGDM takes the intermediate result x(k−1) and the measurement y as input, and
generates the coarse estimate r(k). The HFIM is designed to refine the coarse estimate r(k) with the hidden states of the previous phases
H(k−1) and the initialization cube x(0) to produce the accurate reconstructed images x(k) and the hidden states h(k) in the kth phase.

and Y∈RH×(W+C−1) denote the noise and the compressed
measurement, respectively. The vectorized form of the
spectral SCI is expressed as follows:

y = Φx+ n, (3)

where x∈RHWC , y∈RH(W+C−1), and n∈RH(W+C−1)

denote the vectorized form of X, Y, and N, respectively.
Φ ∈ R

H(W+C−1)×HWC represents the sensing matrix.

3.2. Architecture of Proposed HerosNet

In this subsection, we propose an optimization-inspired
deep unfolding network for joint mask optimization and im-
age reconstruction. As illustrated in Fig. 2, the proposed
HerosNet is composed of three subnets, including a sam-
pling subnet, an initialization subnet, and a recovery subnet.

3.2.1 Sampling Subnet

In this paper, the sampling subnet aims to learn the optimal
binary mask for the HSI compressive sensing, which pre-
serves enough spectral-spatial information and eliminates
redundancy. The training process of the sampling subnet
is divided into three stages, including randomization, bina-
rization, and compression. To learn the binary mask M,
random Gaussian initialization with the mean μb and the
variance σb is adopted to generate a continuous matrix M̃.
Furthermore, we design an element-wise binarization func-
tion BinarySign(·) to convert the continuous matrix into
the binary mask as follows:

M = BinarySign(M̃), (4)

with BinarySign(z) = 1 if z ≥ μb or 0 else. (5)

According to the imaging rule depicted in the Sec. 3.1, we
utilize a conversion function Mask2Mat(·) to transform the
binary mask M into the sensing matrix Φ in Eq. (3):

Φ = Mask2Mat(M). (6)

Since the sensing matrix Φ is regarded as the learnable pa-
rameter, the derivative of the binarization function is defined
as a constant, i.e. BinarySign′(z) = 1, for the backpropa-
gation of the sampling subnet. Finally, according to Eq. (1)
and Eq. (2), the 3D hyperspectral cube x is compressed to
the snapshot measurement y.

3.2.2 Initialization Subnet

Given the measurement y ∈ R
H×(W+C−1), the initializa-

tion subnet aims to split this 2D measurement into the 3D
hyperspectral cube x(0) ∈ R

H×W×C , where W , H are the
spatial size of the frames, and C is the number of spec-
tral channels. Specifically, an extraction window is cropped
from the measurement y and then slided in the step size of
d to generate C HSI frames. Finally, the C frames are con-
catenated in the channel dimension to compose a 3D hyper-
spectral cube x(0) ∈ R

H×W×C .

3.2.3 Recovery Subnet

As depicted in Fig. 3, the proposed recovery subnet aims to
reconstruct high-quality HSIs from the compressive mea-
surement. Inspired by the ISTA, the image reconstruction is
treated as an optimization problem shown as follows:

x = argmin
x

1

2
‖y −Φx‖22 + λψ(x). (7)
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To be noted, the first term is the data fidelity term, while the
second term ψ(·) is the prior regularization term. λ denotes
a regularization parameter.

To solve the optimization problem in Eq. (7), we un-
fold ISTA to design the deep network for its simplicity and
interpretability. Traditional ISTA updates the results via
two steps, namely gradient descent and proximal mapping,
which are formulated as follows:

r(k) = x(k−1) − ρΦ�(Φx(k−1) − y), (8)

x(k) = argmin
x

1

2
‖x− r(k)‖22 + λψ(x), (9)

where k denotes the number of ISTA iteraction and ρ de-
notes the step size. By introducing the proximal mapping
operator proxλψ(r) = argminx

1
2‖x−r‖22+λψ(x), Eq. (9)

can be rewritten as follows:

x(k) = proxλψ(r
(k)). (10)

Modifying these two steps, we design a dynamic gradient
descent module (DGDM) and a hierarchical feature interac-
tion module (HFIM) to reconstruct the HSIs.
Dynamic Gradient Descent Module (DGDM): To imple-
ment Eq. (8) via the deep network, the DGDM is employed
to generate the immediate reconstructed results rk dynam-
ically. Most existing DUNs used to treat Φ, Φ� and ρ in
Eq. (8) as the constants, which restricts the flexibility of the
network and limits the accuracy of reconstruction. To ad-
dress these issues, the deep modules HΦ(·) and HΦ�(·) are
introduced to simulate the matrix Φ and Φ� from the pre-
vious state x(k−1), where HΦ(·) and HΦ�(·) consist of two
convolution operators and four residual blocks, respectively.
In order to achieve content-aware parameter adjustment, a
dynamic step size operator Hdyρ(·) is incorporated into the
process of gradient descent to further enhance the general-
ization ability of the network. The step size ρ̃(k) is directly
learned from the previous state x(k−1) and adjusted adap-
tively with the advance of network training. Specifically, we
decompose ρ̃(k) into the static and dynamic components.
The static component is a learnable vector and the values
of each spectral channels are weight-sharing. The dynamic
component is a channel attention map learned from x(k−1).
As illustrated in Fig. 4, the channel attention map is ob-
tained by the global average pooling, two 1×1 convolution
operators, ReLU activation function, and the Sigmoid func-
tion. Finally, Eq. (8) can be modified as follows:

r(k) = DGDM(x(k−1),y)

= x(k−1) − ρ̃(k)HΦ�(HΦ(x
(k−1))− y),

(11)

with ρ̃(k) = Hdyρ(x
(k−1)) = ρ(k) + θΛ(k), (12)

Figure 4. Details of some key components in the DGDM. The
DGDM aims to simulate the sensing matrix flexibly and adjust the
step size dynamically.

where ρ(k)∈R1×C and Λ(k)∈R1×C denote the static and
the dynamic component, respectively. θ is a constant to sta-
bilize the network training.
Hierarchical Feature Interaction Module (HFIM): To
implement Eq. (9) via the deep network, the HFIM is de-
signed to refine the coarse reconstructed result r(k). There
are two issues restricting the performance of previous deep
proximal mapping modules. Firstly, since the gradient de-
scent module functions in the image domain and the deep
proximal mapping module performs in the feature domain,
the spectral information will be lost when it is transmitted
between these two modules. Secondly, as the number of
recovery phases increases, the useful features in the previ-
ous phases are not propagated to the subsequent phases. To
alleviate these issues, the proposed HFIM focuses on two
aspects: 1) how to bridge the gap between the image do-
main and the feature domain; 2) how to effectively inter-
act the beneficial features in previous phases to enhance the
features of the current phase.

As illustrated in Fig. 3, in addition to r(k) produced from
the DGDM, the HFIM takes the cascaded hierarchical fea-
tures H(k−1) = [h(k−1),h(k−2), . . . ,h(0)] as input, where
h(i) denotes the hidden state of the ith phase. To be noted,
the hidden states retain the beneficial information extracted
from the reconstructed image in the current phase. Con-
cretely, the intermediate result r(k) is firstly transformed
into the feature domain via the operator Conv1 and fused
with hidden states H(k−1) via the dense connection Conv2.
Then, the fused feature is fed to an enhancement module
HEM(·) to extract the spectral and spatial features, where
HEM(·) is composed of four encoding blocks and four de-
coding blocks. To enhance the representation ability of the
network, the residual module consisting of sixteen standard
residual blocks is embedded between the encoder and de-
coder. The process is formulated as follows:

FEM = HEM(Conv2([H(k−1),Conv1(r(k))])), (13)
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where FEM ∈ R
H×W×N denotes the enhanced feature pro-

duced by HEM(·), N denotes the channel numbers.
After obtaining the enhanced feature FEM ∈ R

H×W×N ,
a well-designed feature interaction mechanism is designed
to generate the reconstructed HSI frames x(k) ∈ R

H×W×C

and the hidden state h(k) ∈ R
H×W×N . On the one hand,

the enhanced feature FEM is transformed into the image
domain via the operator Conv4 and added with the initial-
ization cube x(0) to generate the reconstructed HSI frames
x(k). The process is exhibited as follows:

x(k) = Conv4(FEM) + x(0). (14)

On the other hand, the network directly learns an attention
cube from the current state x(k) via the operators Conv5 and
Sigmoid to provide pixel-level interactive information and
generate the hidden state h(k), which is formulated as:

h(k) = Conv3(FEM)⊗ Sigmoid(Conv5(x(k))) + FEM.
(15)

Both x(k) and h(k) will be utilized in the reconstruction of
subsequent phases. Finally, Eq. (9) can be modified as:

x(k),h(k) = HFIM(r(k),x(0),H(k−1)). (16)

By introducing the HFIM, we establish the hierarchical
connection to integrate features in different phases. With
the proposed DGDM and HFIM, the recovery subnet can
reconstruct HSIs accurately and rapidly.

3.3. Network Training and Implementation Details

In our implementation, the number of spectral channels
C is 28 and the number of feature channels N is 32. In our
sampling subnet with mask optimization, μb and σb are set
to 0 and 0.1, respectively. In our recovery subnet, the num-
ber of recovery phases K is 8 and θ in Eq. (12) is 0.5. The
learnable parameters in the proposed network are denoted
by Θ, including the binary mask M, the parameters D(k) in
the DGDM and H

(k) in the HFIM. To learn the parameters
Θ = {M,D(k),H(k)}, we utilize the reconstructed results
of the final phase and some intermediate phases to calculate
the loss function [19]. Specifically, given the training data
{xi}Nd

i=1, the loss function is defined:

L = Lf + Lp, (17)

with Lf =
1

Nd

Nd∑

i=1

‖x(K)
i − xi‖22, (18)

Lp =
β

Nd

Nd∑

i=1

‖x(K−1)
i − xi‖22 + ‖x(K−2)

i − xi‖22. (19)

where Lf and Lp denote the loss function of the final phase
and the previous few phases, respectively. K and Nd denote

Figure 5. Reconstructed images of Scene1 on KAIST dataset by
our HerosNet and other state-of-the-art methods. The HSI frames
are converted to RGB images via the CIE color matching function
[27]. Spectral curves on the selected regions ((a) and (b)) and
the visualization results show that our results have higher spectral
accuracy and better perceptual quality.

the number of recovery phases and training samples. β is
the equilibrium constant and set to 0.5.

Our HerosNet is implemented with 4 NVIDIA Tesla
V100 GPUs. We adopt Adam [9] to train the network for
100 epochs. The learning rate is initialized with 1×10−4

and decays with a factor of 0.9 every 10 epochs.

4. Experimental Results

4.1. Experimental Settings

In this paper, we have verified the effectiveness of the
proposed network on both simulation datasets and the real
dataset. Following the settings of TSA-Net [20] and DGSM
[13], the simulation experiments are conducted on the pub-
lic HSI datasets CAVE [42] and KAIST [7] with the size
256×256×28, i.e., 28 spectral channels with the spatial size
256×256. For the experiments in the real scenes, 5 com-
pressive measurements with the spatial size of 640×694
captured by the real SCI system are utilized for testing. The
metrics of PSNR and SSIM [35] are employed to evaluate
the reconstruction quality.

4.2. Simulation Results

To demonstrate the effectiveness of the proposed method
on the simulation datasets, we compare the proposed Heros-
Net with several existing methods, including the model-
based methods (GAP-TV [46], DeSCI [16]), the end-to-
end deep learning-based methods (λ-net [24] and TSA-Net
[20]), the plug-and-play method (PnP-DIP-HSI [22]) and
the deep unfolding networks (HSSP [31] and DGSM [13]).
All of these competing methods are trained on the CAVE
dataset with a fixed real mask [13].
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Table 1. Comparison results of the proposed network and state-of-the-art HSI reconstruction methods on the KAIST dataset. To be noted,
HerosNet-base denotes the proposed method without mask optimization. Best results are in red and the second-best ones are in blue.

Testing Set
GAP-TV [46] DeSCI [16] HSSP [31] λ-net [24] TSA-Net [20] PnP-DIP-HSI [22] DGSM [13] HerosNet-base HerosNet

(ICIP, 2016) (TPAMI, 2018) (CVPR, 2019) (ICCV, 2019) (ECCV, 2020) (ICCV, 2021) (CVPR, 2021) (Ours) (Ours)

Scene01 25.13 / 0.724 27.15 / 0.794 31.07 / 0.852 30.82 / 0.880 31.26 / 0.887 32.70 / 0.898 33.17 / 0.954 34.24 / 0.963 35.69 / 0.973

Scene02 20.67 / 0.630 22.26 / 0.694 26.30 / 0.798 26.30 / 0.846 26.88 / 0.855 27.27 / 0.832 31.61 / 0.933 32.94 / 0.952 35.01 / 0.968

Scene03 23.19 / 0.757 26.56 / 0.877 29.00 / 0.875 29.42 / 0.916 30.03 / 0.921 31.32 / 0.920 31.55 / 0.952 34.15 / 0.966 34.82 / 0.967

Scene04 35.13 / 0.870 39.00 / 0.965 38.24 / 0.926 37.37 / 0.962 39.90 / 0.964 40.79 / 0.970 37.43 / 0.981 38.80 / 0.984 38.07 / 0.985

Scene05 22.31 / 0.674 24.80 / 0.778 27.98 / 0.827 27.84 / 0.866 28.89 / 0.878 29.81 / 0.903 29.43 / 0.927 31.39 / 0.953 33.18 / 0.969

Scene06 22.90 / 0.635 23.55 / 0.753 29.16 / 0.823 30.69 / 0.886 31.30 / 0.895 30.41 / 0.890 32.49 / 0.960 32.88 / 0.960 34.94 / 0.976

Scene07 17.98 / 0.670 20.03 / 0.772 24.11 / 0.851 24.20 / 0.875 25.16 / 0.887 28.18 / 0.913 30.64 / 0.937 32.79 / 0.963 33.58 / 0.962
Scene08 23.00 / 0.624 20.29 / 0.740 27.94 / 0.831 28.86 / 0.880 29.69 / 0,887 29.45 / 0.885 31.06 / 0.955 31.11 / 0.953 33.19 / 0.968

Scene09 23.36 / 0.717 23.98 / 0.818 29.14 / 0.822 29.32 / 0.902 30.03 / 0.903 34.55 / 0.932 30.87 / 0.951 31.58 / 0.953 33.04 / 0.964

Scene10 23.70 / 0.551 25.94 / 0.666 26.44 / 0.740 27.66 / 0.843 28.32 / 0.848 28.52 / 0.863 31.34 / 0.955 31.64 / 0.949 33.01 / 0.965

Average 23.73 / 0.683 25.86 / 0.785 28.93 / 0.834 29.25 / 0.886 30.15 / 0.893 31.30 / 0.901 31.96 / 0.951 33.15 / 0.960 34.45 / 0.970

Figure 6. Visual comparisons of our HerosNet and other state-
of-the-art methods on the KAIST dataset. The wavelengths of all
these images are 648.1nm. The reconstructed images of HerosNet
can preserve more details and clearer textures with less artifacts.

As shown in Table 1, the proposed HerosNet obtains
34.45 dB of PSNR and 0.970 of SSIM, which has sur-
passed all of competing methods by large margins. Com-
pared with the state-of-the-art method DGSM, the proposed
network achieves 2.49dB improvement of PSNR and 0.019
improvement of SSIM. In comparison with the second best
method PnP-DIP-HSI, the proposed method also achieves
3.15dB/0.069 gains on PSNR/SSIM. It demonstrates that
the proposed recovery subnet can better unearth the spec-
tral information and the proposed mask optimization strat-
egy can search for the optimal binary mask. As illustrated
in Fig. 5, the reconstructed HSIs produced by the Heros-
Net have more spatial details and clearer texture in differ-
ent spectral channels, while the results of other competing

Table 2. Comparison results of the proposed optimized mask and
other kinds of fixed masks. To be noted, even training on the same
real mask [13], the proposed method has surpassed all of the ex-
isting methods listed in Table 1.

Mask Type PSNR SSIM

Uniform mask 31.78 0.935
Guassian mask 32.49 0.943
Real mask [13] 33.15 0.960

Optimized binary mask 34.45 0.970

Figure 7. Visual illustrations of different kinds of masks, includ-
ing the uniform mask, Gaussian mask, real fixed mask, optimized
binary mask (Ours).

methods are blurry. In addition, the spectral curves of the
HerosNet have a higher correlation with the reference spec-
tra. Fig. 6 further plots some visual comparisons of the
proposed HerosNet, DGSM, TSA-Net and DeSCI on four
other scenes. Compared with these three typical methods,
the proposed HerosNet provides sharper edges, better visual
effects and less artifacts.

4.3. Multiple Mask Results

To objectively evaluate the effectiveness of the proposed
mask optimization strategy, we train our model on different
kinds of masks. As shown in Fig. 7, the center areas of four
different masks with the spatial size 64×64 in the experi-
ments are presented. To be noted, we remove the mask opti-
mization strategy from the proposed network when training
on the fixed mask. Table 2 lists the PSNR and SSIM re-
sults by testing on the KAIST dataset. It can be clearly seen
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Figure 8. Visual comparisons of our HerosNet, DGSM [13] and
TSA-Net [20] on the real dataset Scene1. Obviously, our HerosNet
can recover more image details and clearer content (i.e. the flower
in the right corner) than DGSM and TSA-Net.

that the proposed HerosNet with joint mask optimization
outperforms the networks that are directly trained on the
fixed masks. The main reason is that the optimized binary
mask preserves the complete image structure and sufficient
detailed information to achieve optimal sampling. Simulta-
neously, the proposed method trained on the real mask also
surpasses all the SOTA methods listed in Table 1. It further
proves that even training on the same mask, the proposed
method also has great advantages in HSI reconstruction.

4.4. Real Data Results

To verify the effect of the proposed method on the real
data, five compressive measurements captured by the real
spectral SCI system are utilized for testing. Due to the
ground truths of real scenes are unavailable, we get rid of
the sampling subnet and only take the 2D compressive mea-
surements as input. For fair comparisons, all of the methods
are trained on the CAVE datasets using the fixed real mask
with 11-bit shot noise injected. Fig. 8 plots the visual com-
parisons of the proposed HerosNet and the existing SOTA
method DGSM [13], TSA-Net [20]. Obviously, our results
recover more image details with fewer artifacts and clearer
content in various wavelengths, while the reconstructed im-
ages of other methods are blurrier and more susceptible to
noise corruption. It further proves that the proposed Heros-
Net is more robust to the noise distortion and effective in
the real spectral imaging system.

4.5. Ablation study

To evaluate the contribution of different components in
the proposed HerosNet, ablation study is conducted on the
CAVE and KAIST datasets. We mainly focus on the four
components, namely, mask optimization (MO), hierarchical
feature interaction module (HFIM), residual module (RM),
and dynamic step size (Dyρ) mechanism. Table 3 shows
the results of PSNR and SSIM on different settings. To
investigate the validity of mask optimization strategy, we
remove the MO and retrain our reconstruction network on

Table 3. Evaluation of the effectiveness of different components.

Case Index MO HFIM RM Dyρ PSNR SSIM

(a) (Ours-base) × � � � 33.15 0.960
(b) � × � � 33.41 0.961
(c) � � × � 33.59 0.965
(d) � � � × 34.11 0.966

(e) (Ours) � � � � 34.45 0.970

the fixed real mask. It can be clearly seen that the PSNR
and SSIM results have a decline by 1.30dB and 0.010 re-
spectively, which proves the effectiveness of the proposed
MO. To be noted, even without the MO, Ours-base also
achieves the best performance among all the existing re-
construction methods listed in Table 1. To investigate the
impact of HFIM, we reimplement a variant network, which
directly utilizes a U-Net as the deep prior without any inter-
action between phases. Obviously, without HFIM, the val-
ues of PSNR and SSIM have dropped by 1.04dB and 0.009
respectively, thus proving its significant effect. Meanwhile,
Table 3 shows a substantial drop on PSNR/SSIM from
34.45dB/0.970 to 33.59dB/0.965 when RM is removed.
Furthermore, replacing the dynamic step size ρ̃(k) with the
static component ρ(k) in Eq. (12), the results of PSNR and
SSIM have decreased by 0.34dB and 0.004 respectively,
which verifies the role of dynamic step size mechanism.

5. Conclusion

In this paper, we propose a novel HerosNet for spec-
tral snapshot compressive imaging. Inspired by the ISTA,
HerosNet unfolds the optimization iterative process and is
capable of jointly optimizing binary masks and reconstruct-
ing the HSIs accurately. To improve the generalization abil-
ity and flexibility of the network, a dynamic gradient de-
scent module is proposed to achieve adaptive and content-
aware parameter adjustment. To better utilize the cross-
phase correlation, a hierarchical feature interaction module
is designed to fuse and interact the useful information be-
tween different phases. Finally, experiments demonstrate
that our network outperforms the state-of-the-art methods
on both simulation and real datasets. Our future work will
support HerosNet on MindSpore [1], which is a new deep
learning computing framework.
Broader impacts and limitations: The proposed Heros-
Net contributes to the industrial application of spectral SCI
and inspires the design of deep unfolding networks in other
image inverse problems. Whereas, our model can not ob-
tain decent results without retraining or fine-tuning when
it comes to different imaging systems and physical masks.
Meanwhile, the proposed learning-based method will in-
evitably reflect biases in the training data. These issues war-
rant further research and exploration for application.
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