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Abstract

Infrared small target detection (IRSTD) refers to extract-
ing small and dim targets from blurred backgrounds, which
has a wide range of applications such as traffic manage-
ment and marine rescue. Due to the low signal-to-noise ra-
tio and low contrast, infrared targets are easily submerged
in the background of heavy noise and clutter. How to de-
tect the precise shape information of infrared targets re-
mains challenging. In this paper, we propose a novel in-
frared shape network (ISNet), where Taylor finite differ-
ence (TFD)-inspired edge block and two-orientation atten-
tion aggregation (TOAA) block are devised to address this
problem. Specifically, TFD-inspired edge block aggregates
and enhances the comprehensive edge information from dif-
ferent levels, in order to improve the contrast between tar-
get and background and also lay a foundation for extracting
shape information with mathematical interpretation. TOAA
block calculates the low-level information with attention
mechanism in both row and column directions and fuses it
with the high-level information to capture the shape char-
acteristic of targets and suppress noises. In addition, we
construct a new benchmark consisting of 1,000 realistic im-
ages in various target shapes, different target sizes, and
rich clutter backgrounds with accurate pixel-level annota-
tions, called IRSTD-1k. Experiments on public datasets and
IRSTD-1k demonstrate the superiority of our approach over
representative state-of-the-art IRSTD methods. The dataset
and code are available at github.com/RuiZhang97/ISNet.

1. Introduction
Infrared small target detection (IRSTD) has a wide range

of important applications such as traffic management and
marine rescue [8, 33, 37]. Misdetections in these fields may
cause significant damage to multiple aspects of the real
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world. Therefore, the improvement of IRSTD is one of the
priorities in both academic research and industrial division.

Compared to general object detection targets, infrared
small targets have the following characteristics: 1) Dim: In-
frared images have lots of noises and clutter in the back-
ground, and the targets are easily submerged in the back-
ground, resulting in low contrast and low signal-to-clutter
ratio (SCR). 2) Small: Due to the long camera to object dis-
tance, infrared targets usually occupy only about one to ten
pixels in the images. 3) Varying shape: The shape and size
of the target varies in different scenes and situations accord-
ing to different target types.

To detect infrared small targets, researchers have de-
veloped several pioneering works based on image pro-
cessing and machine learning techniques including filter-
ing, human visual system (HVS), and low-rank represen-
tation. However, these traditional methods have some limi-
tations. Filtering-based methods, such as top-hat filter [2]
and max-median/max-mean filter [9], can only suppress
uniform background clutters but cannot suppress complex
background noises, resulting in high false alarm rates and
unstable performance. As for the methods based on HVS,
the spectral residuals-based method [16] can not efficiently
suppress the clutters in the background. Local-contrast-
based methods [4, 12] are only suitable for high contrast
targets instead of dim targets. Low-rank representation-
based methods [5, 10, 38, 39] can adapt to low SCR in-
frared images but still suffer from a high false alarm rate
on images with small and varying-shape targets in complex
backgrounds. In addition to the issues above, most tradi-
tional methods heavily rely on hand-crafted features, which
is suboptimal and ineffective in dealing with challenging
cases. Besides, the design of handcraft features and tuning
of hyper-parameters require expert knowledge and a lot of
engineering efforts.

With the success of deep learning in many fields, it of-
fers novel solutions to the above problems. Convolution
neural network (CNN) can efficiently extract features from
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infrared small targets owing to the data-driven and end-to-
end learning paradigm. Liu et al. [19] applied multi-layer
perception (MLP) and constructed a five-layer network for
IRSTD. With a conditional generative adversarial network,
Wang et al. [34] proposed MDvsFA for IRTD and achieved
the balance between two metrics, i.e., miss detection v.s.
false alarm. To extract contextual features from different
layers, Dai et al. [6] proposed an asymmetric contextual
modulation (ACM) feature fusion method (ACMNet). Al-
though existing CNN-based IRSTD methods have yielded
good results, they can only detect the presence of the small
target in infrared images, while the contour of the detected
targets is very blurred. In fact, the edge and shape informa-
tion of infrared targets is not only critical for target classi-
fication tasks but also extremely important for practical ap-
plications such as marine rescue by providing useful clues
to help recognize their types. Due to the low contrast and
low SCR between infrared small target and background, it
is difficult to extract useful edge and shape features of the
target, especially from multiple feature levels, where deep
layers may have clear semantics but lack fine details of edge
and shape. How to obtain precise edge and shape of infrared
small targets remains challenging and unexplored.

In this paper, we make an attempt to address this prob-
lem by exploring a new idea that incorporates the recon-
struction of target shape into the detection of small infrared
targets. Specifically, we devise a novel infrared shape net-
work (ISNet) with two key components for IRSTD. First,
we devise a Taylor finite difference (TFD)-inspired edge
block to aggregate the edge features by drawing inspira-
tion from the neural ordinary differential equation (Neural
ODE) area, where the ODE is interpreted as a second-order
Taylor finite difference equation. Then, we devise a two-
orientation attention aggregation (TOAA) block to extract
cross-level features by exacting the low-level features from
both row and column directions and integrating them with
high-level features. After that, the cross-level features are
fed to the TFD-inspired edge block to reconstruct the tar-
get edges. By stacking multiple TFD-inspired edge blocks
and TOAA blocks in a sequence, the long-range contextual
information of the target can also be captured. Thus, the
network can better locate the target and obtain the accu-
rate shape of the targets. Besides, we apply a bottleneck
structure to remove high-frequency noise in infrared images
and enable a more informative flow through the network.
In addition, we also construct a new benchmark consisting
of 1,000 realistic images in various target shapes, differ-
ent target sizes, and rich clutter backgrounds with accurate
pixel-level annotations, called IRSTD-1k. Experimental re-
sults on the popular NUAA-SIRST dataset and IRSTD-1k
demonstrate that the proposed ISNet outperforms state-of-
the-art (SOTA) IRSTD methods in terms of false-alarm rate,
probability detection rate, intersection over union (IoU) ra-

tio, and normalized intersection over union (nIoU) ratio.
The contributions of this study can be summarized as:
• We propose a novel idea to address the challenges in

IRSTD, i.e., incorporating the reconstruction of target shape
into the detection of small infrared targets.

• We devise two key components named TFD-inspired
edge block and TOAA block to efficiently extract edge fea-
tures and aggregate cross-level features from noisy, low
contrast and SCR infrared images.

• We establish a new large benchmark called IRSTD-1k
to facilitate the research in the area of IRSTD, which con-
sists of 1,000 manually labeled realistic images with various
target shapes, different target sizes, and rich clutter back-
grounds from diverse scenes.

2. Related work

2.1. Infrared Small Target Detection

Traditional IRSTD methods rely on image processing
techniques or handcrafted features. Representative meth-
ods include HVS based methods, such as tri-layer local con-
trast measure (TLLCM) [4] and weighted strengthened lo-
cal contrast measure (WSLCM) [12], filtering based meth-
ods [2, 9], as well as low-rank based methods, such as
reweighted infrared patch-tensor (RIPT) [5], partial sum of
the tensor nuclear norm [39], Infrared patch-image (IPI)
[10], and non-convex rank approximation minimization
[38]. However, these methods based on image process-
ing, filtering or handcrafted features are ineffective in deal-
ing with challenging cases including targets with varying
shapes and sizes and backgrounds with clutter and noise.

Deep neural networks, on the contrary, can learn features
automatically from a large amount of data covering com-
plex scenes, owing to the end-to-end learning paradigm [13,
21,36,40]. As a result, CNN-based methods usually deliver
better performance for IRSTD than traditional methods. Liu
et al. [19] proposed the pioneer IRSTD method based on
an MLP network. On the basis of Faster-RCNN [27] and
Yolo-v3 [26], McIntosh et al. [24] designed a target to clut-
ter network. Then, Wang et al. [34] proposed MDvsFA for
SIRSTD, which achieved a trade-off between false alarm
and miss detection. Researchers also explored the denoising
idea for IRSTD [30], which treats small targets as noise and
subtracts the denoised output from the input image to obtain
small targets. Although these methods can detect the small
target in infrared images, they are incapable of getting clear
shapes of the detected targets since they pay little attention
to modeling target shapes. By contrast, we explore a new
idea of incorporating the reconstruction of target shape into
the detection of small infrared targets and devise a novel
infrared shape network. It can detect small infrared targets
with clear contours which is beneficial for many subsequent
tasks, e.g., recognizing the target type.
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Figure 1. Overview of the proposed ISNet, which has a U-Net structure with TOAA blocks and TFD-inspired edge blocks.

2.2. Cross-Layer Feature Fusion

Typical cross-layer feature fusion methods include U-
Net [28], PAN-net [20], and attention-based methods [17,
18, 23, 41]. U-Net was first designed to solve the medical
image segmentation problem, which has been widely used
in many other tasks. Redmon et al. [25] leveraged cross-
layer feature fusion in object detection and improved the
accuracy. Subsequently, contextual information was lever-
aged in IRSTD methods. Dai et al. designed an ACM-
Net [6] and ALCNet [7] to extract contextual features from
different layers. However, infrared small targets are usually
dim and have varying shapes, making it difficult to extract
and fuse useful shape features from multiple feature lev-
els, where deep layers may have clear semantics but lack
fine details of infrared targets. In contrast to these above
methods, we design a two-orientation attention aggregation
block, which can be incorporated into the U-Net structure
to efficiently aggregate features from different levels.

2.3. ODE Inspired Network

Researchers have found an interesting link between ODE
and neural networks. Weinan [35] firstly discovered the
similarity and built a link between discrete ODE and ResNet
[14]. Then, Chang et al. [3] analyzed the similarity of
different neural networks and ODE. On the basis of these
similarities, researchers devised specific networks based on
ODE and achieved better performance in different fields.
For example, He et al. [15] proposed a single image super-
resolution method based on ODE, achieving SOTA perfor-
mance. It is noteworthy that most existing ODE-based net-
works are designed based on the Euler method [29], al-
though the numerical solutions of ODE based on the Taylor
method can always deliver better accuracy [11]. Based on
this observation, we apply the Taylor formula to get the nu-

merical solution of ODE and design a novel edge block ac-
cordingly to extract useful edge features of infrared targets.

2.4. Datasets for IRSTD

Traditional methods train their networks on self-built
datasets with targets in limited diversity. Only a few of
them are publicly available, such as NUAA-SIRST [6] and
MFIRST [34]. Although the two datasets have facilitated
the research on IRSTD, they have some limitations. First,
most images in MFIRST are synthetic and NUAA-SIRST
only has a limited number of images. Second, both datasets
pay less attention to the annotation of target shape, which
can provide informative supervisory signals and is impor-
tant for many downstream tasks. In this paper, we establish
a new dataset named IRSTD-1k by collecting 1,000 realistic
images with different targets in great diversity and annotat-
ing them with accurate pixel-level masks.

3. Method
In this section, we first introduce the overall architec-

ture of our ISNet. Then, we present the details of the TFD-
inspired edge block (Sec. 3.2) and the TOAA block with
U-Net structure (Sec. 3.3), followed by the loss function in
Sec. 3.4 as well as the IRSTD-1k dataset in Sec. 3.5.

3.1. Overall Architecture

As shown in Fig. 1, a single infrared image is fed into the
encoder part of the U-Net structure. Then, in the decoder
part of the U-Net structure, the proposed TOAA blocks are
inserted to aggregate the cross-level features. By connect-
ing the TOAA blocks with the TFD-inspired edge blocks
step-by-step, we can obtain the coarse target shape and fine
edges. Finally, we further refine the coarse shape with the
help of fine edges via a convolutional segmentation head.
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Figure 2. Structure of the TFD-inspired edge block (Sec. 3.2).

3.2. TFD-inspired Edge Block

The infrared targets are usually small and dim while the
infrared images always contain lots of noise and clutter. The
low low contrast and SCR make it difficult to extract com-
plete edge information of the targets. To address this issue,
we revisit the similarity between the residual network struc-
ture used in existing methods and the Euler method [35],
and devise a new TFD-inspired edge block based on the
second-order Taylor finite difference equation, which en-
ables to aggregate edge information from different levels
and help obtain fine target edges.

Specifically, we leverage finite difference equations to
discretize the ODE, where the partial derivatives can be re-
placed with a set of approximate differences. Since the Tay-
lor finite difference method can deliver better accuracy than
the Euler method [1], we adopt it to devise a novel TFD-
inspired edge block. Mathematically, the second-order TFD
equation can be formulated as:

∂u

∂x
=

− 1
2uj+2 + 2uj+1 − 3

2uj

∆x
. (1)

Then, we rewrite it in the additive form:

uj+2 = −2
∂u

∂x
∆x+ uj+1 + 3uj+1 − 3uj . (2)

To ease the training of deep neural networks, we adopt
the residual learning idea and transform the direct mapping
H(x) = F (x)+x into the residual form F (x) = H(x)−x,
where H(x) and F (x) denote the target output and the
learned residual, respectively. We re-write Eq. (2) as:

−2
∂u

∂x
∆x = uj+2 − uj+1 − 3(uj+1 − uj). (3)

In this paper, we leverage several convolutional layers to
implement the transformation from uj to uj+1, and adopt a
gated convolution ugate to get −2∂u

∂x∆x, as shown in Fig. 2.
Thus, Eq. (2) can be expressed as:

uj+2 = ugate + uj+1 − 3∆uj , (4)
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Figure 3. Structure of the TOAA block (Sec. 3.3).

where ∆uj denote the residual between uj+1 and uj . In
this way, the TFD-inspired edge block can extract the edge
features in a residual learning manner. It is noteworthy that
gated convolution can be considered as a partially learnable
convolution, where a soft gating mechanism is used to better
learn the edge information of the target while suppressing
the background information. Specifically, the input of ugate

is a sum of uj+1 and the corresponding features (denoted as
p(x)) from the the U-Net, e.g., x4, x7, and x10 in Fig. 1.

3.3. TOAA Block

Since low-level features usually contain fine details of
targets, which are absent in high-level features, we devise a
TOAA block to refine the high-level features to facilitate the
reconstruction of target shape and edge. As shown in Fig. 3,
the TOAA block consists of two parallel attention modules,
where each of them generates an attention map along one
direction, i.e., the row or column direction, and uses it to
modulate the high-level features, respectively. Finally, the
attentive features are summed together as the output of the
block. This process can be expressed as:

aTOAA = TOAA(alow, ahigh)

= arow + acolumn,
(5)

where TOAA(·) denotes the mapping function learned by
the TOAA block. alow and ahigh represent the low-level
and high-level features from the U-Net encoder and de-
coder, respectively. arow and acolumn are the attentive fea-
tures in row and column directions, and can be obtained as:

arow = S(Fr(Fb(alow)))Fb(ahigh) + Fb(alow), (6)

acolumn = S(Fc(Fb(alow)))Fb(ahigh) + Fb(alow). (7)
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Here S(·) denotes the sigmoid function. Fb(·) stands for a
bottleneck structure including two 1×1 convolutional lay-
ers to constrain high-frequency noise. The bottleneck struc-
ture is similar to the role of Nonnegative Matrix Factoriza-
tion (NMF), which can retain useful features while filtering
out redundant high-frequency noise [13, 22]. Fr denotes a
1×k deformable convolution in the row direction while Fc

represents a k×1 deformable convolution in the column di-
rection. This two-orientation attention mechanism in the
TOAA block promotes extracting shape information from
low-level features in two directions and accordingly guide
the refinement of high-level features. TOAA blocks are in-
serted into the U-Net decoder to perform cross-level feature
fusion, as shown in Fig. 1.

We next briefly describe the flow of features in our IS-
Net. First, the input infrared image x1 is first processed by
the stem block in the encoder, which consists of a convolu-
tional layer and a max-pooling layer with a stride of 2 each
to downsample the image. The output x2 is defined as:

x2 = Fmax(conv(x1)), (8)

where conv(·) and Fmax(·) denote convolutional and max-
pooling layers, respectively. Then, we perform a nonlinear
transformation through two residual blocks to obtain fea-
tures x3 and x4 with less noise and clutter.

For the decoder, we perform deconvolution with a stride
of 2 on x4 to double the image size and obtain the high-level
feature x5. Then, we fuse x5 and the low-level feature x3

with the same size via the TOAA block to obtain the refined
feature x6, i.e.,

x6 = TOAA(x3, x5). (9)

Similarly, we apply the TOAA block on the low-level fea-
ture x2 and high-level feature x8 to get x9, i.e.,

x9 = TOAA(x2, x8). (10)

By stacking TOAA blocks sequentially in the U-Net de-
coder, our ISNet can efficiently extract cross-level features
of infrared targets which embed both semantics and fine
details, thereby facilitating the reconstruction of the target
shape.

On the bottom path, the coarse edge x11 obtained by ap-
plying the Sobel operator on the input image together with
the feature x4 from the U-Net encoder are fed into the TFD-
inspired edge block to extract the edge feature. Similarly,
two extra such blocks are used to further refine the edge fea-
ture with the high-level features obtained from the TOAA
blocks in the U-Net decoder. Finally, the edge feature is fed
into a convolutional layer to get the fine edge prediction. It
is also used to generate attention to refine the output feature
of the U-Net decoder, which is further used by the segmen-
tation head to predict the final target mask.

3.4. Loss Function

Dice Loss: Dice loss [31] is a common measure used to
evaluate the difference between a mask prediction and the
ground truth, which is defined as:

LDice = 1− 2|Y ′ ∩ Y |/(|Y ′|+ |Y |), (11)

where |Y ′ ∩ Y | is the intersection of the prediction Y ′ and
the ground truth Y . | · | is the number of pixels in the mask.
Edge loss: Binary cross-entropy (BCE) Loss is also used to
measure the difference between the predicted mask and the
ground truth. We leverage both Dice loss LDice and BCE
loss LBCE to supervise the edge prediction:

LEdge = LEdge
Dice + λLEdge

BCE , (12)

where λ is a hyper-parameter to balance the two losses and
set to 10 empirically. The final training objective is a com-
bination of LEdge and the dice loss on the mask prediction:

L = LEdge + LMask
Dice . (13)

3.5. IRSTD-1k Dataset

We construct a new benchmark called IRSTD-1k, con-
sisting of 1,000 infrared images captured by an infrared
camera in the real world. We annotate the targets at pixel
level manually. The images are in the size of 512×512.
IRSTD-1k contains different kinds of small targets, such as
drones, creatures, vessels and vehicles, captured at different
positions from a long imaging distance. The dataset covers
lots of different scenes and the background contains the sea,
river, field, mountain area, city, and cloud with heavy clut-
ters and noises. IRSTD-1k can be used to comprehensively
evaluate IRSTD methods.

4. Experiment
4.1. Datasets and Evaluation Metrics

Datasets: We conduct experiments on the IRSTD-1k
dataset and NUAA-SIRST dataset [6]. NUAA-SIRST in-
cludes 427 infrared images while IRSTD-1k contains 1,000
infrared images. For each dataset, we split it into the train-
ing set, validation set, and test set at a ratio of 50:30:20.

Evaluation Metrics: We compare the proposed ISNet
with SOTA methods using several common metrics. Inter-
section over Union (IoU): IoU is defined as:

IoU = Ai/Au, (14)

where Ai and Au denote the size of intersection region and
union region, respectively. Normalized Intersection over
Union (nIoU): nIoU is the normalization of IoU, i.e.,

nIoU =
1

N

N∑
i=1

(TP [i]/(T [i] + P [i]− TP [i])), (15)
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Table 1. Comparisons with SOTA methods on NUAA-SIRST and
IRSTD-1k in IoU(%), nIoU(%), Pd(%), Fa(10

−6).

Method

NUAA-SIRST (Tr=50%) IRSTD-1k (Tr=50%)

Pixel-Level Object-Level Pixel-Level Object-Level

IoU nIoU Pd Fa IoU nIoU Pd Fa

Top-Hat [2] 7.143 5.201 79.84 1012 10.06 7.438 75.11 1432

Max-Median [9] 4.172 2.15 69.20 55.33 6.998 3.051 65.21 59.73

WSLCM [12] 1.158 0.849 77.95 5446 3.452 0.678 72.44 6619

TLLCM [4] 1.029 0.905 79.09 5899 3.311 0.784 77.39 6738

IPI [10] 25.67 24.57 85.55 11.47 27.92 20.46 81.37 16.18

NRAM [38] 12.16 10.22 74.52 13.85 15.25 9.899 70.68 16.93

RIPT [5] 11.05 10.15 79.08 22.61 14.11 8.093 77.55 28.31

PSTNN [39] 22.40 22.35 77.95 29.11 24.57 17.93 71.99 35.26

MSLSTIPT [32] 10.30 9.58 82.13 1131 11.43 5.932 79.03 1524

MDvsFA [34] 60.30 58.26 89.35 56.35 49.50 47.41 82.11 80.33

ACM [6] 72.33 71.43 96.33 9.325 60.97 58.02 90.58 21.78

ALCNet [7] 74.31 73.12 97.34 20.21 62.05 59.58 92.19 31.56

ISNet 80.02 78.12 99.18 4.924 68.77 64.84 95.56 15.39

where N is the total number of samples, TP [·] denotes the
number of true positive pixels, T [·] and P [·] denotes the
number of ground truth and predicted positive pixels, re-
spectively. Probability of Detection (Pd): Pd is the ratio of
correctly predicted targets Npred and all targets Nall:

Pd = Npred/Nall. (16)

False-Alarm Rate (Fa): Fa is the ratio of false predicted
target pixels Nfalse and all the pixels in the image Nall:

Fa = Nfalse/Nall. (17)

4.2. Implementation Details

We adopt AdaGrad as the optimizer with a learning rate
of 0.04. The training process lasts a total of 500 epochs with
a weight decay of 10−4 and a batch size of 8. We select AL-
CNet [7], ACMNet [6], and MDvsFA [34] as the representa-
tive CNN-based IRSTD methods. For traditional methods,
we choose Top-Hat [2], Max-Median [9], WSLCM [12],
TLLCM [4], IPI [10], NRAM [38], RIPT [5], PSTNN [39],
and MSLSTIPT [32].

4.3. Quantitative Results

As shown in Table 1, the proposed ISNet achieves the
best performance in terms of all the evaluation metrics
compared with SOTA methods on both NUAA-SIRST and
IRSTD-1k datasets. For example, the Pd of our method
on NUAA-SIRST reaches as high as 99.18%. Traditional
methods based on hand-crafted features perform poorly in
challenging cases, thereby having much worse scores than
CNN-based methods. Nevertheless, CNN-based methods
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Figure 4. ROC curves of different methods on the NUAA-SIRST
dataset (dotted line) and IRSTD-1k dataset (solid line).

Table 2. Ablation study of the TOAA block and TFD-inspired
edge block in IoU(%), nIoU(%), Pd(%), Fa(10

−6).

Method IoU nIoU Pd Fa

U-Net 68.31 67.85 92.95 60.16

U-Net+TOAA 75.65 74.81 98.93 3.573

U-Net+TFD 78.05 76.49 99.13 6.465

U-Net+TOAA+TFD 80.02 78.12 99.18 4.924

pay less attention to target edge and shape information,
sufferring from inaccurate mask predictions, e.g., lower
IoU and nIoU. The performance of our ISNet is better on
NUAA-SIRST over IRSTD-1k. It is because the IRSTD-
1k dataset contains more challenging cases for IRSTD, in-
cluding varying-shape targets and low contrast and low SCR
background with clutters and noises. Nevertheless, our IS-
Net can still deliver promising results owing to the designed
TOAA block to effectively aggregate cross-level features
and the TFD-inspired edge block to extract edge features.

We also plot the ROC curves of different methods on
the NUAA-SIRST dataset in Fig. 4. As can be seen, the
performance of our ISNet is significantly better than other
methods, where the area under the ROC curve (AUC) of our
ISNet is larger than those of both the traditional methods
and CNN-based methods, e.g., 0.9612 AUC of ISNet v.s.
0.9495 AUC of ALCNet [7] on the NUAA-SIRST dataset.

4.4. Visual Results

Some visual results obtained by different methods on the
NUAA-SIRST dataset are shown in Fig. 5. As can be seen,
even in low contrast and low SCR situations, our ISNet can
not only locate the target accurately but also obtain a com-
plete and precise target shape. This is because the proposed
TOAA block can model contextual information of the tar-
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Figure 5. Visual results obtained by different IRSTD methods on the NUAA-SIRST dataset. Closed-up views are shown in the right top
corner. Boxes in red, blue and yellow represent correctly detected targets, miss detected targets and false detected targets, respectively.

Table 3. Ablation study of the TOAA block and SOTA cross-layer
feature fusion methods in IoU(%), nIoU(%), Pd(%), Fa(10

−6).

Method
FPN Based U-Net Based Our U-Net

SK [18] GAU [17] ACM [6] SK GAU TBCNet [41] ALCNet [7] TOAA

IoU 70.21 70.15 73.18 70.81 71.82 72.19 74.31 75.65

nIoU 69.53 70.16 72.13 69.93 69.74 70.57 73.12 74.81

Pd 93.78 94.02 96.91 93.69 94.53 98.29 97.34 98.93

Fa 40.26 35.68 9.325 31.23 37.68 10.21 20.21 3.573

get via effective cross-level feature fusion, while the TFD-
inspired edge block can extract useful edge features to get
fine target edges and help reconstruct the target shape. Tra-
ditional IRSTD methods are prone to produce missed de-
tections and false detections when SCR is low, and produce
false-alarm detections when local-contrast is high. CNN-

based methods generally perform better than traditional
methods, but cannot predict accurate target shapes.

4.5. Ablation Study

To investigate the effectiveness of each component in our
ISNet, we perform several ablation studies on the NUAA-
SIRST dataset. The ablation study results of TOAA and
TFD edge blocks are shown in Table 2. As can be seen, each
of them improves the performance of the U-Net baseline
and using both of them delivers the best results, implying
their complementarity.

Impact of TOAA Block: As shown in Table 3, com-
pared to other cross-layer feature fusion methods based on
either FPN or U-Net, our TOAA outperforms them by a
large margin, showing its superiority in fusing features from
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Table 4. Ablation study on the different number of TOAA blocks
in IoU (%), nIoU (%), Pd(%), Fa(10−6))

TOAA Blocks IoU nIoU Pd Fa

0 68.31 67.85 92.95 60.16

1 73.04 71.33 97.69 9.447

2 75.65 74.81 98.93 3.573

3 75.61 74.85 98.99 3.798

Table 5. Ablation study of the TFD-inspired edge block in
IoU(%), nIoU(%), Pd(%), Fa(10

−6).

Equation Type IoU nIoU Pd Fa

Gated Conv(only) 75.38 74.55 98.22 18.486

Gated Conv+Bottle Neck 76.32 75.29 98.73 9.823

Gated Conv+ResBlock 77.23 76.01 99.02 14.377

TFD 78.05 76.49 99.13 6.465

Table 6. Ablation study on the different number of TFD-inspired
edge blocks in IoU(%), nIoU(%), Pd(%), Fa(10

−6).

Edge Blocks IoU nIoU Pd Fa

0 68.31 67.85 92.95 60.16

1 74.35 73.21 97.89 30.21

2 76.56 74.98 98.59 13.61

3 78.05 76.49 99.13 6.465

4 78.15 76.15 99.27 9.062

both low and high levels. The specifically designed two-
orientation attention mechanism promotes to extract shape
information from low-level features and guides the refine-
ment of high-level features. We also investigate the influ-
ence of using different numbers of TOAA blocks. As shown
in Table 4, without using the TOAA blocks, the U-Net base-
line produces lots of false predictions. With the help of
the TOAA block, its performance can be improved signifi-
cantly, especially when two TOAA blocks are used, which
delivers the best results and is the default setting.

Impact of TFD-inspired Edge Block: We also ablate
the design of the proposed TFD-inspired edge block. As
shown in Table 7, if we only use gated convolutions to re-
construct edges, the targets are easily submerged in noises.
Introducing residual blocks or bottleneck structures can im-
prove the performance. Combining them together, the pro-
posed TFD-inspired edge block achieves the best perfor-
mance. We also carry out the ablation study on different
numbers of TFD-inspired edge blocks. From the first two
rows in Table 6, we can find that our TFD-inspired edge
block improves the shape segmentation performance of the
baseline U-Net significantly. Using more blocks generally
delivers better results but increases the model complexity.

Table 7. Ablation study on the different feature extraction methods
during pre-processing in IoU(%), nIoU(%), Pd(%), Fa(10

−6).

Method IoU nIoU Pd Fa

Sobel+TFD 80.02 78.12 99.18 4.924

ResBlock+TFD 79.97 78.20 99.13 5.24

Gated Conv+TFD 79.85 77.95 99.01 4.26

We choose three blocks as the default setting.
Impact of sobel operator: In the data pre-processing

stage, we use the Sobel operator to extract the coarse edge
of the target from the input image. The Sobel operator can
be replaced by other edge features extraction methods, such
as gated convolution and residual blocks. As shown in Ta-
ble 7, using either the Sobel operator or other learnable al-
ternatives deliver similar results. For simplicity, we choose
the Sobel operator as the default setting.

5. Conclusion
We propose a novel ISNet to handle the challenging

IRSTD task under low contrast and low SCR situations.
Specifically, we introduce two novel components, i.e., the
two-orientation attention aggregation block and the TFD-
inspired edge block, where the former promotes cross-
level feature fusion to enhance the shape representation ca-
pacity of high-level features and the latter extracts useful
edge features to help predict accurate target mask with pre-
cise shape. Moreover, we establish a new large IRSTD
dataset named IRSTD-1k, which could serve as a testbed
for the evaluation of IRSTD methods and facilitate future
research. Extensive experiments on both public dataset and
our IRSTD-1k dataset validate the effectiveness of the pro-
posed idea that incorporates the reconstruction of target
shape into the detection of small infrared targets, and the
superiority of the ISNet over representative methods.

Broader Impacts Detecting objects from infrared im-
ages benefits many real-world applications, such as traffic
management, marine rescue, and wildlife conservation. Al-
though it still has the potential to be used for military pur-
poses, strict registration is expected to limit the misuse of
the IRSTD methods, as well as other AI technologies.
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