
Kernelized Few-shot Object Detection with Efficient Integral Aggregation

Shan Zhang*,†, Lei Wang♦, Naila Murray♣, Piotr Koniusz*,§,†

†Australian National University ♦University of Wollongong §Data61/CSIRO ♣Meta AI Research

†firstname.lastname@anu.edu.au, ♦leiw@uow.edu.au, ♣murrayn@fb.com

Abstract

We design a Kernelized Few-shot Object Detector by
leveraging kernelized matrices computed over multiple pro-
posal regions, which yield expressive non-linear represen-
tations whose model complexity is learned on the fly. Our
pipeline contains several modules. An Encoding Network
encodes support and query images. Our Kernelized Auto-
correlation unit forms the linear, polynomial and RBF ker-
nelized representations from features extracted within sup-
port regions of support images. These features are then
cross-correlated against features of a query image to obtain
attention weights, and generate query proposal regions via
an Attention Region Proposal Net. As the query proposal
regions are many, each described by the linear, polyno-
mial and RBF kernelized matrices, their formation is costly
but that cost is reduced by our proposed Integral Region-
of-Interest Aggregation unit. Finally, the Multi-head Rela-
tion Net combines all kernelized (second-order) represen-
tations with the first-order feature maps to learn support-
query class relations and locations. We outperform the state
of the art on novel classes by 3.8%, 5.4% and 5.7% mAP on
PASCAL VOC 2007, FSOD, and COCO.

1. Introduction
CNN object detectors [8, 29–31] require thousands of

manually annotated images for training. Their performance
drops during adaptation to novel classes if samples are few.

In contrast, Few-shot Learning (FSL) methods rapidly
adapt to new visual concepts [39, 41, 43] but off-the-shelf
FSL methods perform classification rather than Few-shot
Object Detection (FSOD). As queries in FSOD contain mul-
tiple objects of various categories and FSOD detectors have
to predict class labels and locations of objects in a query im-
age, effective techniques capturing query-support similari-
ties across multiple Regions-of-Interest (RoI) are required.

FSOD models [2, 6, 11, 12, 52, 58] are trained with so-
called training episodes containing samples of common ob-

*Equal contribution. PK is the corresponding author.
Code: https://github.com/ZS123-lang/KFSOD.

jects (i.e. base classes). Testing episodes contain support
images of rare objects (i.e. novel classes) and query im-
ages in which these rare objects must be recognized/local-
ized. Fan et al. [6] introduced into FSOD a Region Proposal
Network (RPN), termed Attention RPN (ARPN)1. ARPN
cross-correlates average-pooled features from support re-
gions with features of the query image, which produces an
attention map over the feature tensor of query image. How-
ever, average pooling (a first-order statistic) retains less in-
formation compared to higher-order statistics. PNSD [58]
improves [6] by second-order pooling but is limited to so-
called linear correlations (autocorrelation matrix). To ad-
dress this limitation, we use kernelized covariance matri-
ces [57] and Reproducing Kernel Hilbert Space (RKHS)
kernels [38] which capture non-linear patterns. Kernels in-
duce regularization e.g., an RBF kernel with a small (resp.
large) radius captures a complex (resp. simple) decision
boundary. However, as generating kernel matrices is com-
putationally expensive, they are rarely used in detection.

We propose a novel feature representation which lever-
ages the expressiveness and regularization capabilities of
kernels, while enjoying an efficient implementation. The
key to this efficiency is a novel Integral Region-of-Interest
Aggregation (IRA) scheme for fast kernelization. We fur-
ther accelerate IRA by count sketching [47], an unsuper-
vised dimensionality reduction technique with a favourable
property of implicitly performing feature augmentations.
As the variance introduced by sketching is inversely-
proportional to its size, it boosts the accuracy and compu-
tational speed, as described in Section 4. Our pipeline is
shown in Figure 1. Our contributions are listed below:

i. We propose two types of kernelized representations
used conjointly for FSOD that capture non-linear cor-
relation patterns, obtained from candidate regions by
computationally efficient Integral Region-of-Interest
Aggregation (IRA). The performance and speed of IRA
are boosted with count sketching and its inverse to fa-
cilitate the practical use of kernelization in FSOD (gen-
erating hundreds of kernels per image).

1PSND [58] calls this module Hyper Attention RPN (HARPN) but
FSOD-ARPN [6] calls it ARPN. We adopt the ARPN name for brevity.

19207

https://github.com/ZS123-lang/KFSOD

ii. We equip our network with MLP units which learn the
kernel hyper-parameters on the fly to adjust the learning
complexity of kernelized representations to the data.
We partially whiten matrices using Spectral Power Nor-
malization [16] whose hyper-parameters are learnt via
another MLP to extract the most informative features
that concentrate along diagonals of kernel matrices.

iii. We redesign a Multi-head Relation Network to com-
bine the first-order spatially-ordered features of support
and query regions with the spatially orderless kernel-
ized representations that contain higher-order statistics.

Advantages of RKHS kernelization in FSOD. We note
that (i) kernels are very good at capturing non-linear re-
lationships between feature channels of each candidate
bounding box, (ii) kernels factor out spatial order while
keeping rich statistics about each region, thus matching sim-
ilar objects that vary in physical location, orientation, view-
point is easy due to the shift-invariance, (iii) kernels let con-
trol the model complexity w.r.t. the region size and visual
complexity, (iv) typical FSOD head uses either shift-variant
or average pooled representations (we combine both).

2. Related Works
Below, we describe popular object detection and FSL al-

gorithms and prerequisites such as second-order pooling.
Object Detection. One-stage detectors perform a regres-
sion to bounding box annotations [25, 29, 30]. Two-stage
detectors, e.g., by R-CNN [31], generate class-agnostic re-
gion proposals which are then classified by a classification
head [8,31]. SNIPER [37] uses multi-scale training. DETR
[1] and its variants [3,59,61] are anchor-free pipelines. Ob-
ject detectors use large-scale datasets and fixed classes.
Few-shot Learning. Metric-learning FSL [13,13,27,33,34,
41] learns image-to-image similarity to generalize to novel
classes. Prototypical Networks [39] compute distances be-
tween a datapoint and prototypes of each class. MAML [7]
performs meta-learning. Others use subspaces [35,60], gra-
dient modulation [36] and self-supervision [55, 56].
Few-shot Object Detection. In [11], a single-stage FSOD
detector reweights base model features to adapt to new
classes. Meta R-CNN [52], a two-stage detector, reweights
RoI features in the detection head. Based on a balanced
dataset, TFA [45] fine-tunes a two-stage model. MPSR [49]
improves TFA by training over multiple scales of posi-
tive samples. NP-RepMet [53] uses negative- and positive-
representative learning via triplet losses that bootstrap the
classifier. FSOD-ARPN [6] proposed a FSOD network with
attention and a multi-relation head to score pairwise object
similarity. PNSD [58], inspired by FSOD-ARPN [6], uses
second-order representations to describe proposal regions.
Multi-path and Feature Groups. ResNeXt [50] adopts
a group convolution [20] in the ResNet bottleneck block.

Figure 1. Kernelized Few-Shot Object Detector (KFSOD): We
pass ground truth support bounding boxes X and query image X∗

to Encoding Network (Fig. 2a). Feature Maps (Φ↓ and Φ are
of low and high resolution) are passed to the Kernelization Block
(Fig. 3a), with the Attention Region Proposal Network (ARPN) to
produce query region proposals, the Kernelized Autocorrelation
(KA) and the Integral RoI Aggregation (IRA) units which accel-
erate kernelization. First-order and kernelized representations Ψ
and Ψ′ are fed to Multi-head Relation Network (MRN) in Fig. 2b.

SK-Net [22], based on SE-Net [9], uses the feature-map at-
tention across two network branches. Bilinear pooling [32]
correlates features extracted from two regions, whereas Re-
DRO [28] samples groups of features (akin to dropout) to
apply the matrix square root over resulting submatrices.
Second-order Pooling (SOP). Texture recognition [51],
Region Covariance Descriptors [42], and object classifica-
tion [16] employ SOP. Fine-grained classification [19] and
SoSN FSL [54] use SOP with Power Normalization [16].
Power Normalization (PN). Burstiness, “the property that
a given visual element appears more times in an image
than a statistically independent model would predict” [10].
Burstiness can be limited by PN [17] a feature detector us-
ing the cumulative distribution function of a binomial dis-
tribution to factor out feature counts [16, 17, 19]. The Fast
Spectral MaxExp operator, MaxExp(F) [18], and Tensor
Power-Euclidean (TPE) metric [15] reverse the heat diffu-
sion of the implicit loopy graph of the second-order matrix
to a desired past state [38]. In this work we decorrelate ker-
nelized matrices to a desired level using MaxExp(F)2, and
extract the diagonals of matrices to use as representations.

3. Prerequisites

Notations. Let x ∈ Rd be a d-dimensional feature vec-
tor. IN stands for the index set {1, 2, · · · , N}. We de-
fine 1 = [1, ..., 1]

T (i.e. the ‘all ones’ vector). Capitalised
bold symbols such as Φ denote matrices, lowercase bold
symbols such as φ denote vectors, and regular fonts denote
scalars e.g., Φi,j , φi, n or Z. Φi,j is the (i, j)-th entry of
Φ. Diag(·) puts the matrix diagonal into a vector, Diag†(·)
embeds a vector to form a diagonal matrix, [xι]ι∈IN stacks
x1, · · · , xN into a vector, δ(x) = 1 if x = 0, δ(x) = 0 if
x 6=0, and I is the identity matrix.
(Eigenvalue) Power Normalization ((E)PN). MaxExp(F),
a state-of-the-art EPN [18], is defined as

g(λ; η)=1− (1− λ)η (1)

2Please note this is a prerequisite tool we use, not a contribution per se.

19208

on the `1-norm normalized spectrum from SVD (λi :=
λi/(

∑
i′ λi′+ε)), and on symmetric positive semi-definite

matrices (PSD) as
ĜMaxExp(K; η)=I−(I−K)

η
. (2)

Here, K is a trace-normalized SPD matrix, ε≥0 is a small
constant, and η≥1 is used to adjust the degree to which fea-
tures are decorrelated. Larger values of η result in greater
decorrelation. As a result, rarer and more unique visual
features are less overshadowed by large areas of visually-
repetitive stimuli. ĜMaxExp is followed by the element-wise
PN, called SigmE [18]:

GSigmE(p; η′) =2/(1 + e−η
′p)− 1, (3)

where p takes each output entry of Eq. (2), η′≥ 1 controls
detecting feature occurrence vs. feature counting trade-off.
Count Sketches. Count sketching [47] is an unsupervised
dimensionality reduction technique which comes handy in
reducing the size of our kernelized representations, de-
scribed in Section 4. Let K and K ′ be the sizes of the input
and sketched output. Let vector h ∈ IdK′ contain K uni-
formly drawn integer numbers from {1, · · · ,K ′} and vec-
tor s ∈ {−1, 1}K contain K uniformly drawn values from
{−1, 1}. The sketch projection matrix P∈{−1, 0, 1}K′×K
is given as Pij(h, s) = sj ·δ(hj−i) and the sketch projec-
tion Proj : RK → RK′ is a linear operation Projh,s(φ) =
P(h, s)φ (or Proj(φ) = Pφ). Weinberger et al. [47]
showed that count sketches are unbiased estimators of the
inner product Eh,s(

〈
Projh,s(φ),Projh,s(φ′)

〉
−
〈
φ,φ′

〉
) =

0 with the variance bounded by 1
K′ (
〈
φ,φ′

〉2
+‖φ‖22‖φ

′‖22).

4. Proposed Approach

Overview. Kernelized Few-shot Object Detector (KFSOD)
is trained with a set of L-way Z-shot episodes. Each
episode contains a query image with objects, and Z sup-
port regions (object crops) for each of L sampled classes.
The training protocol ensures that query objects match some
support objects by label. During testing, KFSOD localizes
and classifies objects in the query image given annotated
support crops of novel classes. KFSOD in Fig. 1 contains3:

1. Fig. 2a: Encoding Network (EN) yields conv. feature
maps (stride along the channel mode is a feature vector).

2. Fig 3a &4: Kernelized Autocorrelation (KA) unit forms
two types of kernelized representations: (i) RKHS ker-
nels and (ii) so-called kernelized autocorrelation matri-
ces called k-autocorrelations. In practice, KA computes
both types of kernelization for the linear, polynomial
and RBF kernelized non-linearities from support crops
and query RoIs. As there are only a few support regions
per episode, we crop support regions and directly ker-
nelize them. We use a different approach (point 4) for
query images which have many more RoIs.

3Detailed KFSOD pipeline (all modules) is in §B of Suppl. Material.

(a) (b)

Figure 2. Our Encoding Network (EN) in Fig. 2a uses layers L1-4
of ResNet-50. Block (Up 2x) performs upsampling,⊕ is addition.
For simplicity, Z-shot samples are averaged per class by block (Z-
avg). Φ↓ and Φ are low and high-resolution feature maps. Multi-
head Relation Net in Fig. 2b receives first-order representations
(Ψ for support, Ψ∗ for the query) and kernelized representations
(Ψ′ for support, Ψ′∗ for the query) from the Kernelization Block.
From first-order maps, layer L5 of ResNet-50 generates feature
maps with 2048 channels. An FC layer maps representations of
1024 to 2048 dimensional space. Such feature maps are fed into
the global, local and patch heads. (See §D in Suppl. Material.)

3. Fig. 3a: Attention Region Proposal Network (ARPN)
takes kernelized feature vectors per support region to
cross-correlate them against the image-wise query con-
volutional feature map to produce a query attention
map. Region Proposal Network outputs query RoIs.

4. Fig. 3a, 3b &4: Integral RoI Aggregation (IRA) rapidly
forms inner-product matrices required to obtain RKHS
kernels and k-autocorrelations for each query RoI.

5. Fig 2b: Multi-head Relation Network (MRN) com-
bines first-order representations (spatial-wise cues)
with spatially-invariant kernelized representations to
learn relations between support-query region pairs, and
predict classes and locations of objects in query images.

We now describe these components in detail.
Encoding Network (Fig. 2a). The support crop and the
query image are denoted as X∈RW×H and X∗∈RW∗×H∗.
Let Φ↓ ∈ RK×N and Φ↓∗∈ RK×N∗be support and query
maps from layer 4. Feature map Φ↓∗∈RK×N∗ is used by
ARPN. Let Φ∈RK×4N and Φ∗∈RK×4N∗ be feature maps
with twice the resolution of Φ↓ and Φ↓∗. They are used for
forming RKHS kernels and k-autocorrelations. (See §A of
Suppl. Material for details about EN.)
RKHS Kernels and K-autocorrelations. Before we gen-
erate our representations, we perform the `2-norm normal-
ization on feature vectors Φ∈RK×4N . An autocorrelation
matrix on Φ could be then computed as K(lin) = 1

4NΦΦT .
Let Φ̄ = ΦT ≡

[
φ̄1, · · · , φ̄K

]
, then one could also write

K(lin) as an inner-product kernel k(lin)
ij = 〈φ̄i, φ̄j〉. In prac-

tice, we firstly obtain RKHS kernels listed in Table 1, e.g.,
k(poly)
ij and k(rbf)

ij , by substituting the inner product 〈φ̄i, φ̄j〉
into a non-linearity ρ : R→R in Table 2. In addition, for
the RBF kernel, one should decompose the Euclidean dis-
tance ‖φ̄i − φ̄j‖22 = ‖φ̄i‖22 + ‖φ̄j‖22 − 2〈φ̄i, φ̄j〉, which
becomes handy during IRA-based computations.

19209

(a) (b)

Figure 3. Kernelized Block (Fig. 3a). Feature Maps (Φ↓ and Φ
are of low and high resolution) enter the block. As support bound-
ing boxes are few, RKHS kernels and k-autocorrelations are com-
puted by the Kernelized Autocorrelation (KA) unit, and passed
to the Second-order Spectral Diagonal Correlation (SOSD) unit
with Power Normalization (PN). Attention Region Proposal Net-
work (ARPN) matches support representations against the query
feature map to obtain the query attention map and generate B
query region proposals. The Integral RoI Aggregation (IRA) unit
produces the so-called integral tensors for RKHS kernels and k-
autocorrelations. ARPN passes region candidates to IRA, where
RKHS kernels and k-autocorrelations are extracted for each can-
didate region at a low cost, and passed via the SOSD with PN.
First-order and kernelized representations Ψ and Ψ′ are passed to
the Multi-head Relation Network (MRN). Fig. 3b: computation of
the integral tensor in Eq. (5). Fibers (purple arrows) are multiplied
with each other by the inner product. By analogy, blue fibers are
multiplied with each other. Ignore count sketching matrix P for
generic IRA. In fact, tensorMI can be obtained efficiently with
two CUDA BLAS broadcast-style matrix-matrix multiplications.

Secondly, we define and compute a family of k-
autocorrelation matrices. Let Φ ≡ [φ1, · · · ,φ4N], then
we can define a family of kernelized autocorrelations k′ij =
1

4N

∑
n∈I4N

ρ
(
φinφ

T
jn

)
with the equivalent matrix form K′ =

1
4N

∑
n∈I4N

ρ
(
φnφ

T
n

)
. By substituting ρ according to Table 2,

we obtain k′ (poly)
ij and k′ (rbf)

ij . Note that k′ (lin)
ij =k(lin)

ij .

linear polynomial RBF

kij 〈φ̄i, φ̄j〉
(
〈φ̄i, φ̄j〉+λ

)r
exp

(
−
∥∥φ̄i − φ̄j∥∥22 /2σ2

)
Table 1. Kernels on vectors φ̄. We learn hyper-parameters λ≥ 0
and σ≥0, whereas r∈I3 is the order of polynomial kernel. Note
exp

(
−
∥∥φ̄i − φ̄j

∥∥2

2
/2σ2

)
∝exp

(
〈φ̄i, φ̄j〉/σ2

)
if ∀i,

∥∥φ̄i

∥∥
2

=1.

linear polynomial RBF

ρ(z) z (z + λ)
r

exp
(
z/σ2

)
ω(x) x [

(
r
ι

) 1
2λ

ι
2x

r−ι
2]ι=0,··· ,r

[√
c exp

(2(x−qι)
σ2

)]
ι∈Ir′

Table 2. Non-linearity ρ(z) can form RKHS kernels (substitute
the inner product for z) and/or kernelized autocorrelation matri-
ces. For approximations, we use feature maps e.g., if z=xy then
ρ(z)'〈ω(x),ω(y)〉, where r is the polynomial order, r′≈ 3 de-
termines the quality of RBF approximation, c>0 is a scaling con-
stant and q1, · · · , qr′ are equally spaced to cover interval 〈−1, 1〉.

RKHS kernels vs. k-autocorrelations. For kernels,
the inner product precedes the non-linearity ρ: kij =
ρ(
∑
l φ̄liφ̄lj). The non-linearity acts on a sum-trend

of element-wise correlations. In contrast, for k-
autocorrelations, ρ, applied to individual coefficients,
precedes the inner product: k′ij =

∑
l ρ(φ̄liφ̄lj). It acts

as a soft-maximum selector over individual element-
wise correlation pairs.

Integral RoI Aggregation4 (IRA). For query proposal re-
gions, we have access to a feature map Φ∗ representing an
entire query image. Instead of extracting RoIs (proposed by
RPN) from Φ∗ and then forming hundreds of kernel ma-
trices individually (e.g. 256 RoIs×5 kernelized representa-
tions), we propose an efficient IRA (Fig. 4: blue block). We
form a correlation feature map by the Kronecker product
along the first mode of Φ∗, extracting the upper triangular5,
and reshaping the matrix into a three-mode feature map:

M=Reshape
(

Upper(Φ∗⊗Φ∗)∈R 1
2K(K+1)×4N∗

)
, (4)

where M ∈ R 1
2K(K+1)×2N∗W×2N

∗
H due to Reshape(·) re-

shaping mode 2 (size 4N∗) into modes 2 and 3 (sizes 2N∗W
and 2N∗H). Then the so-called integral tensor is formed.

Integral tensor is obtained by multiplying M along
modes 2 and 3 by the lower and upper triangular ma-
trices,R4, ij = 1 if i ≥ j (0 otherwise) andR4ij = 1 if
i≤j (0 otherwise), in order to obtain the integral tensor

MI =M×2R4×3R4, (5)

where symbols ×2 and ×3 are tensor-tensor multiplica-
tions along modes 2 and 3 [14].

Figure 3b illustrates the formation of integral tensor by
considering each channel of M separately. Let M ≡
[M l]l∈IK(K+1)/2

and MI ≡
[
M

I
l

]
l∈IK(K+1)/2

. Then

∀l,M I
l =R4M lR

4, or simply, Mlij=
∑

i′≤i,j′≤j
Mli′j′ .

Kernelized region representation with top-left (x, y)
and bottom-right (x′, y′) locations, x ≤ x′, y ≤ y′, is
extracted with a negligible cost (one addition/two sub-
tractions) by:

K(ρ)((x, y), (x′, y′))=ζρ(K̂) where (6)

K̂=Deploy(MI
:,x′,y′−M

I
:,x′,y−1−M

I
:,x−1,y′+MI

:,x−1,y−1).

Deploy(·) in Eq. (6) deploys the vector containing the up-
per triangular (plus diagonal) back into the corresponding

4Viola and Jones [44] explain basics of integral images.
5Note that φ⊗φ=Vec(φφT)∈ RK2

where Vec(·) vectorizes the ma-
trix. We apply⊗ to feature vectors φ of Φ∗ in Eq. (4). We discard redun-
dant lower triangular by Upper(φ ⊗ φ)≡Upper(φφT) ∈ RK(K+1)/2

that extracts the upper triangular+diagonal from the matrix & vectorizes it.

19210

Figure 4. The KA unit takes the support and query feature maps
Φ and Φ∗ as input. Operator } splits Φ and Φ∗ into 5 groups
along the channel mode (1×256 and 4×192 groups on which 5
kernelizations are computed). For support, KA computes 3 RKHS
linear kernels K(lin), two of which are used to form K(poly) and
K(rbf) by applying relevant non-linearities. KA also computes k-
autocorrelations K′(poly) and K′(rbf). For the query feature map
Φ∗, IRA computes integral tensors MI and M′I from which
B × 3 RKHS linear kernels, B× polynomial and B× RBF k-
autocorrelation matrices are cheaply extracted for B query pro-
posal regions. B× RKHS polynomial and B× RBF kernels are
computed from B× RKHS linear kernels. We obtain (B+1)×5
matrices that are kernel-pooled by SOSD (Table 3) to form signa-
tures (1×256 and 4×192) that are concatenated by � and passed
via PN. The output of KA is Ψ′ (one vector) and Ψ′∗ (B vectors).

square matrix, ζ = 1
(x′−x+1)(y′−y+1) is a normalization,

whereas ‘:’ simply extracts the entire fiber (vector) along
the first mode of tensor. For the RBF kernels, we normalize
K̂ by `2 norms of φ̄i:

K̂ := Diag†(Diag(K̂0.5))K̂Diag†(Diag(K̂0.5)). (7)

For k-autocorrelation matrices, we have:

M′=Reshape(Upper(ρ(Φ∗)⊗ ρ(Φ∗))), (8)

with the integral tensor M′I =M′×2R4×3R4, so

K′(ρ)((x, y), (x′, y′))=ζK̂
′

where (9)

K̂
′
=Deploy

(
M′I

:,x′,y′−M′I
:,x′,y−1−M′I

:,x−1,y′+M′I
:,x−1,y−1

)
.

In experiments, we use (i) RKHS-based linear, polyno-
mial and RBF kernels, and (ii) k-autocorrelations with poly-
nomial and RBF non-linearities. We split K support fea-
ture maps Φ and query6 feature maps Φ∗ along the channel
mode into 5 equally sized groups (details provided later).
Such a setting limits computational cost and lets each ker-
nel specialize.

6Due to the low number of support regions, their kernelized represen-
tations are computed by the basic formula. For query proposal regions, we
use IRA-based computations due to the large number of proposals ≥256.

Integral RoI Aggregation with Count Sketching. Eq. (4)
and (8) apply the costly Kronecker product on K dimen-
sional feature vectors. To reduce its O(K2) complexity to
O(K ′2), K ′� K, we apply count sketching [47] via the
unitary projection matrix P∈{−1, 0, 1}K′×Kwhich enjoys
a simple pseudoinverse P†= K′

K PT. Eq. (4) and (8) become

M=Reshape
(

Upper
(

(PΦ∗)⊗ (PΦ∗)
))

and (10)

M′=Reshape
(

Upper
(∑
ι∈Ir′

(
Pωι(Φ

∗)
)
⊗
(
Pωι(Φ

∗)
)))

,

with the kernelized region representations recovered by

K(ρ)((x, y), (x′, y′))≈ ζρ
(
P†K̂P†T

)
, (11)

K′(ρ)((x, y), (x′, y′))≈ ζP†K̂′P†T . (12)

The above is true as ΦΦT≈PΦΦTPT so inverting sketch-
ing yields P†PΦΦT (P†P)T ≈ΦΦT .

Count sketching implicitly performs a feature-level
augmentation akin to injecting the Gaussian noise into
features [46]. (Proof is in §C of Suppl. Material.)

•Notice
〈
Pφ,Pφ′

〉
=
〈
PTPφ,φ′

〉
=
〈
K
K′P

†Pφ,φ′
〉
.

If ‖φ‖2 = ‖φ′‖2 = 1 then based on properties of count
sketches in §3, we have〈
K
K′P

†Pφ,φ′
〉

=
〈
Pφ,Pφ′

〉
∼ N

(〈
φ,φ′

〉
, σ†2

)
, (13)

where
〈
φ,φ′

〉
is a point-wise convolution of feature

vector φ with convolutional filter φ′. It follows that〈
K
K′P

†Pφ,φ′
〉

realizes a point-wise noisy convolution
whose variance σ†2 = 1

K′ (
〈
φ,φ′

〉
+1)≤ 2

K′ .

•Injecting the Gaussian noise [46] can be characterized
as
〈
φ+∆φ,φ′

〉
where ∆φ∼N (0, σ‡2) which leads to〈

φ+∆φ,φ′
〉
∼N

(〈
φ,φ′

〉
, σ‡2

)
.

Computational Complexity of IRA. Computing dot-
product based kernels naively (from Φ∗) has the complex-
ity O(K2Ñ∗B), where K is the number of features (chan-
nels) and Ñ∗ is the average area of B = 256 query pro-
posals. Computing these kernels via IRA has the complex-
ity O(K2N∗

3
2 +K2B) (the first and second terms concern

forming the integral tensor and extracting B kernels from
it). If N∗�(Ñ∗B)

2
3 , computing kernels via IRA is faster.

The cost of computing the Kronecker product in Eq. (4)
is O(K2N∗) which reduces to O(KK ′N∗+K ′2N∗) for
the sketching variant in Eq. (10) (top) and O(KK ′N∗+
r′K ′2N∗) (bottom). If K ′=0.5K, the cost is reduced 4×.
Pooling Kernelized Representations. Using matrices K of
dimensionsK×K as feature representations is prohibitively
expensive given hundreds of RoIs. Thus, we pool K into a
K-dimensional representation. Table 3 lists three pooling
operators we consider: first-order (mean) pooling with PN,

19211

denoted as FO+PN, Second-order Spectral Diagonal Corre-
lation with PN (SOSD+PN), and Second-order Self Corre-
lation with PN (SOSC+PN). We use SOSD+PN (standard
second-order pooling) and ablate other operators in Sec. 5.
Extraction of RKHS Kernels and K-autocorrelations.
As shown in Figure 4, given B query RoIs and the feature
maps for a support crop (Φ) and query image (Φ∗), we gen-
erate 5 kernelized matrices from Φ, and B×5 kernelized
matrices from Φ∗. Each set of 5 kernelized matrices corre-
spond to 3 (linear, polynomial and RBF) RKHS kernels, and
2 (polynomial and RBF) k-autocorrelation matrices. Each
kernelized matrix is computed on 1 of 5 groups of channel
features, where the groups were created by splitting (de-
noted by } in Figure 4) the channel with size K = 1024
into 1 group with size 256 and 4 groups each with size 192.

To set λ and σ2, the hyper-parameters of polynomial and
RBF RKHS kernels, we predict them using a trained layer
MLP(K(lin) ·1), where MLP contains an FC layer followed
by the sigmoid function. For k-autocorrelations, we first
take the mean over the spatial modes of Φ and Φ∗. We split
the resulting vectors µ and µ∗ into groups, as explained
above, and feed them into an MLP to generate σ′2 and λ′.
Parameter η′ of PN in Table 3 is predicted by a different
MLP that uses the output of SOSD as its input. As sig-
moid outputs are in range 〈0, 1〉, for RBF kernels, polyno-
mial kernels and PN, we scale them into 〈0.1, 2〉, 〈1, 10〉 and
〈1, 103〉 ranges. Figure 4 shows the extraction procedure.
Multi-head Relation Network. MRN learns the similarity
score, top-left and bottom-right bounding box coordinates
between support-query pairs represented by (i) first-order
spatially-aware (Ψ, {Ψ∗b}b∈IB) which are feature maps in
R1024×14×14, and (ii) second-order spatially-invariant pooled
kernelized representations (Ψ′, {Ψ′∗b }b∈IB) which are vec-
tors in R1024. Notice we have B query candidate regions.

The Multi-head Relation Net in Figure 2b contains 3 sub-
heads: (i) global head, (ii) local head and (iii) patch head.
Global and local heads combine first-order spatially-aware
and second-order spatially-invariant representations to learn
the similarity. The patch head takes first-order spatially-
aware representations to perform the bounding box regres-
sion. See §D of Suppl. Material for more details.
Let s((Ψ, {Ψ∗b}b∈IB), (Ψ′, {Ψ′∗b }b∈IB);S)→{(ȳ, x̄)b}b∈IB ..
S are network parameters, (ȳ, x̄) ∈ Y contains similarity
prediction, and top-left/bottom-right coordinates of candi-
date regions b ∈ IB . For the L-way Z-shot problem, we
have L×Z support image regions {Xn}n∈U from set U
and their corresponding descriptors {(Φ↓,Φ)n}n∈U from

FO+PN SOSD+PN SOSC+PN

GSigmE

(
Φ↓·1
N

; η′
)
GSigmE

(
Diag

(
ĜMaxExp(K; η)

)
; η′
)
GSigmE

(
K·1
K

; η
)

Table 3. Pooling operators are applied (i) prior to cross-correlation
in ARPN and (ii) to represent support and query RoIs.

the Encoding Network (Fig. 2a). We compute L represen-
tations Ψ and Ψ′. Let X∗ be a query image with its query
feature maps {(Φ↓∗,Φ∗)n}n∈IB obtained from B proposal
regions from ARPN (Fig. 3a). Representations (Φ↓,Φ)
and (Φ↓∗,Φ∗) are passed to the Kernelized Block (Fig. 3)
whose output representations (Ψ,Ψ′) and (Ψ∗,Ψ′∗) are
passed to Multi-head Relation Net to minimize the loss:∑

(l,b)∈IL×IB

lsim(ȳlb,y
l
b)+ lbox(x̄lb,x

l
b)+ lHrpn(Ψ′l×Φ↓∗,Φ↓∗), (14)

where query-support pairs belong to L classes in the subset
C‡ ≡ {c1, · · · , cL} ⊂ IC ≡ C. Loss functions lbox and
lHrpn follow [31], and lsim is the binary cross-entropy,H are
parameters of ARPN (same with [31]) and ‘×’ performs
channel-wise cross-correlation in Ψ′l×Φ↓∗∈R1024×14×14.

5. Experiments
Datasets and settings. For PASCAL VOC 2007/12 [5],
we adopt the 15/5 base/novel category split setting and use
training/validation sets from PASCAL VOC 2007 and 2012
for training, and the testing set from PASCAL VOC 2007
for testing [11]. For MS COCO [24], we follow [52], and
adopt the 20 categories that overlap with PASCAL VOC as
the novel categories (testing). The remaining 60 categories
are used for training. For the FSOD dataset [6], we split
1000 categories into 800/200 for training/testing. We report
standard FSOD metrics: mAP , AP , AP50 and AP75.
Implementation details are in §H and hyper-parameters
for each dataset are in §I of Suppl. Material.
5.1. Comparisons with the State of the Art
PASCAL VOC 2007/12. We compare KFSOD to FSODup

[48], CGDP+FRCN [23], TIP [21], FSCE [40], TFA [45],
Feature Reweighting (FR) [11], LSTD [2], FRCN [31], NP-
RepMet [53], MPSR [49], PSND [58] and FSOD [6]. Ta-
ble 4 shows that KFSOD outperforms FSOD by a 6.3–10%
margin. For the 1- and 10-shot regime, we outperform
FSODup by∼2.2%. Table 9 (§E of Suppl. Material) shows
class-wise results (5-shot protocol): KFSOD gains 11.2%
and 6.5% mAP (novel and base classes) over FSOD.
MS COCO. Table 5a compares KFSOD vs. FSODup [48],
CGDP+FRCN [23], TIP [21], FSCE [40], TFA [45], FR
[11], Meta R-CNN [52], FSOD [6] and PNSD [6] on MS
COCO minival set (20 novel cat., 10-shot). KFSOD outper-
forms FSODup by 6.9%, 2.4%, 8.9% (AP , AP50, AP75).
FSOD. In Table 5b we compare KFSOD (5-shot proto-
col) with PNSD [58], FSOD [6], LSTD [2] and LSTD
(FRN [31]). We re-implement BD&TK, modules of LSTD,
based on Faster-RCNN for a fair comparison. KFSOD gives
SOTA results of 33.4% AP50 and 29.6% AP75.

5.2. Ablation studies
Below we use PASCAL VOC (novel classes, split 1, 5-

shot setting, hyper-parameters selected on the val. split).

19212

Table 4. Comparison of different methods in terms of mAP (%) on three splits on the VOC 2007 testing set.

Method/Shot Split 1 Split 2 Split 3 Mean±std

1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

FRCN ICCV12 11.9 29.0 36.9 36.9 5.9 23.4 29.1 28.8 5.0 18.1 30.8 43.4 7.6±3.1 23.5±4.5 32.3±3.3 36.4±6.0
FR ICCV19 14.8 26.7 33.9 47.2 15.7 22.7 30.1 39.2 19.2 25.7 40.6 41.3 16.6±1.9 25.0±1.7 34.9±4.3 42.6±3.4
Meta ICCV19 19.9 35.0 45.7 51.5 10.4 29.6 34.8 45.4 14.3 27.5 41.2 48.1 14.9±3.9 30.7±3.2 40.6±4.5 48.3±2.5
FSOD CVPR20 37.8 48.7 55.5 58.2 28.9 40.7 42.1 47.6 28.6 38.1 44.7 47.5 29.5±1.0 40.9±5.6 45.5±3.2 47.8±5.0
NP-RepMet NeurIPS20 37.8 41.7 47.3 49.4 41.6 43.4 47.4 49.1 33.3 39.8 41.5 44.8 37.6±3.4 41.6±1.5 45.4±2.8 47.8±2.1
PNSD ACCV20 40.9 50.4 56.5 59.8 30.2 41.8 46.4 48.3 34.8 40.6 46.9 48.6 35.3±4.4 44.3±4.4 48.6±2.8 52.2±5.4
MPSR ECCV20 41.7 51.4 55.2 61.8 24.4 39.2 39.9 47.8 35.6 42.3 48.0 49.7 33.9±7.2 44.3±5.2 47.7±6.2 53.1±6.2
TFA ICML20 39.8 44.7 55.7 56.0 23.5 34.1 35.1 39.1 30.8 42.8 49.5 49.8 31.4±6.7 40.5±4.6 46.8±8.6 48.3±7.0
FSCE CVPR21 44.2 51.4 61.9 63.4 27.3 43.5 44.2 50.2 22.6 39.5 47.3 54.0 31.4±9.3 44.8±4.9 51.1±7.7 55.9±5.6
CGDP+FRCN CVPR21 40.7 46.5 57.4 62.4 27.3 40.8 42.7 46.3 31.2 43.7 50.1 55.6 33.1±5.6 43.67±2.3 50.0±6.0 54.8±6.6
TIP CVPR21 27.7 43.3 50.2 56.6 22.7 33.8 40.9 46.9 21.7 38.1 44.5 50.9 24.0±2.6 38.4±4.0 45.2±4.3 52.47±5.3
FSODup ICCV21 43.8 50.3 55.4 61.7 31.2 41.2 44.2 48.3 35.5 43.9 50.6 53.5 36.8±5.2 45.1±3.8 50.1±4.6 54.5±5.5

KFSOD (Ours) 44.6 54.4 60.9 65.8 37.8 43.1 48.1 50.4 34.8 44.1 52.7 53.9 39.1±3.8 47.2±5.1 53.9±3.6 56.7±6.0

(a) (b) (c) (d)

Figure 5. mAP% of individual kernelized representations (PASCAL VOC 2007, novel classes, split 1, 5-shot setting) w.r.t. kernel hyper-
parameters. Fig. 5a shows ablations for the RKHS-based RBF kernels (σ of RBF/k and κ for RBF/k+MLP where κ is the sigmoid scaling
parameter in the learnable MLP module that adjusts σ on the fly). Lin/k is the linear kernel (no hyper-parameters). Fig. 5b shows ablations
for the k-autocorrelations (σ′ of RBF/a and the sigmoid scaling parameter κ′ for RBF/a+MLP). Fig. 5c shows ablations for the RKHS
polynomial kernels (order r of Poly/k with the offset λ= 1, and κ for Poly/k+MLP (r= 5) where κ is the sigmoid scaling of MLP that
adjusts λ on the fly). Fig. 5d: k-autocorrelations (order r′ of Poly/a (λ′=1) and sigmoid scaling κ′ of Poly/a+MLP (r′=5)).

Table 5. Comparison with SOTA on the MS COCO minival set
and FSOD testing set, given in Tables 5a and 5b.

Shot Method AP AP50 AP75

10

LSTD AAAI18 3.2 8.1 2.1
FR ICCV12 5.6 12.3 4.6

Meta ICCV19 8.7 19.18 6.6
MPSR ECCV20 9.8 17.9 9.7
FSOD CVPR20 11.1 20.4 10.6
PNSD ACCV20 15.3 21.7 12.5
TFA ICML20 9.6 10.0 9.3

FSCE CVPR21 10.7 11.9 10.5
CGDP+FRCN CVPR21 11.3 20.3 11.5

FSODup ICCV21 11.6 23.9 9.8

KFSOD (Ours) 18.5 26.3 18.7
(a)

Shot Method AP50AP75

5

LSTD
(FRN) AAAI18 23.0 12.9

LSTD AAAI18 24.2 13.5

FSOD CVPR20 27.5 19.4

PNSD ACCV20 29.8 22.6

KFSOD (Ours) 33.4 29.6

(b)

Different backbones. See §G of Suppl. Material.
Performance of individual kernels. Firstly, we compare
RKHS kernels with k-autocorrelations in a manual hyper-
parameter setting. We set η= 5 and η′= 100 of SOSD+PN
kernel pooling. We denote linear, RBF and polynomial
RKHS kernels as Lin/k, RBF/k and Poly/k. We refer to RBF
and polynomial k-autocorrelations as RBF/a and Poly/a.
Fig. 5a shows that RBF/k (σ = 2.0) outperforms Lin/k
by 2.1% on the validation split. However, RBF/k+MLP
(κ= 1.8) outperforms RBF/k by 2% in both validation and
test splits. Fig. 5b shows that RBF/a (σ′ = 0.2) outper-
forms Lin/k by ∼0.2%. However, RBF/a+MLP with the
sigmoid scaling parameter κ′ = 1.3 outperforms Link/k by
∼2% on both validation and test splits. Fig. 5c shows that

Table 6. Results with combinations of kernelized representations
on FSOD and COCO dataset (5/10-shot protocol) are in Table
6a. Table 6b shows mAP on PASCAL VOC 2007 (5-shot, novel
classes) of the linear kernel formed from low resolution Φ↓ vs.
high-resolution Φ feature maps (Fig. 2a).

Kernel 5-shot
(FSOD)

10-shot
(COCO)

Lin/kRBF/k+aPoly/k+aAP50AP75AP50AP75

X 30.6 23.8 21.3 12.4
X X 31.9 25.7 22.1 13.6

X X X 32.2 26.8 25.7 14.6
(a)

B 5-shot (Novel)
Φ↓ Φ

64 54.7 55.6
128 55.9 57.4
256 58.5 59.3
512 56.6 57.3
756 54.1 56.4

1024 53.4 55.2
(b)

Poly/k (r = 5) outperforms Link/k on both validation and
test splits. Finally, Fig. 5d shows that Poly/a+MLP (κ′=8)
outperforms Poly/a (r′ = 5) and Lin/k. Fig. 5b & 5c show
that MLP adjusts parameters of kernels on the fly in a very
stable way (maxima match on val. and testing splits). On
FSOD and COCO (Table 6a), combining kernels improves
results over Lin/k by ∼3%. See §F of Suppl. Material for
ablations on combinations of kernels.
Kernel pooling. We evaluate pooling from Table 3 w.r.t. η
of Spectral Power Normalization (SPN) and η′ of element-
wise PN, which we learn by MLP with sigmoid scaling κ′′.

Figure 6 shows that setting η= 1 (SPN is switched-off)
results in a big performance drop on all kernels (η=1 equals
merely applying kernel non-linearities along the diagonals

(a) (b) (c) (d)

Figure 6. mAP % of individual kernelized representations (PASCAL VOC 2007, novel classes, split 1, 5-shot setting) w.r.t. η or η′. Fig.
6a: RBF/k+MLP and RBF/a+MLP, and Fig. 6b: Poly/k+MLP and Poly/a+MLP w.r.t. the SOSD+PN kernel pooling parameter η (η′ is
learnt on the fly). Fig. 6c shows the performance of all 5 kernelized representations w.r.t. η of SOSD+PN. Fig. 6d compares First Order
(FO), First Order with PN (FO+PN), kernel pooling SOSC+PN and SOSD+PN, and SOSD+PN with η′ adjusted by an MLP scaled by κ′′.

Table 7. In Tab. 7a is the runtime (PASCAL VOC 2007) in seconds
per 1000 images (training vs. inference time) w.r.t. B (the number
of proposal regions). No count sketching was used. In Tab. 7b is
the runtime in seconds per 1000 images. Count sketching was used
by IRA+KA. Compression ratio K

K′ that gave best results was set
to 2×, 4× and 8× on PASCAL VOC 2007, FSOD, and COCO.

B Training Inference
IRA+KAKA IRA+KAKA

64 95.7 98.6 56.2 57.6
128 104.4 140.0 61.5 68.3
256 127.6 164.7 70.1 87.2
512 153.6 208.4 81.8 117.8
756 229.2 325.6 87.8 152.9

(a)

Dataset Training Inference
(B=256) IRA+KA KA IRA+KA KA

PASCAL
(VOC2007) 109.2 164.7 60.0 87.2
FSOD 101.1 171.0 55.8 88.3
COCO 69.7 172.1 39.0 89.6

(b)

Table 8. First-order vs. kernelized features in ARPN and/or MRN
(mAP%, PASCAL VOC 2007, 5/10-shot, novel/base classes).

HARPN MRN Shot/Novel Shot/Base

5 10 5 10

FO FO 49.6 57.2 65.7 68.8
FO All+FO 52.3 60.4 67.9 71.3
All All 59.8 64.2 72.1 75.4
All All+FO 60.9 65.8 72.6 76.6

(a)

HARPN MRN Shot/Novel Shot/Base

5 10 5 10

All
FO 56.0 59.5 68.0 71.3

PNSD 56.9 61.7 70.3 72.3
Lin/k 57.8 62.9 71.2 73.0
All 59.8 64.2 72.1 75.4

(b)

of matrices which discards off-diagonal correlations).
Fig.6a shows that the best combined validation perfor-

mance is attained by both RKHS-based RBF/k+MLP and
k-autocorrelation RBF/a+MLP for either η = 5 or η = 9.
Fig. 6b also shows that if we combine the validation per-
formance of Poly/k+MLP and Poly/a+MLP, either η= 5 or
η=9 are good choices. Thus we set η=9 in all our experi-
ments. Fig. 6c verifies the choice of η=9 on Lin/k and the
combination of all 5 kernelized representations.

Fig. 6d evaluates pooling operators from Table 3. Man-
ually setting η′ of FO+PN outperforms FO by ∼2%. Us-
ing all kernels with SOSC+PN pooling outperforms FO by
∼5%. SOSD+PN+MLP with η′ adjusted by the MLP with
κ′′ outperforms FO by ∼8%. Table 8 ablates first-order vs.
kernelized features. ARPN uses first-order+PN (FO) or all
kernels (All). MRN head uses only first-order inputs Ψ,Ψ∗

(FO), kernelized inputs Ψ′,Ψ′∗(All), linear kernel (Lin/k)
or PSND [58] (second-order matrix).
Performance vs. speed (IRA+KA). In Fig. 7a, for KF-
SOD and the injection of Gaussian noise, we chose the best

(a) (b)

Figure 7. Performance (mAP %) of KFSOD, KFSOD+Gauss.
noise and KFSOD+Sketching w.r.t. the compression ratio is in Fig.
7a (PASCAL VOC 2007, split 1, novel classes, 5-shot). mAP %
of KFSOD with count sketching w.r.t. the frequency of drawing of
sketch matrix P is in Fig. 7b (COCO, novel classes, 10-shot).

σ‡2 (defined below Eq. (13)) in range 〈0.001, 0.1〉, and we
reduce the feature map size by the factor of K/K ′ indi-
cated on x-axis (K ′ is not used). For KFSOD+Sketching,
we set K

K′ (Section 3 defines K ′). We indicate time in
hours (all methods achieve similar speed-up) on x-axis. As
is clear, KFSOD+Sketching achieves gain of ∼1.8% over
KFSOD. Fig. 7b shows that the best performance of KF-
SOD+Sketching on COCO is achieved for drawing a new
sketch matrix P every 0.4 epoch, and the best compression
ratio is K

K′ =8. Table 7a shows that IRA is very beneficial as
B (the number of candidate regions) grows. Table 7b shows
almost 3× speed-up compared to naive kernel computations
on COCO.

6. Conclusions

We have proposed RKHS kernels and k-autocorrelations
into FSOD. In order to accelerate the computation of re-
gion representations (the number of query candidate regions
is large), we propose a novel Integral Region-of-Interest
Aggregation (IRA) scheme combined with count sketch-
ing. On COCO, KFSOD with IRA and count sketching
takes 38.5h instead of 85.2h. In addition to accelerating the
computation of region representations, count sketching per-
forms controlled feature augmentation due to its bounded
noise, akin to feature augmentation by noise injection, lead-
ing to improved detection accuracy.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV 2020, pages
213–229. Springer, 2020. 2

[2] Hao Chen, Yali Wang, Guoyou Wang, and Yu Qiao. LSTD:
A low-shot transfer detector for object detection. In AAAI
2018, pages 2836–2843. AAAI Press, 2018. 1, 6

[3] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen.
UP-DETR: unsupervised pre-training for object detection
with transformers. CoRR, abs/2011.09094, 2020. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. Imagenet: A large-scale hierarchical image
database. In CVPR 2009, pages 248–255. IEEE Computer
Society, 2009. 13

[5] Mark Everingham, Luc Van Gool, Christopher K. I.
Williams, John M. Winn, and Andrew Zisserman. The pas-
cal visual object classes (VOC) challenge. Int. J. Comput.
Vis., 88(2):303–338, 2010. 6

[6] Qi Fan, Wei Zhuo, and Yu-Wing Tai. Few-shot object de-
tection with attention-rpn and multi-relation detector. CoRR,
abs/1908.01998, 2019. 1, 2, 6

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML 2007, pages 1126–1135. PMLR, 2017. 2

[8] Ross B. Girshick. Fast R-CNN. In ICCV 2015, pages 1440–
1448. IEEE Computer Society, 2015. 1, 2

[9] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks. IEEE Trans. Pattern Anal.
Mach. Intell., 42(8):2011–2023, 2020. 2

[10] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. On the
burstiness of visual elements. In CVPR, 2009. 2

[11] Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng,
and Trevor Darrell. Few-shot object detection via feature
reweighting. In ICCV 2019, pages 8419–8428. IEEE, 2019.
1, 2, 6

[12] Leonid Karlinsky, Joseph Shtok, Sivan Harary, Eli Schwartz,
Amit Aides, Rogério Schmidt Feris, Raja Giryes, and
Alexander M. Bronstein. Repmet: Representative-based
metric learning for classification and few-shot object detec-
tion. In CVPR 2019, pages 5197–5206. Computer Vision
Foundation / IEEE, 2019. 1

[13] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML 2015. Lille, 2015. 2

[14] Tamara G. Kolda and Brett W. Bader. Tensor decompositions
and applications. SIAM Review, 51(3):455–500, 2009. 4

[15] Piotr Koniusz, Lei Wang, and Anoop Cherian. Tensor repre-
sentations for action recognition. TPAMI, 2020. 2

[16] Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krys-
tian Mikolajczyk. Higher-order occurrence pooling for bags-
of-words: Visual concept detection. IEEE Trans. Pattern
Anal. Mach. Intell., 39(2):313–326, 2017. 2

[17] Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krys-
tian Mikolajczyk. Higher-order occurrence pooling on mid-
and low-level features: Visual concept detection. Tech. Re-
port, 2013. 2

[18] Piotr Koniusz and Hongguang Zhang. Power normalizations
in fine-grained image, few-shot image and graph classifica-
tion. TPAMI, 2020. 2, 3

[19] Piotr Koniusz, Hongguang Zhang, and Fatih Porikli. A
deeper look at power normalizations. In CVPR 2018, pages
5774–5783. IEEE Computer Society, 2018. 2

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. Commun. ACM, 60(6):84–90, 2017. 2

[21] Aoxue Li and Zhenguo Li. Transformation invariant few-
shot object detection. In CVPR 2021, pages 3094–3102,
2021. 6

[22] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-
tive kernel networks. In CVPR 2019, pages 510–519. IEEE,
2019. 2

[23] Yiting Li, Haiyue Zhu, Yu Cheng, Wenxin Wang, Chek Sing
Teo, Cheng Xiang, Prahlad Vadakkepat, and Tong Heng Lee.
Few-shot object detection via classification refinement and
distractor retreatment. In CVPR 2021, pages 15395–15403,
2021. 6

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: common objects in
context. In ECCV 2014, pages 740–755. Springer, 2014. 6,
13

[25] Songtao Liu, Di Huang, and Yunhong Wang. Receptive field
block net for accurate and fast object detection. In ECCV
2018, pages 404–419. Springer, 2018. 2

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. CoRR, abs/2103.14030, 2021. 13

[27] Changsheng Lu and Piotr Koniusz. Few-shot keypoint detec-
tion with uncertainty learning for unseen species. In CVPR,
2022. 2

[28] Saimunur Rahman, Lei Wang, Changming Sun, and Luping
Zhou. Redro: Efficiently learning large-sized spd visual rep-
resentation. In ECCV 2020, 2020. 2

[29] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,
stronger. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 6517–6525. IEEE Computer Soci-
ety, 2017. 1, 2

[30] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. CoRR, abs/1804.02767, 2018. 1, 2

[31] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. In NIPS 2015, pages 91–99. IEEE
Computer Society, 2015. 1, 2, 6

[32] Ya-Fang Shih, Yang-Ming Yeh, Yen-Yu Lin, Ming-Fang
Weng, Yi-Chang Lu, and Yung-Yu Chuang. Deep co-
occurrence feature learning for visual object recognition.
In CVPR 2017, pages 7302–7311. IEEE Computer Society,
2017. 2

[33] Pranav Shyam, Shubham Gupta, and Ambedkar Dukkipati.
Attentive recurrent comparators. In ICML 2017, pages 3173–
3181. PMLR, 2017. 2

[34] Christian Simon, Piotr Koniusz, and Mehrtash Harandi.
Meta-learning for multi-label few-shot classification. In
WACV, pages 3951–3960, 2022. 2

[35] Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. Adaptive subspaces for few-shot learn-
ing. In CVPR, 2020. 2

[36] Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. On modulating the gradient for meta-
learning. In ECCV, 2020. 2

[37] Bharat Singh, Mahyar Najibi, and Larry S. Davis. SNIPER:
efficient multi-scale training. In NIPS 2018, pages 9333–
9343, 2018. 2

[38] Alexander J. Smola and Risi Kondor. Kernels and regular-
ization on graphs, 2003. 1, 2

[39] Jake Snell, Kevin Swersky, and Richard S. Zemel. Proto-
typical networks for few-shot learning. In NIPS 2017, pages
4077–4087, 2017. 1, 2

[40] Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi
Zhang. FSCE: few-shot object detection via contrastive pro-
posal encoding. CoRR, abs/2103.05950, 2021. 6

[41] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip
H. S. Torr, and Timothy M. Hospedales. Learning to com-
pare: Relation network for few-shot learning. In CVPR 2018,
pages 1199–1208. IEEE Computer Society, 2018. 1, 2

[42] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region co-
variance: A fast descriptor for detection and classification.
In Ales Leonardis, Horst Bischof, and Axel Pinz, editors,
ECCV 2006, pages 589–600. Springer, 2006. 2

[43] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. Matching networks for
one shot learning. In NIPS 2016, pages 3630–3638, 2016. 1

[44] Paul A. Viola and Michael J. Jones. Rapid object detection
using a boosted cascade of simple features. In CVPR 2001,
pages 511–518. IEEE Computer Society, 2001. 4

[45] Xin Wang, Thomas E. Huang, Joseph Gonzalez, Trevor Dar-
rell, and Fisher Yu. Frustratingly simple few-shot object de-
tection. In ICML 2020, pages 9919–9928. PMLR, 2020. 2,
6

[46] Yulin Wang, Xuran Pan, Shiji Song, Hong Zhang, Gao
Huang, and Cheng Wu. Implicit semantic data augmenta-
tion for deep networks. NIPS, 32:12635–12644, 2019. 5,
11

[47] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex
Smola, and Josh Attenberg. Feature hashing for large scale
multitask learning. In ICML, pages 1113–1120, 2009. 1, 3,
5

[48] Aming Wu, Yahong Han, Linchao Zhu, and Yi Yang.
Universal-prototype enhancing for few-shot object detection.
In ICCV, pages 9567–9576, October 2021. 6

[49] Jiaxi Wu, Songtao Liu, Di Huang, and Yunhong Wang.
Multi-scale positive sample refinement for few-shot object
detection. In ECCV 2020, pages 456–472. Springer, 2020.
2, 6

[50] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. In CVPR 2017, pages 5987–5995.
IEEE Computer Society, 2017. 2

[51] Andrés Romero Mier y Terán, Michèle Gouiffès, and Lionel
Lacassagne. Enhanced local binary covariance matrices (EL-
BCM) for texture analysis and object tracking. In MIRAGE,
pages 10:1–10:8. ACM, 2013. 2

[52] Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xiao-
dan Liang, and Liang Lin. Meta R-CNN: towards general
solver for instance-level low-shot learning. In ICCV 2019,
pages 9576–9585. IEEE, 2019. 1, 2, 6

[53] Yukuan Yang, Fangyun Wei, Miaojing Shi, and Guoqi Li.
Restoring negative information in few-shot object detection.
In NIPS, 2020. 2, 6

[54] Hongguang Zhang and Piotr Koniusz. Power normalizing
second-order similarity network for few-shot learning. In
WACV 2019, pages 1185–1193. IEEE, 2019. 2

[55] Hongguang Zhang, Hongdong Li, and Piotr Koniusz. Multi-
level second-order few-shot learning. IEEE Transactions on
Multimedia, 2022. 2

[56] Hongguang Zhang, Li Zhang, Xiaojuan Qi, Hongdong Li,
Philip H. S. Torr, and Piotr Koniusz. Few-shot action recog-
nition with permutation-invariant attention. In ECCV, 2020.
2

[57] Jianjia Zhang, Lei Wang, Luping Zhou, and Wanqing Li. Be-
yond covariance: SICE and kernel based visual feature rep-
resentation. Int. J. Comput. Vis., 129(2):300–320, 2021. 1

[58] Shan Zhang, Dawei Luo, Lei Wang, and Piotr Koniusz. Few-
shot object detection by second-order pooling. In ACCV,
2020. 1, 2, 6, 8

[59] Minghang Zheng, Peng Gao, Xiaogang Wang, Hongsheng
Li, and Hao Dong. End-to-end object detection with adaptive
clustering transformer. CoRR, abs/2011.09315, 2020. 2

[60] Hao Zhu and Piotr Koniusz. Ease: Unsupervised discrimi-
nant subspace learning for transductive few-shot learnin. In
CVPR, 2022. 2

[61] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: deformable transform-
ers for end-to-end object detection. In ICLR 2021. OpenRe-
view.net, 2021. 2

