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Abstract

We propose a neural inverse rendering pipeline called
IRON that operates on photometric images and outputs high-
quality 3D content in the format of triangle meshes and
material textures readily deployable in existing graphics
pipelines. Our method adopts neural representations for
geometry as signed distance fields (SDFs) and materials dur-
ing optimization to enjoy their flexibility and compactness,
and features a hybrid optimization scheme for neural SDFs:
first, optimize using a volumetric radiance field approach to
recover correct topology, then optimize further using edge-
aware physics-based surface rendering for geometry refine-
ment and disentanglement of materials and lighting. In the
second stage, we also draw inspiration from mesh-based
differentiable rendering, and design a novel edge sampling
algorithm for neural SDFs to further improve performance.
We show that our IRON achieves significantly better inverse
rendering quality compared to prior works.

1. Introduction
Inverse rendering—the reconstruction of shape and ap-

pearance of real-world objects from a set of 2D input
images—can enable accessible, high-quality digitization of
our world. One way to formulate this problem is as the in-
version of rendering algorithms used in computer graphics.
Recent advances in graphics have led to fully differentiable
Monte Carlo path tracing methods for jointly optimizing ge-
ometry and BRDFs represented as triangle meshes and ma-
terial textures. However, meshes can be difficult to optimize,
because it is non-trivial to modify their topology or maintain
regularity during optimization. On the other hand, recently
developed neural representations for shape [22, 31] and radi-
ance fields [23, 29] demonstrate impressive success in view
synthesis [23] and shape reconstruction [26, 30, 34, 38, 39]
tasks. But these representations entangle material and light-
ing, and cannot be directly used for applications like relight-
ing or material editing. Recent methods for decoupling neu-
ral radiance fields are either limited to simple shapes [6, 41],

(a) Reconstruction of real-world objects, rendered under global illumination.

(b) Scene editing by modifying illumination and materials, and inserting objects.

Figure 1. Real-world objects reconstructed by our IRON pipeline.
We show (a) re-renderings under novel global illumination via
Mitsuba path tracing [14], and (b) scene edits that include changing
lighting, material BRDFs, and the scale/orientation of existing
objects, and inserting new virtual objects or participating media
such as the metal Van Gogh head and the heterogeneous smoke.

or have neural components [4,43] that are incompatible with
standard 3D rendering and editing tools.

We address the inverse rendering problem with the ob-
jective of embracing both the flexibility and compactness of
neural representations, and the convenience of meshes with
material textures in downstream applications. We present
a pipeline we call IRON—Inverse Rendering by Optimiz-
ing Neural scene components, including neural signed dis-
tance fields (SDF) and neural materials. IRON performs
an inverse rendering optimization starting from multi-view
images captured by co-locating a flashlight with a moving
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camera [4, 5, 21, 24] (called photometric images in recent
work), while allowing for the export of the optimized 3D
content in mesh and material texture formats readily usable
by traditional graphics renderers and AR/VR applications,
as shown in Fig. 1. At the core of IRON are four compact
neural networks representing the neural SDF and materials,
which we optimize with a hybrid optimization scheme: first,
a volumetric radiance field optimization to recover object
topology, followed by physics-based surface rendering to
refine geometric details and disentangle materials and light-
ing. We demonstrate superior inverse rendering quality over
baseline methods targeting photometric images.

In addition, recent differentiable rendering methods in the
graphics community emphasize the importance of carefully
considering occlusion boundaries when performing inverse
rendering with meshes, e.g., with special edge sampling
algorithms that compute accurate gradients at such edges [2,
8, 17, 18, 28, 40]. In addition to our system as a whole, we
propose an edge sampling algorithm defined for neural SDF
representations, rather than meshes as in prior work. We
show that our new edge sampling algorithm significantly
improves reconstruction quality around edges.

Contributions. To summarize, our key contributions are:
• IRON, a neural inverse rendering pipeline for high-

quality reconstruction of object shape and spatially
varying materials, outperforming existing methods for
photometric images.

• A hybrid optimization scheme for neural SDFs and ma-
terials that first optimizes a volumetric radiance field
then performs edge-aware physics-based surface render-
ing for improved performance and compatibility with
meshes and material textures.

• An edge-aware rendering optimization featuring a novel
edge sampling algorithm that generates unbiased gradi-
ent estimates for better optimizing neural SDFs.

2. Related work
Neural reconstruction and view synthesis. Neural shape
[22, 31] and appearance [29] representations based on Multi-
layer Perceptrons (MLP) have been of recent interest, due
to their compactness and representation power. Many works
apply these representations to view synthesis and/or 3D re-
construction from multiple images, including NeRF [23],
DVR [26], and IDR [39]. While NeRF yields view synthesis
results of remarkable quality on complex scenes, its vol-
ume rendering nature leads to reduced quality of estimated
surface geometry. In contrast, DVR and IDR, which uti-
lize surface rendering, can reconstruct high-quality surface
geometry, but are limited to relatively simple scenes com-
pared to NeRF. Hence, UNISURF [30], VolSDF [38], and
NeuS [34] sought to combine the benefits of both volume-
and surface-based rendering by considering surfaces as defin-
ing volumes near the surface. Our work also utilizes neural

shape and appearance, but rather than encoding appearance
as a surface light field [36] that entangles lighting and materi-
als, we adopt a physics-based surface shading model within
an inverse rendering framework. Our pipeline can output
meshes and materials readily importable by existing graph-
ics pipelines, e.g., Blender [9], for fast raytracing, object
insertion, relighting, and material editing.

Mesh-based differentiable rendering. Meshes are widely
used in graphics pipelines and game engines. There has been
a surge of recent interest in fully-differentiable forward ren-
dering methods [2, 8, 17, 18, 20, 27, 28, 40], which enable
joint optimization of shape, material, and camera parameters
from images [21]. One challenge is proper derivative com-
putations at depth discontinuities (called edge derivatives)
that arise when rendering a mesh to an image. In addition,
meshes are not friendly for shape optimization, due to diffi-
culties posed in changing their topology and avoiding self-
intersections [25]. In contrast, signed distance field (SDF)
representations commonly used in neural geometry meth-
ods [31] parametrize the surface as the zero level set of a
continuous SDF (instantiated in neural methods by an MLP),
alleviating these challenges. However, we observe that, like
meshes, optimizing a neural SDF via differentiable surface
rendering also requires computing both interior derivatives
and edge derivatives with respect to neural network weights.
IDR [39] only uses interior derivatives, leading to poor per-
formance around edges. We introduce a method to estimate
edge derivatives for better optimization of neural SDFs.

Inverse rendering from multiple images. Given multiple
images of a scene, inverse rendering methods seek to recover
the shape, material and lighting that best explain the observed
images. Prior work considers several capture scenarios, in-
cluding: 1) static scene, static environmental lighting, mov-
ing camera [6,41,43], 2) rotating scene, static environmental
lighting, fixed camera [11, 37], and 3) static scene, flashlight
illumination co-located with moving camera [4, 5, 21, 24] (in
some works called photometric images). Our work addresses
the third case of flashlight photography because it simplifies
the physics-based rendering module, while enabling high-
quality inverse rendering results. Using neural SDFs and
materials, we show improved results compared to baselines,
while also creating easily deployed mesh and texture outputs.

3. Method

Assumptions. We focus on opaque objects, and consider
transparent and translucent objects outside the scope of our
work. We also assume that the input photometric images are
captured using collocated flashlight illumination without am-
bient light. Finally, for efficiency, we ignore shadows (which
are minimal in practice due to the collocated flashlight) and
global illumination effects like interreflections.
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Under these assumptions, and provided with an input
set of photometric images, our IRON system optimizes for
neural shape and material representations consisting of four
compact MLPs with positional encoding [23, 32]:

Neural SDF SΘs
: x −→ (S,f) maps a 3D location x to an

SDF value S and a 256D local geometric feature descriptor
f , as in recent works [30, 34, 39]; this feature descriptor can
then be fed into our neural material networks.

Neural diffuse albedo βΘβ
: (x,n,n,f) −→ β outputs

the diffuse albedo β at location x given surface normal n
and feature descriptor f . This function plays a dual role in
our optimization. In our first optimization phase, we treat
β as a neural radiance field, and include view direction as
an additional parameter (in place of the second n). In the
second phase, we constrain β to represent diffuse albedo in
our edge-aware physics-based surface rendering. Our neural
diffuse albedo MLP utilizes the surface normal and local
geometric feature descriptors as in prior work [30, 34, 39].

Neural specular albedo κΘκ
: (x,n,f) −→ κ encodes

spatially-varying specular albedo κ.

Neural roughness αΘα : (x,n,f) −→ α encodes the
spatially-varying specular roughness. Small values indicate
shiny surfaces, and large values less shiny.

We optimize the MLP weights Θs,Θβ ,Θκ, and Θα and
a scalar light intensity L in a two-stage optimization scheme.
In the first stage, we optimize neural SDF SΘs

and diffuse
albedo βΘβ

by treating βΘβ
as a volumetric radiance field.

This phase is designed to recover correct object topology and
serves as an initialization for the second phase. In the second
phase, we refine geometric details and factorize materials
from lighting by jointly optimizing neural SDF SΘs , neural
materials βΘβ

, κΘκ
, and αΘα

, and light intensity L via an
edge-aware physics-based surface rendering method.

3.1. Volumetric radiance field rendering

In the first stage, we optimize βΘβ
(x,n,n,f) as a view-

dependent neural radiance field (by substituting view direc-
tion −d for the second n). Hence, we perform volumetric
radiance field rendering of the neural SDF SΘs and col-
ors βΘβ

(x,n,−d,f) as in [34] in order to harness the
power of volume rendering in recovering correct object topol-
ogy [23, 30, 34, 38], i.e., the correct number and location of
holes in the geometry. If we do not perform this initial op-
timization stage and instead optimize for surface rendering
from scratch, we found that the optimization frequently di-
verges unless object segmentation masks are provided, as
observed by [30], and often gets stuck in local minima with
incorrect topology. At the same time, the volumetric nature
of this stage is inconsistent with our goal of producing shape
and materials that are compatible with the mesh-based ren-
dering paradigm used in existing graphics pipelines. This
motivates the second optimization stage where we perform

Algorithm 1 Locate edge points

Input: ray-surface intersection x̂
Output: an edge point or NOT FOUND.
Hyperparams: max # steps K, step size ϵ, threshold δ.

1: xt ← x̂
2: for i← 1 to K do
3: if ( xt−o

∥xt−o∥2
)Tnt < δ then

4: return xt

5: else
6: xt ← xt + ϵ · (nt − o−xt

(o−xt)Tnt
)

7: end if
8: end for
9: return NOT FOUND

edge-aware physics-based surface rendering.

3.2. Edge-aware physics-based surface rendering

After solving for a volumetric radiance field, we perform
a second, full inverse rendering stage that jointly optimizes
neural SDF SΘs

and neural materials βΘβ
, κΘκ

, and αΘα
)

from photometric images. This stage has two key compo-
nents: differentiable physics-based shading and edge-aware
surface rendering.

Physics-based shading. As our photometric image inputs
have co-located flashlight and camera, the light direction is
aligned with the view direction across pixel locations. Hence,
we can simplify the rendering equation [16] as:

Lo(ωo,x) =

∫
Ω

Li(ωi,x)fr(ωo,ωi,x)(ωi · n)dωi (1)

≈ Li(ωo,x)fr(ωo,ωo,x)(ωo · n), (2)

where Lo,x,n,ωi,ωo, Li, fr are observed light, surface lo-
cation, surface normal, light direction, view direction, in-
cident light and BRDF, respectively. We model the white
flashlight as a point light source as in [21, 24]:

Li(ωo;x) =
L

∥x− o∥22
, (3)

where L is a scalar light intensity and o is the light loca-
tion (same as the camera location in our co-located capture
setup). The denominator models the inverse-square fall-off
in intensity. For BRDF fr, we use the GGX model [33],
whose parameters at location x, diffuse albedo β, specu-
lar albedo κ and roughness α, are encoded in our neural
materials βΘβ

, κΘκ
, and αΘα

, respectively.
From Eqns. 2 and 3, we observe that gradients from the

rendered image Lo(ωo;x) must back-propagate through sur-
face location x and surface normal n to the shape parameters,
and through the BRDF fr to the material parameters.

Edge-aware surface rendering. Inspired by recent ad-
vances in mesh-based differentiable rendering [2, 18, 21, 28,
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(a) Assuming known color, prior neural surface ren-
dering methods [26, 39] fail to deform a small sphere
to a target large sphere due to lack of edge handling.

(b) The shading at an edge pixel involves the combi-
nation of the shading at disconnected surface pieces
identified using subpixel localization of edges.

(c) We locate edge points in 3D by walking on the
zero level set of the neural SDF, then project 3D edge
points into 2D for subpixel edge localization.

Figure 2. Illustration of edge-aware surface rendering for neural SDFs. (a) Existing neural surface rendering methods ignore geometric
discontinuities, making it difficult to deform neural SDFs to match silhouettes even for simple objects. (b) Geometric discontinuities are
introduced by edge pixels where multiple depth values are present in a single pixel, motivating our proposed edge sampling algorithm. (c)
Our method can localize subpixel-accurate edges for neural SDFs enabling correct shading calculations at edge pixels.

Figure 3. Demonstration of edge-aware surface rendering for neural SDF. To render the image (a), we first run sphere tracing to get the
depth (b) and surface normal (c) corresponding to the pixel centers. We then localize subpixel-accurate edges by walking on the surface;
the projected walk direction (d) is color-coded as shown in the inset color wheel. Detected edge pixels are shown in red in (e). We shade
non-edge pixels as in existing neural surface rendering methods [26,39], but shade edge pixels by accounting for the geometric discontinuity.

40], we identify a key issue in prior neural surface rendering
works such as IDR [39] and DVR [26]. Namely, their dif-
ferentiable rendering module only works for interior pixels,
due to their assumption of a smooth surface inside each pixel
footprint. This assumption fails for edge pixels, where shad-
ing color is a combination of colors at disconnected surface
pieces, as shown in Fig. 2(b). For this reason, these methods
compute biased gradients w.r.t. the weights of the neural SDF
that move surface points along camera rays, but not in the
image plane, due to missing edge gradients reflecting how
color changes w.r.t. edge location. In Fig. 2(a), we illustrate
how these missing edge gradients lead to non-convergence
in the simple task of deforming an initial small sphere to
a target large sphere assuming known shading color. This
problem is confirmed empirically in Fig. 4.

We address this issue via a novel edge sampling algo-
rithm tailored for neural SDFs. Our algorithm has three
steps: 1) localize subpixel-accurate 2D edges by detecting
3D edge points that are then projected to the 2D image, 2) re-
parametrize edge points such that they can back-propagate
gradients to the neural SDF in an auto-differentation frame-
work, and 3) compute the shading color for edge pixels.

In step 1, we start from ray-surface intersections found

by sphere tracing the center rays at each pixel location [13]
(Fig. 3(b,c)), and walk on the surface along the direction
defined in line 6 of Alg. 1 and illustrated in Fig. 2(c) until
reaching a 3D edge point or a max number of steps [3, 7].
We visualize projected walk directions in Fig. 3(d). For the
sake of efficiency, we only do the surface walk process for
the ray-surface intersections at depth discontinuity pixels
in order to reduce the number of evaluations of the neural
SDF; we identify such depth discontinuity pixels as ones
with depth Sobel gradient magnitude above a certain thresh-
old τ . We then project detected 3D edge points to image
space, producing both subpixel-accurate edge locations and
an edge mask marking pixels containing edges (Fig. 3(e)).
We also obtain 2D edge normal directions by projecting the
3D surface normals at these edge points to 2D.

In step 2, we reparameterize the edge points’ locations x
to make them differentiable with respect to network weights
of the neural SDF. We observe that the differentiable ray-
surface intersection equation (Eq. 4) for interior points
in [26, 39] only captures how perturbations to neural SDF
weights move the ray-surface intersection along the camera
ray, while for edge points, we care about their movement
along the surface normal. Hence, to reparameterize edge
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points correctly, we propose to replace the viewing direction
o− x (o is the camera origin, x is a surface point) in Eq. 4
with the surface normal n, and arrive at Eq. 5.

xΘs = x− o − x

nT (o− x)
SΘs(x), (4)

xΘs = x− n

nTn
SΘs(x) = x− nSΘs(x). (5)

We show the correctness of our edge point reparametrization
in the supplemental material.

In step 3, we compute the shading at each edge pixel.
Consider the edge pixel in Fig. 2(b), and let the green pro-
jected edge point have subpixel coordinates [u, v], and the
green projected surface normal be [du, dv]. Then the black
center of this edge pixel has coordinates:

[uc, vc] =
[
floor(u),floor(v)

]
+ 0.5. (6)

We approximate each square pixel footprint using a circle
of radius

√
2
2 pixels centered at [uc, vc]. We then pick 2D

locations, labeled A and B, on the circle on either side of the
edge. We raytrace and shade the two selected 2D locations.
Let us denote the shaded colors as CA and CB , respectively.
We linearly combine CA and CB with weights proportional
to the two segment areas separated by the edge. Suppose the
fraction of segment area on the same side as A is wA ∈ [0, 1]:

α = 2 · arccos(
√
2 · [du, dv][u− uc, v − vc]

T ), (7)

wA = 1− 1

2π
·
(
α− sinα

)
, (8)

then our predicted edge pixel color is:

C = wACA + (1− wA)CB . (9)

In Eq. 9, gradients from C can back-propagate through
wA, CA, and CB to the parameters of our neural SDF and
materials, and through the variable wA, we correctly model
how tiny perturbations of the 3D edge point’s location along
the surface normal direction affect the edge pixel color.

3.3. Training and testing

Given multi-view photometric images, we optimize our
neural SDF and materials using the following loss:

L =L2

(
pyramid(Î), pyramid(I)

)
(10)

+ 1− SSIM(Î , I) (11)

+ λ1 · ∥∇xS − 1∥22 (12)
+ λ2 ·max(roughness(x)− 0.5, 0), (13)

where Eq. 10 is the L2 loss on Gaussian pyramids of the
predicted image Î and groundtruth image I , Eq. 11 is the

Figure 4. Given a single target image of an object with known color,
we use an image loss to optimize a neural SDF with both IDR (top
row) [39] and out IRON (middle row) method. We also optimize a
mesh using PSDR (bottom row) [21]. Results show that IDR gets
stuck due to not allowing SDF to deform along the image plane,
while our method correctly optimizes the sihouette. PSDR can
also handle the silhouettes, but the mesh quality degrades without
intermediate remeshing steps.

Figure 5. When using a mesh representation, it is difficult to design
methods that can change the mesh topology in a differentiable
way. In contrast, methods that use neural SDFs can more readily
change their topology. Above, we use the mesh-based differentiable
rendering pipeline PSDR [40] and our IRON pipeline to reconstruct
this bagel by deforming an initial sphere. The results demonstrate
that PSDR fails to recover the central hole, while our method has
no such issue.

SSIM loss [35], Eq. 12 is the eikonal loss [10, 12] enforcing
the validity of the SDF, and Eq. 13 is the roughness range
loss encouraging the estimated roughness to stay below 0.5.
λ1, λ2 are loss weights.

Once training is complete, we convert the neural SDF and
materials to a triangle mesh and texture map for deployment
in the standard graphics pipeline. We first extract a mesh
from the optimized neural SDF using the marching cube
algorithm [19]. We then use the Blender Smart UV Project
tool [9] to compute a reasonable per-vertex uv mapping. Fi-
nally, to fill the material texture images, we densely sample
points on our triangle meshes with trilinearly interpolated
uv coordinates, then query the material networks at the sam-
pled surface points, and finally splat the per-point material
parameters to the texture images using their interpolated uv
coordinates.

4. Evaluation

We perform extensive experiments to validate IRON.
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Figure 6. Comparison of recovered geometry on synthetic (left) and real data (right) with baselines DRV [4] and PSDR [21]. On synthetic
data, we achieve the highest geometric reconstruction accuracy among the inverse rendering methods designed for flashlight photography.
For real data, we show a captured photo for reference due to lack of ground truth geometry.

Figure 7. Qualitative comparison of generalization to novel co-located flashlight relighting using both synthetic (top two rows) and real
(bottom two rows) data. Our IRON method produces visually more faithful matches in terms of geometric and texture details compared to
DRV [4] and PSDR [21]. Results of the recent neural surface reconstruction work NeuS [34] are also included for reference.

4.1. Optimizing neural SDFs to fit single image

We design a controlled experiment to illustrate the key
effect of our edge sampling algorithm: allowing the image
loss to lead to in-plane neural SDF deformations. In this ex-
periment, we assume that a single image of a 3D object with

known constant color is given as input to optimize a neural
SDF through an image loss. To solve this problem, the neu-
ral SDF must be deformed such that its silhouette matches
the ground truth when viewed from the input viewpoint.
But as shown in Fig. 4, the prior neural surface rendering
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Figure 8. Comparison of generalization to novel natural environmental lighting on both synthetic (left) and real (right) data. We render both
the PSDR [21] and our reconstructions under environmental illuminations using Mitusba [14]. Note that our IRON pipeline matches the
ground truth better for specular highlight regions on synthetic data, and is more perceptually convincing on real data.

↓Chamfer L1 [1] ↓LPIPS [42] ↑SSIM [35] ↑PSNR

DRV [4] 0.0111 0.1133 0.8252 28.0693
PSDR [21] 0.0048 0.1032 0.9358 27.1354
Our 0.0014 0.0438 0.9747 31.2614

Table 1. Quantitative comparisons with baseline methods on syn-
thetic data in terms of geometry quality and relighting quality under
novel co-located flashlight illumination. Note all synthetic objects
are scaled to lie inside the unit sphere before evaluation.

↓LPIPS [42] ↑SSIM [35] ↑PSNR

DRV [4] 0.1016 0.8264 32.0303
PSDR [21] 0.1861 0.8137 25.7452
Our 0.1091 0.8614 29.3694

Table 2. Quantitative comparisons on real data in terms of relighting
quality under novel co-located flashlight illumination.

method IDR [39] fails to accomplish this task due to a lack
of edge pixel handling. Our edge-aware surface rendering
method addresses this problem, converging to a valid solu-
tion. Although mesh-based differentiable rendering methods
can also handle silhouettes [40], we observe degraded mesh
quality over the course of optimization without intermediate
remeshing, due to the otherwise fixed mesh topology. In
contrast, neural SDFs do not suffer from such problems.

4.2. Inverse rendering from photometric images

We now evaluate methods on the task of inverse rendering
from multi-view photometric images.

Datasets. We create a synthetic dataset consisting of 9
objects: dragon, buddha, camera, monk, kettle, duck, pig,
sneaker, and bagel. Each object is rendered from 200 ran-
domly sampled viewpoints using the Mitsuba path-tracing
renderer [14] to form the training data. We co-locate a point
light source with the camera to actively illuminate the object
without other light sources. We render test data consisting of
100 images under novel co-located flashlight illumination,
and another 100 images under novel natural environmental
illumination. For real-world data, we use 5 object captures
from DRV [5]: dragon, pony, girl, tree, and triton. The data is
acquired using co-located flashlight setup in a dark environ-
ment. We randomly choose 70% of the images for training
and use the remaining 30% as test images for evaluating
generalization to novel view with co-located lighting.

Baselines. We compare with two inverse rendering methods
that use densely captured photometric images: the volume-
based DRV [5] and the mesh-based PSDR [21] methods.
We did not compare with the mesh-based method of Nam
et al. [24] due to the lack of open-source code. In addition,
PSDR has shown superior reconstruction quality compared
to this method.

Discussion. As shown in Tab. 1 and Figs. 6 and 7, we out-
perform state-of-the-art inverse rendering baselines by a
large margin in terms of geometric accuracy and general-
ization to novel co-located lighting on synthetic data, and
produce fewer artifacts like blurry textures on real data. The
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Figure 9. Ablations on our edge sampling algorithm using the
synthetic dragon and real pony data. Without edge sampling, neural
surface rendering performs poorly around edge regions, as shown
by the error maps and surface normals.

mesh-based PSDR method sometimes produces geometry
with incorrect topology (number of holes), as shown by the
bagel data in Fig. 5. Such mesh-based methods also face
difficulties in maintaining mesh regularity and avoiding self-
intersections during optimization, and require repeated appli-
cation of error-prone remeshing and uv-mapping procedures.
Neural SDFs avoid these problems with their continuous
representation. We also compare with PSDR in terms of gen-
eralization to novel environmental lighting in Fig. 8. IRON
results in better synthesized specular highlights and more
perceptually convincing relighting. The volumetric DRV re-
sults are not directly renderable by Mitsuba; hence we did
not compare with them under novel environmental light-
ing. On real data under novel co-located flashlight relighting,
IRON’s material estimates are much more detailed than those
of baseline methods (Fig. 7), with quantitative metrics on
par with DRV (Tab. 2). While DRV has slightly better LPIPS
and PSNR scores, we observe that it significantly blurs de-
tail. In addition, our method enjoys the advantage of simple
conversion to a mesh for computer graphics deployment.

Ablations on edge sampling. We test removing the our edge
sampling method from IRON. As shown in Fig. 9, the result-
ing reconstructions have much poorer quality around edge
regions, e.g., the dragon horn and pony nose. This poor qual-
ity is due to the missing edge derivatives in existing neural
surface rendering methods [26, 39].

Ablations on loss functions. We find that using the SSIM
loss significantly improves the sharpness of reconstructions.

Figure 10. Ablations on our loss functions using the real dragon
data. Without patch-based SSIM loss, our synthesized image is
quite blurry, while VGG loss results in spurious texture details. The
roughness range loss fixes issue of over-estimating roughness.

On the real dragon data, we first try removing SSIM loss
from our pipeline. Then we also try replacing SSIM loss
with VGG loss [15], which is widely used in view synthesis
tasks. As shown in Fig. 10, our proposed loss functions lead
to the sharpest and most plausible material reconstructions.

5. Conclusion
In this work, we have presented our new IRON pipeline

specialized in high-quality inverse rendering from photomet-
ric images. In constrast to mesh-based differentible render-
ing, IRON adopts neural SDFs and materials as representa-
tions for ease of optimization in the form of both volumetric
radiance rendering and edge-aware physics-based surface
rendering, and preserves the convertibility to meshes and
material textures for the sake of downstream applications.

Limitations and future work. There are limitations to be
resolved in future work. First, the use of photometric im-
ages leads to a more involved data capture process, although
such images simplify inverse methods because of the known
single point light and minimal shadows. Future work can ex-
plore extensions of our work to the combination of flashlight
and ambient illumination. Second, we do not model multiple
bounces of light. This can lead to material estimation errors
in concave regions that feature significant interreflection.
Future directions include devising computationally-efficient
global illumination rendering algorithms for neural SDF
representations. Third, our current BRDF model assumes
opaque surfaces, and thus we do not expect our method to
work well on transparent and translucent objects that feature
significant refraction and subsurface scattering.

Acknowledgements. This work was supported in part by the
National Science Foundation (IIS-2008313), and by funding
from Intel and Amazon Web Services. We also thank Sai Bi
for providing their code and data.

5572



References
[1] Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. Int. J. Comput. Vis., pages 1–16,
2016. 7

[2] Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. Unbi-
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