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Figure 1. Comparison between our results and previous flow-guided video inpainting results. Our method enjoys a visually more pleasing
result with respect to the completed flow (bottom row) and the inpainted video frame (top row).

Abstract

Physical objects have inertia, which resists changes in
the velocity and motion direction. Inspired by this, we in-
troduce inertia prior that optical flow, which reflects ob-
ject motion in a local temporal window, keeps unchanged
in the adjacent preceding or subsequent frame. We pro-
pose a flow completion network to align and aggregate
flow features from the consecutive flow sequences based on
the inertia prior. The corrupted flows are completed un-
der the supervision of customized losses on reconstruction,
flow smoothness, and consistent ternary census transform.
The completed flows with high fidelity give rise to signifi-
cant improvement on the video inpainting quality. Never-
theless, the existing flow-guided cross-frame warping meth-
ods fail to consider the lightening and sharpness variation
across video frames, which leads to spatial incoherence af-
ter warping from other frames. To alleviate such prob-
lem, we propose the Adaptive Style Fusion Network (ASFN),
which utilizes the style information extracted from the valid
regions to guide the gradient refinement in the warped re-
gions. Moreover, we design a data simulation pipeline to re-
duce the training difficulty of ASFN. Extensive experiments
show the superiority of our method against the state-of-the-
art methods quantitatively and qualitatively. The project
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1. Introduction

Video inpainting aims at filling-in the corrupted regions
across video frames to maintain the visual coherence of the
restored video [2]. It has wide application scenarios, such
as object removal, watermark removal, video retargeting,
etc. Different from image inpainting [15, 31, 32, 49], video
inpainting highly depends on the utilization of the comple-
mentary content across video frames to synthesize video
frames with high visual quality.

Over the past two decades, researchers have committed
significant efforts to video inpainting [10, 27, 36, 42, 45].
In recent years, a number of deep learning-based video in-
painting methods are proposed, and they can be classified
into two categories. The first category [5, 6, 12, 18, 20, 21,
29, 42, 54, 57] synthesizes the pixels in the video frames di-
rectly, while the second category [8, 48] completes the op-
tical flows to guide the warping procedure from the valid
regions to fill in the corrupted regions. We refer these two
categories to pixel-based methods and flow-based methods,
respectively. Compared with pixel-based methods, flow-
based methods are capable of maintaining high-frequency
details in the inpainted video frames, because they mainly
rely on warping video frames rather than synthesizing the
pixels. Therefore, flow-based methods could achieve more
visual pleasing results against the pixel-based rivals [38].
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Similar to frames, consecutive optical flows are also cor-
related. The fully utilization of the context provided by
the flows nearby is crucial for accurate flow completion.
DFGVI [48] directly concatenates the consecutive flows for
target flow completion and lacks of insightful modeling on
the motion correlation between the flows.

The existing flow-based methods suffer from inaccurate
flow completion, which results in erroneous warping and in-
painting performance degradation, observable as the seams
and ghosting shown in Fig. 1b and 1c. Moreover, the style
(including lightening and sharpness) across different video
frames is not exactly the same, which causes spatial in-
coherence between the valid regions and the warped re-
gions (the corrupted regions filled with the warped content).
Although FGVC [8] has introduced gradient warping and
Poisson blending [33] to obtain seamless fusion, such strat-
egy is inadequate to deal with the style difference between
each frames.

For more effective flow context utilization, we introduce
the inertia prior for accurate flow completion in a local tem-
poral sequence. Inertia is the resistance of any physical ob-
ject to any change in its speed or direction of motion. In a
local temporal window, inertia guarantees strong coherence
of optical flows. Therefore, We align the features from con-
secutive optical flows under the inertia prior and generate
richer temporal context representation, which empowers ac-
curate flow completion. We refer this flow completion net-
work as Inertia-Guided Flow Completion (IGFC) Network.
We also introduce the smoothness loss and the ternary cen-
sus transform (TCT) loss to supervise the completion of op-
tical flows with respect to their intrinsic properties.

To amend the spatial incoherence caused by style varia-
tion across different video frames after flow-guided warp-
ing, we design Adaptive Style Fusion Network (ASFN) to
optimize the warped gradients in the warped regions under
the guidance of the gradients in the valid regions. ASFN
is a lightweight network with several adaptive style fusion
(ASF) modules. In each ASF module, the mean and stan-
dard deviation of the valid regions and the warped regions
are extracted and fused to correct the style in the warped
regions. Experimental results demonstrate the effectiveness
of ASFN in style correction for better spatial coherence.

For the training of ASFN, we design a data simulation
pipeline to ease the cost on data preparation and enable
separative training scheme. Besides, our method achieves
memory-efficient inference and is capable to tackle videos
up to 4K.

The contributions of this work can be summarized as:

• We introduce the inertia prior to model the inherent
correlation within optical flow sequences, and pro-
pose the flow completion network (IGFC) with inertia-
guided flow feature alignment and aggregation for
high-quality flow completion.

• We propose the Adaptive Style Fusion Network
(ASFN) to refine the warped gradients in the warped
regions to alleviate the spatial incoherence caused by
style variation across different video frames.

• We establish a data simulation pipeline for ASFN
training, which degrades the data preparation cost sig-
nificantly for more efficient training.

2. Related Work
Image Inpainting. Prior to the prevalence of deep learn-

ing, diffusion-based methods [3] and patch-based meth-
ods [1] are two major solutions for image inpainting.
Thereafter, deep learning-based image inpainting methods
emerge and they utilize powerful semantic analysis abil-
ity of CNN and GAN [9] to inpaint the corrupted images
[15, 31, 32, 51]. Partial convolution [24] and gated convo-
lution [52] are proposed to inpaint the free-form holes. Re-
cently, researchers introduce the structure guidance [28,49]
and the semantic guidance [22] to further improve the per-
formance of image inpainting.

Video Inpainting. Traditional methods [7, 10] complete
the corrupted regions of the target frames with the valid re-
gions from the aligned reference frames under the guidance
of homography or optical flow warping. Huang et al. [13]
propose to optimize both optical flow reconstruction and
frame inpainting simultaneously to maintain the spatiotem-
poral consistency, which achieves excellent performance.

Recently, more methods adopt CNN in video inpaint-
ing. A number of methods [5,6,42,57] adopt 3D CNN [40]
or channel shift [23] for spatiotemporal joint optimization.
Several studies [18, 21] introduce recurrent networks [46]
to exploit the temporal relationship explicitly. Some works
[30,55] adopt the internal learning to exploit the spatiotem-
poral redundancy in videos, while some works adopt the at-
tention mechanism [12,17,20,25,26,29,54] to fetch similar
content in the feature domain for video inpainting.

Xu et al. [48] and Gao et al. [8] implement content prop-
agation using optical flow for video inpainting. Since the
videos are filled with the valid pixels under the guidance of
the completed optical flows, flow-based methods are good
at maintaining the spatial high-frequency details. However,
the above two methods fail to explicitly consider the mo-
tion correlation between consecutive flows during optical
flow completion, which leads to sub-optimal flow comple-
tion quality. Besides, style variation between different video
frames causes spatial incoherence in the warped videos.
Our method approximates the motion correlation between
consecutive flows with the inertia prior to fuse flows more
accurately, and we also design ASFN to refine the style in
the warped regions.

Style Transfer. AdaIN [14] extracts and maps the mean
and standard deviation from one image to the other in the
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Figure 2. Our method consists of three steps. We mark these steps with different background colors. In the first step, optical flow features
are aligned under the inertia prior and then fused for flow completion. Next, we utilize the completed flows with original resolution to
guide the gradient propagation across the video. In the third step, we adopt ASFN to correct the style of the filled gradients based on the
style in the valid regions. Finally, we use Poisson blending to render the results.

deep feature space. StyleGAN [16] controls the feature in
different levels to synthesize high-quality images. Neither
of the methods has been employed in video inpainting to
reduce the inter-frame style difference. Our ASFN extracts
feature distribution in the valid regions to guide the style
refinement of the warped regions in the gradient domain.

3. Method
3.1. Problem Formulation

Given a video sequence X :={X1, X2, ..., Xt}, our goal
is to synthesize the corrupted content indicated by the cor-
responding mask sequence M :={M1,M2, ...,Mt}, where
“1” represents the corrupted regions, and “0” represents the
valid regions.

3.2. Inertia-Guided Flow Completion Network

Our inertia-guided flow completion network (IGFC) is
depicted in Fig. 2 (a), which is an encoder-decoder net-
work with skip connection [35]. Here we take forward flow
completion as an example to introduce flow completion in
details. In this subsection, we denote the forward optical
flow between t-th and (t+1)-th frames as Ft for simplicity.
We corrupt the flow sequence {Ft−i, ..., Ft, ..., Ft+i} with
their corresponding masks, and initialize these flows with
Laplacian filling, where the initialized t-th flow is denoted
as F̃t. The input of IGFC is the consecutive initialized flows
{F̃t−i, ..., F̃t, ..., F̃t+i} and the output is the completed tar-
get flow F̂t. We adopt the inertia prior to align the encoded
reference flow features to the target flow feature, and then
fuse the features from the aligned reference features to the
target feature with a matching network, as depicted by [43].
We adopt the dilation convolution [50] to enlarge the recep-
tive field of the fused target flow. The proposed network
generates optical flows in a coarse to fine manner with mul-

tiscale motion field description.
Inertia Prior assumes the motion trend in a local tem-

poral window is constant. Given two optical flows F̃t−1 and
F̃t. For a point xi−1 in frame It−1, inertia prior indicates,

F̃t(xi−1 + F̃t−1(xi−1)) ≈ F̃t−1(xi−1) (1)

As the flow is floating-point number, we quantify the prop-
agated flow value to the four nearest integers based on the
bilinear kernel. Given the warped pixel location p(xi) =
xi−1 + F̃t−1(xi−1), this process can be written as,

F̃t(xi) =

∑
x∈S k(x− p(xi))F̃t−1(xi−1)∑

x∈S k(x− p(xi))
(2)

where k(a) = (1− ax) · (1− ay) is the bilinear kernel, and
ax and ay are the coordinates of the point a. S denotes the
4-neighbor of xi.

Inertia prior can not only align the flows nearby, but also
align the flows within a certain interval. If we warp the op-
tical flow F̃t−j to the flow F̃t, the corresponding warped
pixel from xt−j is p(xt) = xt−j + j× F̃t−j(xt−j). For the
optical flows warped from the future timestamp, the cor-
responding j is negative. For inertia flow warping of the
backward flows, we reverse the order of the the backward
flows, and the above formulas still hold.

We illustrate inertia prior in Fig. 3 (a) and provide an ex-
ample on pixel domain inertia warping in Fig. 3 (b). The
valid regions of reference flows are transformed by inertia
warping and aligned to the corrupted regions of the target
flow. Such complementary features at the same location
provide a good reference to the completion of the target
flow. Therefore, we calculate the flow-wise similarity with
a matching net to aggregate these aligned flows.

In general, the mask regions do not shift too much in
a local temporal window, and hence applying inertia prior
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Figure 3. Inertia prior illustration. The red regions in (b) repre-
sents the newly filled regions propagated from the reference flows.

to align the optical flows directly cannot provide sufficient
convincing references in the inner corrupted regions of the
target flow. Therefore, we apply the inertia prior in the fea-
ture domain, considering that the encoding process can also
be regarded as a pre-filling process. The inertia warping
in the feature space can get supervised from the valid re-
gions even in the inner corrupted regions. Moreover, inertia
warping in feature space can be optimized jointly with the
network, which boosts the flow completion performance.

Loss Function. IGFC outputs optical flows in a coarse to
fine manner. We penalize the predicted flows at each reso-
lution with the reconstruction loss in hole and valid regions.

Lhole =
∥∥∥Mt ⊙ (Ft − F̂t)

∥∥∥
1
/ ∥Mt∥1

Lvalid =
∥∥∥(1−Mt)⊙ (Ft − F̂t)

∥∥∥
1
/ ∥(1−Mt)∥1

(3)

where ⊙ represents Hadamard product.
Warping accuracy could supervise flow completion from

the perspective of flow quality. With the completed flows,
we warp the ground-truth frames after ternary census trans-
form [37, 53], which excludes the interference caused by
lightening variation across different video frames. We pe-
nalize the inaccurate warping regions with ternary census
transform loss (TCT loss), denoted as Lter. TCT loss is im-
posed to all the resolutions of the completed flows to guide
multiscale motion field. Details of the TCT loss are pro-
vided in the supplementary material.

We apply the first-order and the second-order smooth
losses to the completed optical flow at the original resolu-
tion for preserving its piece-wise smooth property.

Lsmooth =
∥∥∥∇F̂t

∥∥∥
1
+
∥∥∥△F̂t

∥∥∥
1

(4)

where ∇ represents the gradient operator, and △ represents
the divergence operator.

Therefore, the loss function to train IGFC is the combi-
nation of the above four loss terms.

L = λ1Lhole + λ2Lvalid + λ3Lsmooth + λ4Lter (5)

We set λ1 = 1, λ2 = 1, λ3 = 0.5 and λ4 = 0.01.

mean
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ASF block

ASF module
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Figure 4. The structure of ASF module (left) and ASF block
(right), in which the channel dimension is omitted for simplicity.

3.3. Adaptive Style Fusion Network

After we complete the optical flows, we can propa-
gate the content across different frames along the trajectory
formed by the completed optical flows. Since the completed
optical flows are not perfect, the incorrect warping will mis-
place the reference pixels and lead to significant mismatch-
ing in low-frequency components. Therefore, we choose to
propagate the gradients to avoid the low-frequency prop-
agation error and maintain the local content consistency.
The missing low-frequency components will be synthesized
by Poisson blending [33] with the assistance of valid re-
gions. Different from FGVC [8], we construct the Poisson
equation based on the corrupted regions and their 2-pixel
boundaries, which maintains the original performance but
runs faster because of the reduction of the dimension in
Poisson equation. Following previous flow-guided video
inpainting methods, we inpaint the occluded regions with
DeepFillV1 [51]. Our warping procedure is borrowed from
FGVC [8], and more details can be viewed in the supple-
mentary material.

Due to lightening and sharpness variation across video
frames, even if the trajectory is formed by the perfect opti-
cal flows, the content propagated along the ideal trajectory
cannot be guaranteed the same with the ground truth gradi-
ent in the target frame. For example, frame Ij can be written
as Ij = aCj+b, where Cj is the content to be propagated. a
and b represent the multiplicative and additive style param-
eters, respectively. If we propagate gradient from Ij(xj) to
Ii(xi), the gradient will be,

∇Ii(xi) = Ij(xj + 1)− Ij(xj)

= aCj(xj + 1) + b− (aCj(xj) + b)

= a∇Cj(xj)

(6)

The presence of the style parameter a in Equation 6
affects the distribution of the propagated gradient, which
causes the style deviation of the gradients in the warped re-
gions. For example, if ∇Cj(xj) subjects to Gaussian dis-
tribution N(µ, σ2), the distribution of a∇Cj(xj) will be
N(aµ, a2σ2). The style parameter a impacts the warped
gradient features of other frames through gradient propaga-
tion, which leads to the spatial incoherence.
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Figure 5. Data simulation pipeline for ASFN training. We com-
plete the flows within temporal window [t−1, t+1] and generate
the fusion weights based on the completed flows under forward-
backward consistency check. We fill the corrupted gradient of It
with the gradients warped from nearby frames using completed
flows to get the training data ∇Ĩt. The warped gradients are fused
with the generated fusion weights ωt→t−1 and ωt→t+1.

Therefore, we design ASFN to correct distribution of the
warped regions. As illustrated in Fig. 2 (c), ASFN includes
several ASF modules, and an ASF module consists of two
ASF blocks and two convolution blocks with residual con-
nection [11]. More ASF details are shown in Fig. 4.

We map the warped gradient map ∇Ĩt to the feature
space with an encoder and process the encoded feature with
four ASF modules. For the m-th ASF block, we denotes its
input as pm and the output as pm+1. Given corresponding
mask Mt, we extract the mean and standard deviation of pm
in the warped and the valid regions, respectively.

µΩ(m) =
1

∥Ω∥
∑
Ω

pm

σΩ(m) =
1

∥Ω∥

√∑
Ω

(pm − µΩ(m))2 (7)

where µΩ and σΩ represent the mean and standard devia-
tion of the feature map in the corresponding regions. For
the valid regions, Ω = 1 − Mt, otherwise Ω = Mt. ∥Ω∥
represents the number of pixels in Ω.

Since the style in the valid regions is known, we can
adopt such style to optimize the counterpart in the warped
regions. The style in the valid regions does not encode any
content about the warped regions. If we directly map the
style from valid regions to warped regions, the temporal
style prior encoded in the warped regions may be discarded.
Therefore, we optimize the style in the warped regions by
concatenating the mean and standard deviation vectors in
the warped and valid regions, respectively and use two FC
layers to fuse the style information across these two regions
to get the multiplicative and additive style parameters γ and
β. We adopt the instance normalization [41] to wipe the
original style information in the warped regions. Finally,
The generated style information is mapped to the warped

regions, and such operation can be formulated as,

pm+1 = (1−Mt)⊙pm+Mt⊙(γ
pm − µMt

(m)

σMt(m)
+β) (8)

Finally, the refined gradient ∇Ît is generated with a de-
coder.

Loss Function. We adopt the reconstruction loss and the
adversarial loss to train ASFN, the reconstruction loss is,

Lshole =
∥∥∥Mt ⊙ (∇It −∇Ît)

∥∥∥
1
/ ∥Mt∥1

Lsvalid =
∥∥∥(1−Mt)⊙ (∇It −∇Ît)

∥∥∥
1
/ ∥(1−Mt)∥1

Lsrec = Lshole + Lsvalid
(9)

where ∇It denotes as the ground truth gradient. We adopt
the SN-PatchGAN [52] to make the distribution of the re-
fined gradients and the ground truth as close as possible and
use the hinge loss for the discriminator. We denote the ad-
versarial loss as Ladv , and the loss Ls is the weighted com-
bination of the following two loss terms. We set the weight
of reconstruction loss to 1, and the weight of adversarial
loss to 0.01.

3.4. Data simulation pipeline

The data preparation cost for ASFN training is expen-
sive. To obtain the training data, we need to complete each
optical flow in the video with IGFC, and warp the gradients
across the whole video with completed flows until there is
no unfilled regions, which is unacceptable during training.

In order to reduce data preparation cost, we propose the
data simulation pipeline shown in Fig. 5. We adopt the pre-
trained IGFC to produce the completed optical flows in a
short temporal window. To guarantee the corrupted regions
are filled as much as possible, we only corrupt the gradient
∇It with the corresponding mask Mt. The corrupted re-
gions are filled by the propagation from the ground truth
gradients ∇It−1 and ∇It+1 with the completed flows. The
fusion weights ωt→(t−1) and ωt→(t+1) are calculated by the
flow forward-backward consistency, and greater weights are
attached to the flow-consistent area. We warp the gradients
∇It−1 and ∇It+1 with the completed flows F̂t→(t−1) and
F̂t→(t+1), respectively. To simulate the style variation in a
frame, we impose random lightening and Gaussian blur to
the warped regions. Finally, we adopt the fusion weights to
fuse the warped gradients and replace the corrupted regions
in the gradient ∇It to get the training data ∇Ĩt.

4. Experiments
4.1. Settings

We adopt two common datasets for evaluation: Youtube-
VOS [47] and DAVIS [4]. Youtube-VOS contains 4,453
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Method
Youtube-VOS

DAVIS
square object 960×600

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

VINet [18] 29.83 0.9548 0.0470 28.32 0.9425 0.0494 28.47 0.9222 0.0831 - - -
DFGVI [48] 32.05 0.9646 0.0380 29.75 0.9589 0.0371 30.28 0.9254 0.0522 29.10 0.9249 0.0564
CPN [20] 32.17 0.9630 0.0396 30.20 0.9528 0.0489 31.59 0.9332 0.0578 - - -
OPN [29] 32.66 0.9647 0.0386 31.15 0.9578 0.0443 32.40 0.9443 0.0413 - - -
3DGC [5] 30.22 0.9607 0.0410 28.19 0.9439 0.0485 31.69 0.9396 0.0535 - - -
STTN [54] 32.49 0.9642 0.0400 30.54 0.9540 0.0468 32.83 0.9426 0.0524 - - -
TSAM [57] 31.62 0.9615 0.0314 29.73 0.9505 0.0364 31.50 0.9344 0.0478 - - -
FFM [25] 33.73 0.9704 0.0297 31.87 0.9652 0.0340 34.19 0.9510 0.0449 - - -
FGVC [8] 33.94 0.9719 0.0259 32.14 0.9667 0.0298 33.91 0.9554 0.0360 34.23 0.9607 0.0345
Ours 34.79 0.9743 0.0225 33.23 0.9729 0.0247 35.16 0.9648 0.0304 35.40 0.9659 0.0303

Table 1. Quantitative results on the Youtube-VOS and DAVIS dataset. We underline the best and the second best with red and blue font.
↓ means lower is better, while ↑ means higher is better. The missing number indicates the corresponding method fails at that resolution
because of the memory limitation. We adopt the resized object mask set for video inpainting at 960×600 resolution.

videos with natural scenes. We train our network with its
training set and test with its test set. DAVIS contains 150
videos, whose training set has densely annotated masks. We
adopt its training set as our test set to evaluate the video
inpaining performance.

Following the previous work [8], we adopt PSNR, SSIM
[44], and LPIPS [56] to measure the video inpainting qual-
ity, and use end-point-error (EPE) to evaluate optical flow
completion quality. We compare our method with state-
of-the-art baselines, including VINet [18], DFGVI [48],
CPN [20], OPN [29], 3DGC [5], STTN [54], FGVC [8],
TSAM [57], and FFM (a.k.a. Fuseformer) [25].

In our experiments, RAFT [39] is employed to extract
optical flows. We also adopt RAFT as the flow extractor to
other flow-guided video inpainting methods [8, 48] for fair
comparison. We utilize three consecutive flows as inputs of
IGFC to strike the balance between efficiency and perfor-
mance, and the inputs to IGFC and ASFN are both resized
to 256 × 256. The initial learning rate is 1e − 4 and di-
vided by 10 after 120k iterations. Both IGFC and ASFN
are trained with the Adam optimizer [19], and the whole
training process takes about 3.5 days.

4.2. Quantitative Evaluation

We report the quantitative results of our method and the
baselines on the Youtube-VOS and DAVIS datasets. During
inference, all video frames are resized to 432×256 without
specification. For Youtube-VOS, we apply square masks
for inference. For DAVIS, we adopt square masks and ob-
ject masks for inference. The average size of the square
masks takes about 1

16 of the whole frame area. The ob-
ject masks are randomly shuffled from the annotations in
DAVIS. We also report the video inpainting performance
under the 960×600 resolution to validate the video inpaint-
ing performance under higher resolution.

The quantitative results are shown in Tab. 1. For both
Youtube-VOS and DAVIS, our method outperforms the

state-of-the-art baselines by a large margin. Our method en-
joys superior performance not only in the restoration metric
(PSNR, SSIM), but also in the perceptual metric (LPIPS).
The flow results are presented in Tab. 3. Our flow comple-
tion method also significantly advances other works. The
running speed of our method is also competitive with other
flow-based video inpainting methods [8, 48].

4.3. Qualitative Comparisons

We perform qualitative comparisons of our method
against six competitive baselines [8, 20, 25, 29, 54, 57]. The
results are shown in Fig. 6. Compared with pixel-based
video inpainting methods, flow-guided methods commonly
generate sharper results by avoiding spectral bias [34] in
CNN. Fig. 8 compares the flow completion quality of our
method and previous flow-guided methods [8, 48]. Our
method enjoys more accurate flow completion quality. The
accurate optical flows synthesis in IGFC and the style cor-
rection in ASFN both lead to better video inpainting perfor-
mance and more visually pleasing experience.

4.4. User Study

We do a user study to validate the superior subjective
visual quality of our method against the others under the
object removal setting. We recruit 30 volunteers. We ran-
domly sample 20 videos from DAVIS for user study. All
the videos can be replayed many times to help the volun-
teers make more accurate decisions. Fig. 7 shows the re-
sults between our method and the others, which illustrates
the superior performance of our method.

4.5. Ablation Studies

Our ablation studies are conducted on DAVIS, and the
results on both the square masks and the object masks are
reported for more comprehensive evaluation.

Effectiveness of the inertia prior. We compare IGFC
with two baselines. The first is our flow completion model
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(a) Input (b) CPN [20] (c) OPN [29] (d) STTN [54] (e) TSAM [57] (f) FFM [25] (g) FGVC [8] (h) Ours

Figure 6. The qualitative comparison between our method and SOTAs. Compared with other results, our synthesized videos are superior in
detail preserving, which leads to more visually pleasing experiences. More qualitative results can be viewed in the supplementary material.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

rank1 rank2 rank3 rank4

Ours FGVC FFM TSAM

Figure 7. The user study results between our method and the com-
petitive baselines. “Rank-x” means the percentage of the corre-
sponding method is chosen as “x-th” best.

(a) Input (b) DFGVI [48] (c) FGVC [8] (d) Ours

Figure 8. The comparison of the completed optical flows between
IGFC and the baselines. IGFC enjoys a more accurate flow com-
pletion performance (e.g. clear motion boundary and the preser-
vation of the details).

without inertia warping (No warp), and the second is our
model with flow domain inertia warping (Flow) to validate
the effectiveness of IGFC. The quantitative results are listed
in Tab. 2. The feature domain inertia warping adopted by
IGFC boosts both the flow completion and the video in-

EPE=3.59

(a) w/o. inertia warp

EPE=2.68

(b) feature domain inertia warp

Figure 9. The comparison of the completed flows w/o. inertia
warping and with feature domain inertia warping. The inertia prior
on feature domain can predict the motion structure and boundaries
better.

(a) Input (b) GT (c) w/o. Lter (d) with Lter

Figure 10. The visualization of optical flows synthesized by the
models trained with or w/o. TCT loss. Compared with the flows
without TCT loss supervision, the model with TCT loss can main-
tain the sharpness at the edges.

painting quality. The performance gain of the feature do-
main inertia warp mainly comes from the preservation of
the motion boundary, as shown in Fig. 9. Compared with
no inertia warping baseline, feature domain inertia warp-
ing provides more accurate reference to fill target flow fea-
tures in the corresponding regions and accordingly benefit
the flow completion. As a result, the ghost and deformation
around the motion boundary get suppressed.

Effectiveness of the TCT loss. TCT loss supervises
the flow completion quality with the frame warping after
ternary census transform. Fig. 10 shows that the TCT loss
is beneficial to the clarity in the motion boundary.

Effectiveness of the ASFN. Fig. 11 illustrates our in-
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(a) Input (b) w/o. ASFN (c) with ASFN (d) GT

Figure 11. The comparison of the frames processed with or w/o. ASFN. ASFN can correct the unreasonable lightening around the player
and the back of the hiker, and can also enhance the details in the mountain region so as to achieve spatial coherence between the warped
and the valid regions.

(a) GT gradient

(b) Without ASFN

(c) With ASFN

Figure 12. Comparison of the gradient map with or w/o ASFN. In
the red box, ASFN sharpens the texture of the mountain based on
the sharpness in the valid regions; in the blue box, ASFN reversely
suppresses the over-sharp patterns for spatially coherent style.

Method square object

EPE↓ PSNR↑ SSIM↑ LPIPS↓ EPE ↓ PSNR↑ SSIM↑ LPIPS↓

No warp 0.58 32.94 0.9716 0.0267 0.39 34.90 0.9634 0.0320
Flow 0.58 32.91 0.9715 0.0269 0.38 34.96 0.9637 0.0316
IGFC 0.56 33.23 0.9729 0.0247 0.35 35.16 0.9648 0.0304

Table 2. Comparisons of the flow warping methods. “No warp”
indicates the flow completion network without flow alignment,
“Flow” represents the inertia prior based flow warping in the flow
domain. “IGFC” indicates our proposed method.

Method ASFN square object

EPE↓ PSNR↑ SSIM↑ LPIPS↓ EPE↓ PSNR↑ SSIM↑ LPIPS ↓

DFGVI [48] 1.16 31.24 0.9637 0.0295 1.05 33.12 0.9480 0.0392
✓ 31.22 0.9634 0.0299 33.23 0.9487 0.0386

FGVC [8] 0.63 32.14 0.9667 0.0298 0.49 33.91 0.9554 0.0360
✓ 32.37 0.9677 0.0271 34.17 0.9560 0.0351

Ours 0.56 32.91 0.9711 0.0261 0.35 34.88 0.9632 0.0322
✓ 33.23 0.9729 0.0247 35.16 0.9648 0.0304

Table 3. Comparisons of the flow completion quality and the video
inpainting performance with or w/o. ASFN across different flow-
guided video inpainting methods.

painting results with or without ASFN. With ASFN, our re-
sults are more spatially coherent thanks to the correction of
the abnormal lightening variation (e.g. the leg of the player
and the back of the hiker) and sharpness inconsistency (the

texture in the mountain) in the warped regions, which are
mainly caused by style variation cross different frames and
inaccurate flow warping. Fig. 12 shows the gradient re-
sults of the “hike” sequence in DAVIS. We can observe
that ASFN does not simply blur the gradients, but correct
the style in the warped regions with the global counterparts
provided by the valid regions.

Moreover, ASFN is also beneficial to other flow-guided
video inpainting frameworks [8,48]. We replace IGFC with
the flow completion component from the previous frame-
works. The quantitative results are shown in Tab. 3. We
observe that ASFN boosts the performance of all the flow-
guided video inpainting methods, and the better flow com-
pletion quality leads to the higher performance gain. We be-
lieve that higher flow completion quality gives rise to more
accurate warping, and hence reflects the style variation be-
tween the warped regions and valid regions more accurately.
Both improvements contribute to the effective inference.

5. Conclusion

In this work, we propose a flow-guided video inpaint-
ing method. Based on the physical property of object mo-
tion, we introduce the inertia prior to exploit the correlation
between consecutive optical flows for more accurate opti-
cal flow completion. We design the Adaptive Style Fusion
Network to optimize the style of the warped regions under
the guidance from the valid regions. Extensive experiments
have demonstrated that our method performs high-quality
video inpainting. In general, our method could handle flow
completion of structured contents, but it still needs to ame-
liorate the performance on fine-grained flow completion and
in fast motion cases. We improve the capabilities of video
inpainting and produce more plausible results. This may
have a potential negative impact that the inpainted videos
may fool people with fake messages.

5989



References
[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and

Dan B. Goldman. PatchMatch: A randomized correspon-
dence algorithm for structural image editing. TOG, 28(3),
Aug. 2009. 2

[2] Marcelo Bertalmio, Andrea L. Bertozzi, and Guillermo
Sapiro. Navier-stokes, fluid dynamics, and image and video
inpainting. In CVPR, volume 1, pages 355–362, 2001. 1

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and
Coloma Ballester. Image inpainting. In Proceedings of the
27th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’00, page 417–424, USA,
2000. ACM Press/Addison-Wesley Publishing Co. 2

[4] Sergi Caelles, Alberto Montes, Kevis-Kokitsi Maninis,
Yuhua Chen, Luc Van Gool, Federico Perazzi, and Jordi
Pont-Tuset. The 2018 DAVIS challenge on video object seg-
mentation. arXiv preprint arXiv:1803.00557, 2018. 5

[5] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston
Hsu. Free-form video inpainting with 3D gated convolution
and temporal PatchGAN. In ICCV, pages 9066–9075, 2019.
1, 2, 6

[6] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston
Hsu. Learnable gated temporal shift module for deep video
inpainting. In BMVC, 2019. 1, 2

[7] M. Ebdelli, O. Le Meur, and C. Guillemot. Video inpainting
with short-term windows: Application to object removal and
error concealment. TIP, 24(10):3034–3047, 2015. 2

[8] Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf.
Flow-edge guided video completion. In ECCV, pages 713–
729, 2020. 1, 2, 4, 6, 7, 8

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In NIPS, vol-
ume 27, 2014. 2

[10] Miguel Granados, Kwang In Kim, James Tompkin, Jan
Kautz, and Christian Theobalt. Background inpainting for
videos with dynamic objects and a free-moving camera. In
ECCV, pages 682–695, 2012. 1, 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5

[12] Yuan-Ting Hu, Heng Wang, Nicolas Ballas, Kristen Grau-
man, and Alexander G. Schwing. Proposal-based video com-
pletion. In ECCV, pages 38–54. Springer, 2020. 1, 2

[13] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Jo-
hannes Kopf. Temporally coherent completion of dynamic
video. TOG, 35(6):196:1–11, 2016. 2

[14] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,
2017. 2

[15] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and locally consistent image completion. TOG,
36(4):107:1–14, 2017. 1, 2

[16] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401–4410, 2019. 3

[17] Lei Ke, Yu-Wing Tai, and Chi-Keung Tang. Occlusion-aware
video object inpainting. In ICCV, 2021. 2

[18] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
Kweon. Deep video inpainting. In CVPR, pages 5792–5801,
2019. 1, 2, 6

[19] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2014. 6

[20] Sungho Lee, Seoung Wug Oh, DaeYeun Won, and Seon Joo
Kim. Copy-and-paste networks for deep video inpainting. In
ICCV, pages 4413–4421, 2019. 1, 2, 6, 7

[21] Ang Li, Shanshan Zhao, Xingjun Ma, Mingming Gong,
Jianzhong Qi, Rui Zhang, Dacheng Tao, and Ramamoha-
narao Kotagiri. Short-term and long-term context aggrega-
tion network for video inpainting. In ECCV, page 728–743,
2020. 1, 2

[22] Liang Liao, Jing Xiao, Zheng Wang, Chia-Wen Lin, and
Shin’ichi Satoh. Image inpainting guided by coherence pri-
ors of semantics and textures. In CVPR, pages 6539–6548,
June 2021. 2

[23] Ji Lin, Chuang Gan, and Song Han. TSM: Temporal shift
module for efficient video understanding. In ICCV, 2019. 2

[24] Guilin Liu, Fitsum A. Reda, Kevin J. Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In ECCV, pages
85–100, 2018. 2

[25] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei
Lu, Wenxiu Sun, Xiaogang Wang, Jifeng Dai, and Hong-
sheng Li. Fuseformer: Fusing fine-grained information in
transformers for video inpainting. In ICCV, 2021. 2, 6, 7

[26] Ruixin Liu, Zhenyu Weng, Yuesheng Zhu, and Bairong Li.
Temporal adaptive alignment network for deep video in-
painting. In IJCAI, pages 927–933, 2020. 2

[27] Y. Matsushita, E. Ofek, Weina Ge, Xiaoou Tang, and Heung-
Yeung Shum. Full-frame video stabilization with motion in-
painting. PAMI, 28(7):1150–1163, 2006. 1

[28] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. EdgeConnect: Structure guided image
inpainting using edge prediction. In ICCVW, Oct 2019. 2

[29] Seoung Wug Oh, Sungho Lee, Joon-Young Lee, and
Seon Joo Kim. Onion-peel networks for deep video com-
pletion. In ICCV, pages 4403–4412, 2019. 1, 2, 6, 7

[30] Hao Ouyang, Tengfei Wang, and Qifeng Chen. Internal
video inpainting by implicit long-range propagation. In
ICCV, 2021. 2

[31] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor
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