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Abstract

In-the-wild 3D face modelling is a challenging problem
as the predicted facial geometry and texture suffer from a
lack of reliable clues or priors, when the input images are
degraded. To address such a problem, in this paper we pro-
pose a novel Learning to Restore (L2R) 3D face framework
for unsupervised high-quality face reconstruction from low-
resolution images. Rather than directly refining 2D image
appearance, L2R learns to recover fine-grained 3D details
on the proxy against degradation via extracting generative
facial priors. Concretely, L2R proposes a novel albedo
restoration network to model high-quality 3D facial texture,
in which the diverse guidance from the pre-trained Gener-
ative Adversarial Networks (GANs) is leveraged to comple-
ment the lack of input facial clues. With the finer details of
the restored 3D texture, L2R then learns displacement maps
from scratch to enhance the significant facial structure and
geometry. Both of the procedures are mutually optimized
with a novel 3D-aware adversarial loss, which further im-
proves the modelling performance and suppresses the po-
tential uncertainty. Extensive experiments on benchmarks
show that L2R outperforms state-of-the-art methods under
the condition of low-quality inputs, and obtains superior
performances than 2D pre-processed modelling approaches
with limited 3D proxy.

1. Introduction
3D human face reconstruction has been rapidly advanced

during these two decades with applications including hu-

man digitalization, animation, and biometrics. The first

groundbreaking effort should be the 3D Morphable Model

(3DMM) [8], which provides reasonable geometry assump-

tions for modelling. Based on this, the reconstruction can
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Figure 1. Experimental analyses among non-parametric methods.

(a) Visual comparison under degraded input. (b) Cross-view scale-

invariant depth error on MICC [5] dataset, where we use the mod-

els to predict geometry from the image of the current pose, and

perform testing on images of other two poses. We use DFD-

Net [37] to preprocess the degraded images. Unsup3D [58] and

LAP [67] suffer from the input degradation, and receive limited

benefit from the 2D appearance enhancing method. In contrast,

our method models more detailed predictions, and shows more ro-

bust performance in cross-view validation. Please refer to supple-

mental materials for more details.

be achieved through optimization on low-dimensional pa-

rameters [46, 47]. With the development of deep learning,

recent works utilize neural networks to regress 3DMM pa-

rameters from 2D images [45, 70]. Although 3DMM based

approaches are further improved with non-linearity [19, 25,

53–55,60,69] and multi-view consistency [6,10,52,57,61],

they still suffer from several drawbacks: limited amount of

subjects (e.g., BFM [44] with 200 subjects) with controlled

conditions, difficulties on building skin details, anatomic

grounded muscles [16] and large variations of identity [71].

As a result, efforts are made on non-parametric mod-

elling for potential flexibility, which regress face normal

or depth directly from an input image without 3DMM as-

sumption [3, 49]. More recent works [42, 58] disentan-

gle a face into intrinsic factors and accomplishes canoni-

cal reconstruction in an unsupervised manner via render-
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ing loss [34]. Although the non-parametric methods capture

more detailed and distinct facial structures, they usually suf-

fer from degradation of appearance as facial clues are only

provided by input images without 3DMM prior. As shown

in Fig. 1, degraded inputs significantly reduce the recon-

struction accuracy. In practice, in-the-wild facial images

often have low resolution and quality due to unsatisfactory

equipment or a low proportion of the whole scene. On top

of these, we argue that high-quality face modelling against

degraded images is practical and crucial for non-parametric

methods. To tackle this problem, a direct way is using pre-

trained super-resolution models [37, 40] to process the de-

graded images. However, these models only tackle 2D ap-

pearance but fail to enhance inherent 3D clues. As illus-

trated in Fig. 1, 2D pre-processing cannot well improve

3D reconstruction accuracy, showing unsatisfactory visual

results and fragile performances on pose variation. While

3D texture completion methods [22,68] inpaint the missing

facial region, they cannot enhance the geometry.

In this paper, we propose a novel Learning to Restore

(L2R) 3D face framework to improve 3D face modelling

against limited image quality. L2R achieves such a goal

by mining 2D facial priors from pretrained GANs for the

propagation of 3D texture/geometry clues. The framework

is conducted in a mutual paradigm to iteratively boost 3D

texture and geometry modelling from a simple proxy. Con-

cretely, to constrain the generated texture with suitable con-

tent and 3D UV-position, L2R encodes input images and

albedo proxy to StyleGAN [33] generator, providing style

codes and spatial prior, respectively. In this way, L2R urges

StyleGAN to predict diverse clues on modelling realistic 3D

albedo beyond degraded input. Further, benefited from the

3D textures, L2R learns high-resolution facial shapes and

displacement maps to enhance facial details without pre-

defined topology. As 3D texture and geometry modelling

complement each other via rendering, we mutually opti-

mize these two procedures with a novel 3D-aware adver-

sarial loss, which enhances the consistency of prediction.

Extensive experiments demonstrate that L2R models supe-

rior texture and geometry from low-resolution images than

state-of-the-art and 2D pre-processed methods, and obtains

competitive results to models without degradation.

In summary, this paper has contributions in followings:

i) A novel Learning to Restore (L2R) 3D face framework

is proposed to model high-quality 3D faces from degraded

images in an unsupervised manner. In contrast to 2D ap-

pearance processing methods, L2R is able to enhance in-

herent 3D clues on texture and geometry reconstruction.

ii) With a novel albedo restoration network, L2R mines

2D generative facial priors to complement the lack of facial

clues and models 3D finer textures.

iii) Based on the restored 3D texture, L2R uses a novel

geometry refining network to model detailed facial depth

Non-parametric Supervision 3D Texture Degraded Input

MOFA [54], DECA [19] × I, keypoint � ×
RingNet [48], MVF [57] × I, keypoint × ×

D3DFR [14], GANfit [25] × I, keypoint � �
Cross-modal [3], DF2Net [63] � I, 3D scan × ×

Unsup3D [58], LAP [67] � I � ×
Ours � I � �

Table 1. Comparison with selected recent methods on settings. I
means 2D image. Most methods do not tackle the condition of

degraded input.

with a displacement map and enhances the 3D proxy.

2. Related Works
In Table 1, we compare recent 3D face modelling ap-

proaches, among which our method tackles a more chal-

lenging setting without shape assumption, and models 3D

face from degraded input images.

3D Face Reconstruction: As a long-standing problem,

3D face reconstruction is firstly developed by 3DMM [8,

46]. These optimization based methods are further im-

proved by deep neural network [15,20,38,45,70]. With the

differentiable renderer [34], models leverage image recon-

struction loss to get rid of ground truth dependency [26,54].

Recently, 3DMM approaches are further improved with

non-linearity [19, 25, 53, 60, 69] and multi-view consis-

tency [14, 52, 57].

To improve accuracy beyond 3DMM, non-parametric

methods, e.g., shape-from-shading algorithm [64], is also

able to model 3D face without 3DMM assumption. With

the success of deep learning, such an algorithm is improved

by SFS-Net [49] for modelling intrinsic facial factors. Data-

driven methods [3, 30, 63] are also proposed to directly

learn face geometry supervised by real or synthetic ground

truth. However, they cannot model 3D geometry of full

face. More recent works [58, 67] use weakly symmetric

constrains to predict canonical intrinsic factors from facial

images. GAN2Shape [42] avoids such symmetric constraint

but brings heavy per-image optimization. LiftedGAN [51]

transforms the framework to a generative model but also

needs optimization to address real-world images. While

these non-parametric methods cannot tackle low-quality in-

put images, our method improves the 3D modelling under

challenging conditions. Moreover, our method is conducted

in an end-to-end manner without per-image training.

3D Texture Completion: Facial texture synthesis has

been extensively studied [21, 25, 50]. Nevertheless, the per-

formance of these methods are limited due to the ambiguity

of monocular images. Therefore, approaches are proposed

to inpaint texture from visible facial appearance [12, 24].

Recently, [68] propose a framework for completion by ro-

tating and rendering. [23] propose a novel one-shot com-

pletion method using 2D face generator. In summary, these

methods require high-quality input, per-image optimiza-

tion and cannot improve facial geometry. In contrast, our
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method tackles low-resolution input, geometry refining and

realizes end-to-end inference.

GAN Inversion: Images can be embedded to the latent

space of pre-trained StyleGAN [32, 33], and efforts started

from [1, 2, 7]. Based on such approach, methods are pro-

posed to restore degraded images [28,43]. In practice, such

inversion models require extra optimization procedure, or

lack of spatial constraints only depended on style codes. In

contrast, our method needs no extra optimization and pro-

vides UV-spatial guidance to texture generation.

3. Learning 3D Proxy
Our L2R is able to improve the quality of a 3D proxy

against image degradation. Theoretically, such proxy can

be arbitrary non-parametric model. Here we select Un-

sup3D [58] as 3D proxy, as it requires no supervision, lim-

ited constraints and training cost. As discussed in Sec. 1,

Unsup3D suffers from noise and blurring from input im-

ages, from which it predicts 3D model with unsatisfactory

reality and consistency. However, the UV-relationship it

provides can be leveraged by L2R to guide high-quality tex-

ture and geometry generation.

Unsup3D disentangles a facial image I into intrinsic fac-

tors (d, a, ω, l) including a canonical depth map d ∈ R+,

a canonical albedo image a ∈ R
3, a global light direction

l ∈ S
2 and a viewpoint ω ∈ R

6. Each factor is predicted

by a separate network which we denote as Φd,Φa,Φω,Φl.

Then, the 3D face can be reconstructed using these factors

by lighting Λ and rasterization Π as follows:

Î = Π(Λ(a, d, l), d, ω). (1)

Π is achieved by a differentiable renderer [34]. The learning

is performed via image reconstruction loss which encour-

ages I ≈ Î. To represent full frontal face and get canonical

albedo/depth, the framework utilizes a weakly symmetric

constraint by horizontally flipping:

Î′ = Π(Λ(a′, d′, l), d′, ω), (2)

where a′ and d′ are the flipped version of a, d. Mean-

while, the objective I ≈ Î′ is also encouraged. As prac-

tical faces may be asymmetric, the framework predicts con-

fidence maps σ, σ′ ∈ R+ by Φσ and calibrates the loss as

follows:

L(Î, I, σ) = − 1

|Ω|
∑

ln
1√
2σ

exp−
√
2|Î− I|
σ

, (3)

where Ω is normalization factor. The flipped version

L(Î′, I, σ′) is also calculated. In this way, 3D faces are

modeled from images in an unsupervised manner without

3DMM assumption. For clearness, we denote ao, a
′
o, do, d

′
o

as the predicted albedo/depth proxy, and lo, ωo as the

light/viewpoint proxy. The degraded input and high-

resolution ground truth is denoted as I, Igt.

4. Learning to Restore 3D Face
In this section, we mainly describe the proposed Learn-

ing to Restore 3D Face (L2R) framework. Given a low-

resolution image, our aim is to mine 2D generative facial

priors for fine-grained 3D texture and geometry modelling.

As illustrated in Figs. 2 and 3, the framework has two mod-

ules: Albedo Restoration Network (ARN) and Geometry

Refining Network (GRN). We further propose a 3D reality

loss to improve the 3D consistency of predictions, and intro-

duce a mutual learning strategy for effective optimization.

4.1. Albedo Restoration Network

To tackle the degradation of input images, recent works

[9, 28] show that a pre-trained StyleGAN [32, 33] is able

to provide complementary priors. However, StyleGAN

only contains 2D texture clues and struggles to generate

decoupled 3D information. As a result, we propose the

ARN which urges StyleGAN to provide 3D canonical fa-

cial albedo clues. The ARN is illustrated in Fig. 2, where

the style code and spatial guidance respectively guarantee

the content of input image and explicit 3D position.

Style Code Injection: To guarantee the suitable charac-

teristics of restored albedo as the input image I, correspond-

ing style code should be extracted to guide the pre-trained

StyleGAN. We use a style encoder with the same architec-

ture as those of Φd,Φa to get high-level features from I, and

then use the same fully-connected mapping network as [33]

to obtain style code c. Here we predict multiple codes,

i.e., for a StyleGAN with n stages, we generate codes as

{ci}ni=1. Then we inject the code ci to AdaIN [29] of the i-
th style conv-layer. In this way, StyleGAN obtains ‘styles’

at each stage, which contributes to generating priors with

suitable multi-level attributes. Note that, different from in-

version methods [1, 2], we do not require the style codes to

strictly recover I, but provide reasonable facial information.

Spatial Guidance Injection: The prediction of ARN

should be in canonical view as ao to represent 3D full-face

texture, thus StyleGAN should be guided to generate priors

in UV-space. To achieve this, we extract features from the

albedo proxy as spatial guidance. As illustrated in Fig. 2,

the albedo encoder has the same architecture as Φa, which

extracts multi-scale features that denoted as spatial guid-

ance {gi}ki=1. We then propagate the spatial guidance to the

first k corresponding stages of StyleGAN. Denote fi is the

input feature of the i-th StyleGAN stage, the spatial guid-

ance injection can be formulated as f ′
i = Conv([gi, fi]),

where f ′
i is the output of the StyleGAN’s conv-layer. We

only inject the guidance to early stages of StyleGAN, as

propagating the features of albedo proxy to higher lay-

ers may apply too much dependency and limit the quality

of generated priors. In this way, StyleGAN obtains UV-

relationship to provide canonical 3D facial priors.

Prior Decoder: To further organized the information
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Figure 2. Overview of the proposed Albedo Restoration Network. Spatial guidance and style codes are extracted from original canonical

albedo ao and low-resolution image I, respectively, and then fed to a pre-trained StyleGAN. Style code helps StyleGAN to generate priors

with similar style to the target, and spatial guidance constrains the UV-relationship of the prediction to generate 3D full-face albedo. Facial

priors of higher-level layers of StyleGAN is then fed into the prior decoder to predict restored albedo. The restored image Ir can be

rendered with the 3D proxy do, lo and ωo by Eqn. (1). The layers of StyleGAN are freezed during training.

provided by StyleGAN layers, we propose a prior decoder

to process the output features. As information of higher lay-

ers of StyleGAN is more correlated to image appearance,

we leverage output features from last m stages of StyleGAN

as facial priors. As illustrated in Fig. 2, we denote the priors

as {pi}mi=1. Then the priors are fed into the prior decoder to

generate the final restore albedo ar. The prior decoder can

be formulated as:

hi =

{
Conv(pi), i = 1

Conv([hi−1, pi]), otherwise
(4)

where hi is the output feature of StyleGAN’s conv-layer.

After each conv-layer, we upsample hi to match the fea-

ture size. ar is used to re-render high-resolution image

that we denote as Ir with the proxy of ωo and depth do
by Eqns. (1), (2). In our method, we recover albedo to a

size of 256×256. The reason is that modelling 3D texture

of higher resolution without supervision is challenging and

causes huge training and rendering burden. Hence we use a

reasonable size which is 8-time larger than original input to

analyse our method.

4.2. Geometry Refining Network

As discussed in Sec. 1, 2D appearance enhancing can-

not provide 3D texture clues which are directly beneficial to

geometry modelling. Hence, we propose Geometry Refin-

ing Network (GRN) to leverage recovered 3D texture clues

for detailed facial shape modelling, illustrated in Fig. 3.

An encoder-decoder network is utilized to predict geometry

from input I, normal proxy no and restored canonical tex-

ture tr. Here, features from tr provide high-quality 3D tex-

ture clues in canonical view, while I and no give priors and

content in original domain. In practice, we find that only

predicting pure depth/normal cannot well reconstruct facial

details but yields over-smooth results. Hence, we learn dis-

placement map to explicitly model the fine details. Such

idea is inspired by 3DMM based methods [11, 18, 59] but

Displacement Map m

Pure Normal n

Refined Normal nr

Input Image I

Restored
Texture tr 

Normal
Proxy no

Input Image I

Figure 3. Overview of the Geometry Refining Network (GRN). An

encoder-decoder network is utilized to predict pure normal n and

displacement map m from input I, normal proxy no and recovered

canonical texture tr . The refined geometry nr is generated by

Eqn. (5) for detailed 3D displacement. For better visualization,

we show normal rather than depth.

we make it in a non-parametric manner. The displacement

map m ∈ [h,w, 3] is generated in the canonical view. Then,

we project the learned pure depth d to 3D UV-space to get

Duv ∈ [h,w, 3], and utilize m to enhance it as follows:

Duv
r = Duv +m� n, (5)

where n is the normal map got from d. In this way, we get

3D detailed shape Duv
r which can be utilized to enhance

lighting Λ and reprojection Π in Eqn. (2).

4.3. Training

Besides loss function in Eqn. (3), to enhance 3D mod-

elling quality, we propose a cross-view consistency loss.

We re-render a restored image using randomly sampled ω̇, l̇,
and denote it as İr. Given the high-resolution ground truth

Igt, we use adversarial loss [4] with a same discriminator D
as [33] to compare İr and Igt. This objective can be formu-

lated as:

Lc = min
G

max
D

E[log(D(Igt)]+E[log(1−D(G(İr))], (6)

where G is our framework as generator. To suppress artifact

in predicted displacement map, we use a Laplacian smooth-
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ness regularization which can be denoted as ∇|m|. The final

loss is then formulated as:

Lall = L(Î, Igt, σ) + L(Î′, Igt, σ′) + αLc + β∇|m|, (7)

where α, β are weighted constants.

With the proposed ARN and GRN, we recover detailed

3D texture and geometry from degraded images. Actually,

the modelling procedures of ARN and GRN are comple-

mentary with each other: better texture provides reliable

clues for geometry reconstruction, while finer shape de-

tails contribute to appearance prediction via rendering pro-

cedure. As a result, we propose a mutual learning strategy

to boost the optimization. We first optimize ARN, and then

train GRN with ARN freezed. During this stage, we directly

use ωo, lo proxy predicted from Φω,Φl. Then we jointly

optimize ARN, GRN and Φω,Φl to mutually improve the

performance of texture and geometry modelling. With such

strategy, the ambiguity of intrinsic learning is reduced, and

detailed clues of StyleGAN are successfully propagated to

the whole modelling procedure.

5. Experiment
Dataset. Following Unsup3d [58], the model of 3D

proxy is pretrained on CelebA [39] which has 200k in-

the-wild human face images. We select 160k/20k/20k im-

ages as train/val/test set, respectively. Once the 3D proxy

is prepared, we train L2R on CelebAMask-HQ [36] and

FFHQ dataset [32] which contains 30k and 70k images

of 1024×1024, respectively. For FFHQ, we randomly se-

lect 30k images to reduce the training time burden. The

final dataset is combined with 60k images, where we se-

lect 40k/10k/10k as train/val/test. The images are resized to

256×256 as high-quality ground truth Igt, and are further

resized to 32×32 with different blurring and smoothing as

degraded input I. For evaluation on facial geometry, we

perform testing on 3DFAW [27, 31, 65, 66], BFM [44] and

Photoface [62] dataset. 3DFAW contains 23k images with

66 3D keypoint annotations, and we use the same proto-

col as [58] to calculate depth correlation metric for testing.

For BFM dataset, we use the same generated data released

by [58] to evaluate predicted depth maps. Photoface dataset

contains 12k images of 453 people with face/normal image

pairs, and we follow the protocol of [3, 49] to evaluate the

quality of modeled facial normal.

Implementation Details. We use the same architecture

of Φω,Φl as [58] to predict pose and light. For learning

confidence map at output size of 256×256, we use a simi-

lar network Φσ but with extra upsampling-conv operations.

We use StyleGAN2 [33] which is officially pretrained on

FFHQ of 1024×1024 in ARN to provide generative facial

priors. This model contains 9 stages, thus we set n = 9 in

style code injection of Fig. 2. The spatial guidance contains

features from 4×4 to 32×32 extracted from initial albedo,

thus we use k = 4 in {gi}ki=1. The priors are features from

64×64 to 1024×1024, thus we set m = 4 in {pi}mi=1. For

the priors of 512×512 and 1024×1024, we downsample

them to 256×256 to match the output size. For final loss

in Eqn. (7), we set α, β = 0.1. To optimize L2R frame-

work, we first train ARN for 30 epochs, then freeze ARN

and train GRN for another 30 epochs. The final mutual

learning of ARN and GRN is performed for 20 epochs. The

learning is conducted by Adam solver [35] with learning

rate of 1e − 4 and batch size of 16 on one NVIDIA Tesla

V100 GPU. More details can be found in the appendix.

Evaluation Protocol. For predicted facial geometry,

following [58, 67], we use Scale-Invariant Depth Error

(SIDE) [17] and Mean Angle Deviation (MAD) for eval-

uating depth and normal. For evaluation on modeled tex-

ture, we calculate Structural Similarity Index (SSIM) [56]

on facial regions between ground truth images and rendered

ones. To evaluate cross-view consistency of the reconstruc-

tion, we render images of original and frontal pose, ±45◦ of

yaw and pitch angles, and calculate mean cosine-similarity

of their encoded representations of Arcface [13] between

that of original high-quality image. To fairly assess the co-

sine similarity, we use a same cropping protocol as Arcface

to process the images. All the evaluation is performed on

scale of 256×256.

5.1. Ablation Study

Geometry: In this section we first analyse how the pro-

posed methods influence the geometry modelling. The re-

sults are illustrated in Table 2. Our full model obtains best

performance. Lines (2)-(6) and (7)-(9) reveal the influence

of ARN and GRN, respectively. In line (2), we observe

that even with a same architecture, the lack of pre-trained

StyleGAN prior significantly increases the errors. Such a

phenomenon also demonstrates that L2R successfully lever-

ages facial clues contained in StyleGAN to boost geometry

modelling. In line (3), we remove the StyleGAN but ap-

ply DFDNet [37] to pre-process the low-resolution images

as input. This approach brings lower errors, but still worse

than our full methods. This experiment indicates that only

pre-processing 2D appearance cannot tackle the 3D recon-

struction from degraded images, while StyleGAN provides

reliable facial priors to compensate for the lack of clues.

Lines (4)-(6) reveal the proposed components in ARN also

contribute to better performance. In line (7), we observe

that the restored image plays an important role, which pro-

vides complementary details for finer reconstruction. Fur-

ther, Line (8) reveals displacement map increases the accu-

racy beyond pure normal, while Line (9) demonstrates the

effectiveness of our cross-view loss in Eqn. (7). We further

make visual comparisons in Fig. 4. The input images are

blurred, and the 3D proxy suffers from such degradation.
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No. Method SIDE (×10−2) ↓ MAD (deg.) ↓
(1) Ours-full 0.710±0.139 14.70±1.16

(2) w/o StyleGAN prior 0.802±0.168 17.03±1.65

(3) w/o StyleGAN prior + DFDNet [37] 0.729±0.145 15.14±1.52

(4) w/o multi-style code 0.735±0.124 15.86±1.50

(5) w/o spatial guidance 0.732±0.138 16.19±1.63

(6) w/o prior decoder 0.728±0.129 15.63±1.58

(7) w/o restored image 0.776±0.178 16.57±1.49

(8) w/o displacement map 0.725±0.178 15.21±1.34

(9) w/o cross-view loss 0.727±0.140 15.01±1.32

Table 2. Comparison with baselines on BFM dataset.

ProxyInput w/o prior w/o dis-map OursGT

Figure 4. Ablation study on modeled geometry.

No. Method Cosine-Similarity ↑ SSIM ↑
(1) Ours-full 0.725 0.685
(2) w/o StyleGAN prior 0.631 0.528

(3) w/o multi-style code 0.667 0.641

(4) w/o spatial guidance 0.679 0.637

(5) w/o prior decoder 0.690 0.644

(6) w/o GRN 0.703 0.657

(7) w/o cross-view loss 0.707 0.671

Table 3. Comparison with baselines on texture modelling.

Without StyleGAN prior, the model predicts over-flattened

results which lack of obvious 3D structure. Further, the

predictions are over-smooth without displacement map. In

contrast, the predictions of our method are fine-grained with

details on eyebrow, eyelid and wrinkle.

Texture: We then perform ablation study on texture

modelling on our test set with high-resolution ground truth.

The results are illustrated in Table 3. Our full method ob-

tains best performance. In line (2), we observe that remov-

ing StyleGAN prior causes a significant decreasing of accu-

racy. Such results provide a consistent conclusion that L2R

well propagates the facial clues. In lines (3)-(5), we observe

the proposed modules in ARN also contribute to higher ac-

curacy. Further, line (6) reveals better geometry modelling

also improves the texture quality due to their mutual depen-

dence in rendering, and line (7) reveals the effectiveness of

our cross-view loss. We also perform visual comparison in

Fig. 5. The proxy suffers from blurring of input images.

Without StyleGAN prior, the quality of modelled texture is

also limited. The predictions contain noise without GRN,

which reveals the geometry modelling in L2R well boosts

the texture reconstruction via rendering procedure. In con-

trast, our full model produces clearer and detailed texture.

5.2. Comparison with State-of-the-Art Methods

In this section, we compare L2R with recent state-of-the-

art methods. Without specially statement, the methods use

GT Input Proxy w/o prior w/o GRN Ours

Figure 5. Ablation study on modelled texture.

No. Method SIDE (×10−2) ↓ MAD (deg.) ↓
(1) Ours 0.710±0.139 14.70±1.16

(2) Unsup3D [58] 0.901±0.170 18.52±1.58

(3) Unsup3D origin 0.793±0.140 16.51±1.56

(4) GAN2Shape [42] 0.827±0.170 15.93±1.50

(5) GAN2Shape origin 0.756±0.152 16.82±1.47

(6) LAP [67] 0.856±0.142 16.77±1.33

(7) LAP origin 0.721±0.128 15.53±1.42

Table 4. Results of state-of-the-art methods on BFM dataset.

No. Method Depth Corr. ↑ Time (ms)

(0) Ground Truth 66 -

(1) MOFA [54] (3DMM based) 15.97 -

(2) D3DFR [14] (3DMM based) 50.05 -

(3) DECA [19] (3DMM based) 51.93 -

(4) DepthNet [41] 35.77 -

(5) Unsup3D [58] 49.28 0.6

(6) Unsup3D + DFDNet 52.43 0.6

(7) Unsup3D origin 54.64 0.6

(8) LAP [67] 51.48 2.0

(9) LAP + DFDNet 56.25 2.0

(10) LAP origin 57.92 2.0

(11) Ours 57.96 1.6

Table 5. 3DFAW keypoint depth evaluation.

Method MAD ↓ < 20◦ ↑ < 25◦ ↑ < 30◦ ↑
SfSNet [49] 25.5±9.3 43.6% 57.5% 68.7%
DF2Net [63] (GT) 24.3±5.7 42.2% 62.7% 74.5%
D3DFR [14] 23.5±6.1 46.1% 61.8% 73.3%
DECA [19] 22.5±5.3 48.7% 62.3% 73.7%
Cross-Modal [3] (GT) 22.8±6.5 49.0% 62.9% 74.1%
LAP [67] + DFDNet 24.2±5.6 47.3% 62.7% 74.5%
LAP origin 23.0±5.1 48.2% 63.1% 74.5%
Ours 23.2±4.8 48.4% 63.5% 74.9%
Cross-Modal-ft [3] (GT) 12.0±5.3 85.2% 92.0% 95.6%
LAP-ft origin [67] 12.3±4.5 84.9% 92.4% 96.3%
Ours-ft 12.5±4.1 85.0% 92.5% 96.5%

Table 6. Facial normal evaluation on Photoface dataset.

degraded image of 32×32 as input. To further analyse the

difference between L2R and 2D super-resolution method,

we use DFDNet [37] to pre-process the input image and

denote such operation as ‘+DFDNet’. For methods using

original image as input, we denote them with ‘origin’.

Analysis on Geometry. We first evaluate the predicted

facial geometry on BFM dataset in Table 4, where the meth-

ods with tag ‘origin’ use original image as input without

degradation. We observe that Unsup3D, GAN2Shape and

LAP all suffer from low image quality which brings in-

crease of geometry error. In contrast, L2R obtains sig-
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GT Input Ours Unsup3D + DFDNet LAP + DFDNet DF2Net + DFDNet DECA + DFDNet

Figure 6. Qualitative comparison of facial normal between our method and Unsup3D [58], LAP [67], DF2Net [63] and DECA [19]. We

use DFDNet [37] to enhance the input appearance for other methods, by which we fairly compare with 2D pre-processed approaches. Our

method obtains finer details on eyebrow, mustache and wrinkles, and keep smoothing on clean skins.

GT Ours Unsup3D + DFDNet LAP + DFDNet Rotate-and-Render + DFDNet D3DFR + DFDNet

Figure 7. Visual comparison on texture against Unsup3D [58], LAP [67], Rotate-and-Render [68] and D3DFR [14]. All the compared

methods are boosted by DFDNet [37] to enhance the input appearance, by which we fairly compare against 2D pre-processed approaches.

nificantly superior performance in the same setting, which

demonstrates the robustness of our method. Further, com-

pared with line (3), (5) and (7), our method still outper-

forms the models without image quality limitation. We also

make evaluation on 3DFAW dataset in Table 5, where line

(0) represents the upper bound and line (1)-(4) provide ref-
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No. Method Cosine-Similarity ↑ SSIM ↑
(1) Ours-full 0.725 0.685
(2) Unsup3D [58] 0.582 0.493

(3) Unsup3D + DFDNet 0.605 0.511

(4) Unsup3D origin 0.627 0.520

(5) LAP [67] 0.653 0.586

(6) LAP + DFDNet 0.671 0.602

(7) LAP origin 0.698 0.631

(8) Rotate-and-Render [68] 0.611 -

(9) Rotate-and-Render + DFDNet 0.640 -

(10) Rotate-and-Render origin 0.697 -

(11) D3DFR origin 0.398 0.335

Table 7. Texture evaluation with the state-of-the-arts.

erences from 3DMM-based or keypoint-estimation meth-

ods. We observe our L2R model obtains the best perfor-

mance. Note that in line (6) and (9), although using DFD-

Net as 2D appearance pre-processing improves the accuracy

to some extent, it still provides weaker performances than

our method. Such phenomenon reveals that 2D appearance

enhancement cannot well address image degradation for 3D

modelling. We further analyse modelled facial normal on

Photoface dataset in Table 6, where ‘-ft’ means finetuning

on this dataset. Note that, ‘LAP origin’ uses original high-

quality images as input, while Cross-Modal [3] approach

inputs the original images and uses ground truth as supervi-

sion. In contrast, our method tackles a more challenging un-

supervised setting of degraded input, and still obtains com-

petitive results. Such analysis demonstrates the effective-

ness of L2R method. Finally, we illustrate visual results in

Fig. 6, where the other methods are enhanced by 2D super-

resolution model DFDNet. For Unsup3D and LAP, we ob-

serve that 2D appearance enhancing cannot essentially im-

prove their 3D modelling performance against degradation,

yielding oversmooth geometry. For DF2Net and DECA,

their results suffer from noise or incorrect facial structure.

In contrast, our method predicts accurate geometry with de-

tails on eyebrow and wrinkles, which reveals L2R success-

fully leverages 2D facial clues for 3D modelling.

Analysis on Texture: We then perform evaluations on

modelled texture on our high-resolution test set. For 3D

texture completion method Rotate-and-Render, we only cal-

culate cosine-similarity as its prediction is not spatially

aligned with the ground truth. As illustrated in Table 7, 2D

enhancement cannot significantly boost the modelled tex-

ture, while our L2R obtains best performance. Such phe-

nomenon is consistent with previous experiments, which

further demonstrates that our results have superior quality

and cross-view consistency. Visual comparison is illustrated

in Fig. 7. We find that although enhanced by DFDNet, Un-

sup3D and LAP cannot well complement the degradation of

input image. The predictions of them lack of clear details

and suffer from blurring. For Rotate-and-Render, its predic-

tions also contain obvious noise and over-smoothness. For

D3DFR, its performances are limited by the 3DMM basis

and produces facial textures with lower reality. In contrast,

our results have superior clarity, details, and less blurring.

(a)

(c)

(b)

(d)

InputGT Proxy Ours InputGT Proxy Ours

Figure 8. Failure cases of L2R. (a) Extreme poses. (b) Extreme

expressions. (c) Large artifacts. (d) Heavy make-ups or shadows.

5.3. Limitation

Here we analyse the potential limitation of our method.

Several failure cases are shown in Fig. 8, in which we ob-

serve that our method may fail on faces with extreme poses,

large expressions, artifacts or heavy make-ups. One pos-

sible reason is that the proxy also suffers from these chal-

lenging cases and produces corrupted geometry, thus our

method is influenced the proxy and cannot correctly align

the final results. Another reason is about the data bias.

Challenging cases including extreme poses, expressions or

artifacts hardly appear in the CelebA or CelebAMask-HQ

dataset. Hence, the model lacks experiences on addressing

these factors. The third reason is due to the shape assump-

tion. Without 3DMM, L2R has no reliable prior to correctly

deal with these cases.

6. Conclusion and Discussion

In this paper, we propose a novel Learning to Restore 3D

face (L2R) framework for high-quality 3D face modelling

against image degradation. The core idea of L2R is trans-

forming 2D generative facial priors to inherent 3D clues,

and mutually boost 3D texture/geometry modelling over a

simple proxy. To recover high-quality 3D texture, L2R con-

strains pre-trained StyleGAN with a novel albedo restoring

network, which urges StyleGAN to provide facial priors of

the required 3D position. To reconstruct detailed geometry,

L2R leverages the restored 3D texture to improve explicit

details modelling. Such two procedures are optimized pro-

gressively with a novel 3D-aware adversarial loss, yielding

stable optimization and consistent prediction. In the future,

several interesting directions could be considered beyond

L2R method, e.g., leveraging explicit operations on Style-

GAN rather than implicit transformation, or improving the

approximated rendering operation. According to the dis-

cussion of limitation, non-parametric face modeling under

challenging cases is also a possible direction.

Broader Impact: L2R predicts 3D faces based on the

learned statistics of the training dataset. The potential biases

may bring negative societal impacts. Besides, the model

may generate inexistent contents. These issues warrant fur-

ther research when building upon this work.
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