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Abstract

Group re-identification (GReID) attempts to correctly
associate groups with the same members under different
cameras. The main challenge is how to resist the member-
ship and layout variations. Existing works attempt to incor-
porate layout modeling on the basis of appearance features
to achieve robust group representations. However, layout
ambiguity is introduced because these methods only con-
sider the 2D layout on the imaging plane. In this paper,
we overcome the above limitations by 3D layout model-
ing. Specifically, we propose a novel 3D transformer (3DT)
that reconstructs the relative 3D layout relationship among
members, then applies sampling and quantification to pre-
set a series of layout tokens along three dimensions, and
selects the corresponding tokens as layout features for each
member. Furthermore, we build a synthetic GReID dataset,
City1M, including 1.84M images, 45K persons and 11.5K
groups with 3D annotations to alleviate data shortages and
poor annotations. To the best of our knowledge, 3DT is
the first work to address GReID with 3D perspective, and
the City1M is the currently largest dataset. Several exper-
iments show the superiority of our 3DT and City1M. Our
project has been released on https://github.com/
LinlyAC/City1M-dataset.

1. Introduction
Group re-identification (GReID) aims to match groups

with the same members under different cameras. Usually,
we deal with groups of 2 to 6 members, and we treat group
images with more than 60% of the same members as the
same group class. GReID aims to bring positive services
and contributions to human society and eliminate poten-
tial social risks, such as child trafficking and kidnapping.
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Figure 1. The illustration of our novelty. The X-Y plane represents
the imaging plane. The Depth dimension represents the distance
from person to camera. In the depth map, the darker the color, the
closer to the camera, and vice versa.

GReID has potential applications in detecting and prevent-
ing these events, which protects the safety of citizens. The
challenge of GReID is how to jointly model the appearance
and layout features of group images.

Most existing methods [4, 9, 22, 23] adopt only the ap-
pearance features of groups. However, the appearances of
group images are vulnerable to member occlusion and vari-
ations, leading to a large performance drop. In addition,
some methods [24] attempt to extract features from layout
relationships to alleviate the lack of appearances. Unfor-
tunately, existing layout-based methods belong to the 2D
modeling, which ignores member depth information and
leads to unsatisfactory performance. We denote this short-
coming as the 2D layout ambiguity. As shown in Fig. 1,
ID2 and ID3 are incorrectly modeled as neighbors on 2D
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images, but they are far away in 3D scenes, which means
that the real layout is hardly reconstructed without depth.

In this paper, we model the layout relationship from a
3D perspective, which can effectively eliminate the 2D lay-
out ambiguity. Specifically, we calculate the depth of each
member in the group image via depth estimation to recon-
struct the 3D layout relationship of the group. As shown in
Fig. 1, although ID2 and ID3 are adjacent in the X-Y plane,
the depth map indicates that they have different depth com-
ponents. Our method can correctly reflect this cue and re-
construct a relatively accurate group layout. Based on this,
we propose a 3D Transformer (3DT), which performs sam-
pling and quantization in the X-Y-D space, and presets a se-
ries of layout tokens along each dimension. 3DT calculates
the average center position of each member and concate-
nates the corresponding layout’s tokens in the three axes as
the layout feature. Finally, 3DT extracts the group feature
by joint modeling the appearance and layout features.

Furthermore, we find that existing datasets do not pro-
vide 3D labels, and constructing a dataset with rich labeling
is highly expensive. Therefore, we contribute a synthetic
GReID dataset, named City1M, which has the following
three advantages. 1) Larger data scale. City1M includes
1.84M images, 45K persons and 11.5K groups. Compared
with the current largest dataset CSG [19], the number of
images and group identities are 600 times and 7 times that
of CSG respectively. 2) More diversified samples. To simu-
late the real-world monitoring scene, City1M considers illu-
mination variations, occlusions, resolution variations, intra-
group member and layout variations. 3) More detailed an-
notations. Not only do we provide 3D position label of each
member, but we also provide other annotations such as the
shooting time, camera coordinates, and orientation. These
advantages greatly facilitate the research of GReID.

Our contributions can be summarized as follows:

1. We propose the 3D Transformer (3DT) to perform 3D
layout modeling, which eliminates the layout ambigu-
ity in existing methods. To the best of our knowledge,
we are the first 3D-based method. Compared with the
2D-based methods, our method can obtain more accu-
rate layout features.

2. We propose a large-scale synthetic GReID dataset to
alleviate data shortages and poor annotations, which
contains 1.84M images with 11.5K groups and is three
orders of magnitude larger than the existing dataset.

3. Lots of experiments demonstrate the superiority of the
proposed 3DT and City1M. 3DT exceeds the exist-
ing methods by 29.7%, 25.6% and 6.9% on Rank1 on
CSG, DukeGroup and RoadGroup. The 3DT+, pre-
trained on City1M, will further improve 2.2%, 7.9%
and 2.4% on Rank1. Surprisingly, a strong perfor-

mance has been achieved by testing the pretrained
model directly on real datasets.

2. Related Work

2.1. Group Re-Identification

The deep learning methods of GReID surpassed the tra-
ditional methods [4, 11, 22, 23] and became mainstream,
which are mainly divided into two aspects: appearance-
based and layout-based methods. LIMI [18] and MGR [10]
designed a multi-order network for multi-grain representa-
tions of groups. DotSCN [9] extracted the group consis-
tency feature by learning the difference features of the pair
members in the two images. DotGNN [8] adopted a graph
convolution network to integrate the appearance group fea-
tures. MACG [19] designed complex multiple attentions to
capture the key group features.

These works focus on the appearance features and ignore
layout features. GCGNN [24] calculated the spatial rela-
tionship among members to mine neighbors for enhance-
ment. However, GCGNN only focuses on the layout rela-
tionship on the 2D image coordinates and ignores the am-
biguity caused by the imaging process. In this paper, we
focus on this limitation and propose a 3D-based layout rela-
tionship modeling method, which effectively alleviates the
ambiguity of 2D layout.

2.2. Synthesized datasets

Synthesized datasets are also important for ReID, which
is a low-cost and proven efficient approach. PersonX [12]
introduced a synthetic data engine based on Unity3D [13],
composed of hand-crafted 3D person models. RandPerson
[15] proposed a method of combining UV maps with ran-
dom colors and textures, generalizing quantities of person
models with MakeHuman [3]. UnrealPerson [20] designed
a low-cost pipeline to construct ReID datasets, and the syn-
thesized images are more diverse and realistic. However,
synthetic data is lacking attention in GReID. Our City1M is
the first large-scale synthetic dataset in GReID.

2.3. Transformer

Transformer [14] was first proposed in NLP task, and
then generalized to many CV tasks and achieved good per-
formances. For example, TransReID [7] was the first work
which introduced the transformer into the person ReID.
However, transformer has not been raised too much atten-
tion in the GReID. To this end, we propose the PST because
the position modeling of transformer is suitable for the lay-
out modeling in the GReID.
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Figure 2. The illustration of our whole framework. The proposed 3D Transformer includes person transformer and group transformer
with 3D layout tokens. The layout relationship is reconstructed in X-Y-D space. The X-Y plane represents the imaging plane. The “D” is
depth dimension which represents the distance from person to camera. The green/yellow/red blocks are layout tokens which represents the
corresponding position’s feature. The colorful cubes stand for the member average center position in X-Y-D space.

3. Method
3.1. 3D Layout Reconstruction

Due to the existing datasets usually providing the two-
dimensional position coordinates of members, an intuitive
idea to reconstruct a 3D layout from 2D images is to esti-
mate the depth of each member by using the depth estima-
tion method. It should be emphasized that we do not need
to reconstruct the accurate absolute depth information of the
whole scene. The relative depth information among intra-
group members is very sufficient for reconstructing the lay-
out relationship. For a group image I ∈ R3×H×W , we
adopt a strong depth estimation method, Adabins [1], to ob-
tain the depth map, which can be described as follows.

D = NAda(I), (1)

where the depth map D ∈ RH×W has the same size with I,
and each pixel of D is in the interval (0, 1) and represents
the relative depth. It should be noted that if the dataset pro-
vides depth information, such as the proposed City1M, the
above estimation process can be omitted.

After that, we define the depth of each member as the
average of all pixels in a given bounding box of D, which
can be described as follows.

Di =
1

hi × wi

hi−1∑
s=0

wi−1∑
t=0

D(xi + s, yi + t), (2)

where Di represents the average depth of the i-th member,
and Rect[xi, yi, hi, wi] represents the given bounding box
of the i-th member.

Similarly, we use the normalized center coordinate of the
bounding box as the two-dimensional relative position. The

coordinates Pi of i-th member can be described as follows.

Pi =

(
(xi + hi/2)

H
,
(yi + wi/2)

W
,Di

)
. (3)

3.2. 3D Transformer

The whole structure of our 3D Transformer (3DT) is il-
lustrated in Fig. 2. The proposed 3DT mainly consists of
the person transformer and group transformer with 3D lay-
out tokens. For a group image, we first crop and resize each
member, and send them to a person transformer network,
such as ViT [6], to extract the appearance features. Next,
we model the layout relationship among members from the
original image and extract the layout features of each mem-
ber. Then, we concatenate the appearance features of each
member with the corresponding layout features. Finally, we
integrate all members features in the group transformer to
obtain the feature representation of the whole group.

In the above processes of 3DT, the core step is to extract
each member’s layout features from the layout relationship
obtained in Sec. 3.1. 3D layout reconstruction essentially
constructs a normalized continuous X-Y-D space. However,
the position coordinates in X-Y-D space are inexhaustible,
which leads to difficult layout feature extraction. Therefore,
we perform sampling and quantization operations on the X-
Y-D space and convert it into a discrete space. The sam-
pling operation means that the X-Y-D space is evenly di-
vided along three dimensions by the sampling rate 1

σ , which
divides each dimension into σ blocks and divides the origi-
nal space into σ3 cubes. For example, the 1

σ is set to 1
4 , and

the original space is divided into 43 cubes.
Quantization operation means that σ blocks in each di-

mension are assigned with σ learnable feature embeddings,
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Table 1. Detailed comparisons of mainstream datasets. “P/G” stands for the traditional person ReID and group ReID. 3D position label
stands for providing spatial coordinates for each person in three dimensions. Camera orientation stands for providing the position and view
of each camera in the 3D scene.

Dataset Task
Real or

Synthetic #Images #Cameras #PersonID #GroupID
Position

Label
Camera

Information
Image

Resolution
Market1501 [21] P Real 32,668 6 1,501 - 2D No 128×64
MSMT17 [16] P Real 126,441 15 4,101 - 2D No Vary
PersonX [12] P Synthetic 273,456 6 1,266 - 2D No Vary

RandPerson [15] P Synthetic 228,655 19 8,000 - 2D No Vary
UnRealPerson [20] P Synthetic 120,000 34 3,000 - 2D No Vary

DukeGroup [18] G Real 354 8 704 177 2D No Vary(max: 1392×630)
RoadGroup [18] G Real 324 2 1,099 162 2D No Vary (max: 450×255)

CSG [19] G Real 3,989 Vary 3,500 1,558 2D No Vary(max: 800×800)
City1M (Ours) G Synthetic 1,840,000 8 45,000 11,500 3D Yes 1920×1080

called layout tokens, which can be modeled as follows.
T σ
x = (t0x, t

1
x, · · · , tσ−1

x ),

T σ
y = (t0y, t

1
y, · · · , tσ−1

y ),

T σ
d = (t0d, t

1
d, · · · , tσ−1

d ),

(4)

where the tnm,m ∈ {x, y, d} , n ∈ {0, 1, · · · , σ − 1} is the
64-dim feature embedding.

Each token is initialized randomly at the beginning of
training. With the update of network learning, tokens can
represent the layout feature of the current location under the
current dimension when the network training converges.

After spatial discretion, we can extract the 3D layout fea-
tures from the layout relationship obtained in Sec. 3.1. For
each member, we calculate the corresponding three tokens
It
i of the i-th member as the layout feature according to

positions obtained by Eq. (3), which can be described as
follows.

It
i =

(
T σ
x (⌊Pi(0)

σ
⌋), T σ

y (⌊Pi(1)

σ
⌋), T σ

d (⌊Pi(2)

σ
⌋)
)
. (5)

After that, the member’s appearance and layout features are
concatenated and sent to the group transformer to obtain the
group feature representation.

The proposed 3D token has the following three advan-
tages. (1) 3D tokens consider the depth of members, which
is ignored in previous methods. (2) 3D tokens discretize the
X-Y-D space, which allows each token to represent a posi-
tion within a certain neighborhood and is robust to possible
layout changes or potential disturbances. (3) Our 3D token
is very efficient, requiring only 3σ tokens. If some classic
strategies are adopted, such as ViT [6], σ3 tokens may be
required. In this case, it is difficult to ensure that all tokens
are adequately trained, resulting in poor layout features.

Finally, we need to provide supervision information for
training the person and group transformers, including cross-
entropy loss and hard triplet loss.

Lc = − 1

M

M∑
j=1

C∑
i=1

yji log (ŷji), (6)

where M represents the member’s number of the current
batch, C represents the whole member classes, the indicator
function yji equals to 1 when the j-th member belongs to
the i-th class, and ŷji is the prediction of the transformer.

Lt =
1

M

M∑
i=1

[
d
(
fi, f

+
i

)
−d

(
fi, f

−
i

)
+m

]
+
, (7)

where d(·, ·) represents the Euclidean distance between two
features, fi/f+

i /f−
i represent the anchor/hard positive/hard

negative feature in the current batch, [·]+ means max(·, 0)
and m is the margin.

Lp = Lc + αLt, (8)

Lall = Lg + βLp, (9)

where the Lg is similar with the Lp, α and β controls the
balance between two different losses.

4. Synthetic Dataset: City1M
4.1. Human Production

We use MakeHuman [3] to generate diversified 3D per-
son models, which is achieved by introducing randomiza-
tion in both human body and clothing. First, we randomly
assign the average human body in the attributes of age,
weight, height, muscle, skin, hair and eyes to achieve the
diversity of human bodies. Then, we randomly select 2,000
different images in the Google Landmarks dataset [17] to
generate human upper and lower clothes.

We have produced a total of 45,000 3D human models.
The above random settings of human body attributes and the
random combinations of upper and lower clothes can fully
guarantee the diversity of pedestrian appearance.
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(a) A group image. (b) Illumination variation. (c) Illumination variation. (d) Illumination variation.

(e) Member scale variation. (f) Occlusion. (g) Number change of members. (h) Layout change of members.

Figure 3. Visualization of sampling diversity of the proposed City1M. The variations in Fig. 3b ∼ Fig. 3h are comparisons about Fig. 3a.
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Figure 4. Statistics on the number of group classes of each number
of members in the mainstream datasets. The value of the vertical
axis has been shown by logarithm operation.

4.2. Dataset Construction

We implement the construction of City1M in Unity3D
[13]. The motivation to propose City1M mainly consists
of the following three aspects. First, the existing GReID
datasets are very small. As shown in Tab. 1, the existing
largest dataset CSG is only one-tenth of the traditional per-
son ReID dataset Markets1501. In addition, the group im-
ages in CSG are not completely from the monitoring scenes,
and some images are from the screenshots of the movies.

In contrast, all the images in the proposed City1M are
captured from 8 street cameras in a modern city scene.
Our City1M contains 1.84M images with a uniform reso-
lution of 1920 × 1080, 45,000 persons and 11,000 groups,
which are 470 times, 12 times and 7 times of CSG respec-
tively. Besides, City1M simulates the potential variations
that occur in real scenarios. As shown in Fig. 3, Fig. 3b ∼
Fig. 3d show the variations of illumination color caused by
the change of day and night. Fig. 3e shows member scale
variations caused by the different views. Fig. 3f mainly

shows the inevitable occlusions of members in the monitor-
ing scene, and also potentially shows variations of illumi-
nation intensity caused by the shadows. Fig. 3g and Fig. 3h
show the number (Only 3 of 5 members are visible.) and
layout variations (The member with blue trousers is on the
right of Fig. 3a and the left of Fig. 3h) in GReID. The num-
ber variations in City1M also follow that images belonging
to the same group class have more than 60% of the same
members.

Second, the annotation of existing datasets is not abun-
dant. Most datasets in Tab. 1 only provide the 2D plane
coordinates of each person and do not provide additional in-
formation about the cameras, which is easy to obtain. The
proposed City1M provides detailed 3D coordinates (The 2D
coordinates of the imaging plane and the absolute depth in-
formation) for the position of each member. We also pro-
vide the position coordinates and shooting angle of each
camera in the 3D scene, which is convenient for researchers
to analyze the effect of camera networks. Furthermore, we
also provide a time period label (captured in day or night)
for each group image.

Finally, the effect of a synthetic dataset on GReID lacks
exploration. As introduced in Sec. 2.2, synthetic datasets
have been widely created to generate large-scale data in
a low-cost way and can promote the performance of real
datasets, which is less studied in GReID. City1M generates
massive data with very low cost and simulates real moni-
toring scenarios and potential variations. Later experiments
show that the model pretrained by City1M can further im-
prove the performance in real scenes, which shows the ef-
fectiveness of the City1M.

5. Experiments
5.1. Datasets and Settings

Datasets. We evaluate the proposed 3DT on our City1M,
DukeGroup [18], RoadGroup [18] and CSG [19]. The de-
tailed information about the number of group images, cam-
eras, person classes, and group classes have been shown in
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Table 2. Performance comparisons with mainstream methods. Rank1, Rank5, Rank10 and mAP are reported (%). The “+” means the 3DT
is pretrained on the proposed City1M.

Method Publication CSG DukeGroup RoadGroup
Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

CRRRO-BRO [22] BMVC 2009 10.4 25.8 37.5 - 9.9 26.1 40.2 - 17.8 34.6 48.1 -
Covariance [4] ICPR 2010 16.5 34.1 47.9 - 21.3 43.6 60.4 - 38.0 61.0 73.1 -

PREF [11] ICCV 2017 19.2 36.4 51.8 - 30.6 55.3 67.0 - 43.0 68.7 77.9 -
BSC+CM [23] ICIP 2016 24.6 38.5 55.1 - 23.1 44.3 56.4 - 58.6 80.6 87.4 -

LIMI [18] MM 2018 - - - - 47.4 68.1 77.3 - 72.3 90.6 94.1 -
DotGNN [8] MM 2019 - - - - 53.4 72.7 80.7 - 74.1 90.1 92.6 -
GCGNN [24] TMM 2020 - - - - 53.6 77.0 91.4 - 81.7 94.3 96.5 -

MGR [10] TCYB 2021 57.8 71.6 76.5 - 48.4 75.2 89.9 - 80.2 93.8 96.3 -
MACG [19] TPAMI 2020 63.2 75.4 79.7 - 57.4 79.0 90.3 - 84.5 95.0 96.9 -
DotSCN [9] TCSVT 2021 - - - - 86.4 98.8 98.8 - 84.0 95.1 96.3 -
3DT (Ours) - 92.9 97.3 98.1 92.1 83.0 98.9 99.9 89.8 91.4 97.5 98.8 94.3

3DT+ (Ours) - 95.1 97.7 98.6 94.4 90.9 99.9 99.9 94.1 93.8 97.5 98.8 94.8

Tab. 1. Similar to the protocol in [10], the training and test-
ing set of DukeGroup and RoadGroup are equally split. Fol-
lowing the protocol in [19], 859/699 groups of 1,558 groups
are split for training/testing. If there is no additional claim,
we do not use any extra data when training on each dataset
for fair comparison. The Cumulative Matching Characteris-
tics (CMC) at Rank-1, Rank-5, Rank-10, and mean Average
Precision (mAP) are used as evaluation metrics.

Settings. We adopt the standard ViT-Base [6], pre-
trained on ImageNet [5], as person transformer. For the
group image, we crop all the members by the given bound-
ing box and resize them to 256× 128. In the training stage,
we apply the random horizontal flip and random erasing.
Each mini-batch is sampled with 16 group identities, and
each group identity selects 4 images. We choose SGD [2]
as the optimizer. The cosine annealing learning rate strat-
egy is adopted. The initial learning rate is 2e-3, and the
minimum learning rate is 1.6e-4. The weight decay is 1e-4.
In the testing stage, we do not use any data augmentation
and re-ranking. The Euclidean distance is applied. All ab-
lation studies, parameter analyses, and visualizations have
been conducted on the RoadGroup dataset.

5.2. Performance

We evaluate the proposed method against the existing
methods on three GReID datasets. As shown in Table
Tab. 2, the existing methods are divided into two groups:
hand-crafted methods and deep learning methods. Note that
DotSCN in deep learning method uses extra datasets for
auxiliary training. We regard MACG as the best method
for single dataset training and DotSCN as the best method
for multiple dataset training. We also evaluate the proposed
methods for single dataset and multiple dataset settings,
called 3DT and 3DT+ respectively. 3DT+ first pretrains on
City1M, and then finetunes and tests on each dataset.

Three conclusions can be drawn from Tab. 2. First,
The proposed method in this paper achieves the state-of-
the-art performances in single dataset training. Compared

with MACG, 3DT exceeds 29.7%/35.6%/6.9% Rank1 on
CSG/DukeGroup/RoadGroup datasets. Even without extra
dataset, the 3DT surpasses DotCSN in most cases, which
demonstrates the superiority of our method.

Compared with the existing methods, the advantages of
3DT/3DT+ mainly come from the following two aspects.
(1) 3DT performs layout feature extraction based on the po-
sition in 3D space, rather than the 2D position of the imag-
ing plane. Because the depth information is introduced into
the 3D layout, the ambiguity of 2D layout in some scenes
can be eliminated. (2) 3DT is a transformer-based frame-
work. 3DT can model the layout features with the help of
the layout tokens, which is difficult to extract in the tradi-
tional CNN-GNN framework.

Second, pretraining on the City1M dataset can fur-
ther improve the performance (multiple dataset training).
Compared with 3DT, the performance of 3DT+ on CSG,
DukeGroup and RoadGroup dataset is further improved by
2.2%/2.3%, 7.9%/4.3% and 2.4%/0.5% on Rank1/mAP.
This result demonstrates that the difference between the
City1M and the real datasets is small enough. By pretrain-
ing on City1M, group prior knowledge can be transferred
and model performance can be enhanced in real datasets.

Finally, the performance of 3DT/3DT+ can be improved
on both large (CSG) and small (DukeGroup and Road-
Group) datasets, which shows that our method is robust to
the scale of the dataset.

5.3. Ablation Study

As shown in Tab. 3, we analyze the each case of ignor-
ing different spatial information, using only 1D position, 2D
position and 3D position. Three conclusions can be drawn.
First, if no layout features are considered, the performance
is not satisfactory. In this case, the model distinguishes dif-
ferent group classes only by the appearance features, which
will obtain high retrieval similarity between the hard nega-
tive samples with similar appearance.

Second, only using the 1D layout of X or Y can improve
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Table 3. Ablation study of the 3D layout modeling. X, Y and
D represent the three dimensions of the reconstructed 3D space.
Rank1 and mAP are reported (%).

Type X Y D Rank1 mAP
None 88.89 91.25

✓ 88.89 91.71
1D ✓ 88.89 92.03

✓ 87.65 91.49
✓ ✓ 90.12 92.88

2D ✓ ✓ 88.89 91.36
✓ ✓ 87.65 91.42

3D ✓ ✓ ✓ 91.36 94.27

Table 4. Parameter analysis for sampling in 3D layout. Rank1 and
mAP are reported (%).

σ 2 5 10 20 50
Rank1 90.12 91.36 91.36 91.36 90.12
mAP 92.92 92.90 94.27 93.34 92.62

the performance. Specifically, the performance of 1D-X and
1D-Y is improved by 0.46% and 0.78% mAP because the
positions of X and Y are true annotations and contain extra
information that is different from the appearance. Introduc-
ing more prior knowledge will result in more performance
gains. However, the performance benefit of using only D is
not obvious. This phenomenon is because the information
in the D dimension is obtained by estimation, which means
that the D dimension itself is not completely accurate. Sim-
ilar phenomenons can be found in 2D types. The perfor-
mance improvement of using X-Y is greatest, X-D and Y-D
will be limited by not using the whole prior knowledge but
also introducing inaccurate estimation information.

Finally, the best performance is achieved when X,Y, and
D are jointly adopted. Compared to the strategy that ig-
nores layout modeling (Row1 in Tab. 3), using layout mod-
eling brings an extra 2.47%/3.02% Rank1/mAP. Compared
to strategies with 2D layout modeling (Row5 in Tab. 3), ad-
ditional D information brings an extra 1.24%/1.39% Rank1
/mAP, which fully proves the superiority of our method.

5.4. Parameter Analysis

The influence of σ. Hyperparameter σ controls the dis-
crete granularity of reconstructed 3D space in layout mod-
eling. The larger σ corresponds to more fine-grained spatial
discretization, which also means that more layout tokens
need to be used to represent layout features. As shown in
Tab. 4, when σ increases from 2 to 10, the performance also
gradually increases and the best performance is achieved at
σ = 10. This shows that small σ is rough for discretization
so that members with a long distance use the same layout
tokens, resulting in limited performance.

When σ is further increased to 50, the performance be-
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(b) Hyperparameter β.

Figure 5. Parameter analysis for loss functions.
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Figure 6. Visualization of top five retrieval results. Each row rep-
resents a different method, where “3D layout” is our method. Note
that each query has only one correct image in the gallery. The
green/red bounding box represents the correct/wrong matching.

gins to decline, which shows that too large σ leads to a large
number of tokens and the model cannot guarantee that each
token is adequately trained.

The influence of α. Hyperparameter α controls the con-
tribution of the cross-entropy loss and the triplet loss. As
shown in Fig. 5a, our method achieves the best performance
when α = 1.0. Too large or small α will lead to perfor-
mance degradation, which shows that the model tends to
have the same contribution to these two losses.

The influence of β. Hyperparameter β controls the con-
tribution of single person classification and group classifi-
cation. As shown in Fig. 5b, our method achieves the best
performance when β = 1.0, which is also intuitive because
identifying individual members and groups is equally im-
portant for GReID.

5.5. Visualization

In Fig. 6, we enumerate two visual retrieval examples
to prove the superiority of our method. In query (a), the
correct gallery only has three members in common with
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Table 5. The performance comparisons (%) of the different layout
modeling strategies. #tokens represents the number of tokens re-
quired for each strategy.

strategy #tokens Rank1 mAP
Variation1 σ3 88.89 92.28
Variation2 3 90.12 92.15

Ours 3σ 91.36 94.27

query, which cannot be addressed with only appearance.
2D-based method is also not ideal, because layout ambi-
guity will misjudge that the member with dark clothes in
the correct gallery is very close to the member with light
clothes. Our method combines appearance modeling with
3D layout modeling to obtain correct retrieval results.

In query (b), a group member in the query disappears,
and another member is occluded by a passers-by. The
method of “without layout” or “2D layout” can hardly deal
with this situation. Our method can extract the appear-
ance and layout features of the remaining two people, which
leads to a high similarity matching.

5.6. Discussion

The analysis of alternative layout strategies. In ad-
dition to our strategy of modeling layout features, we also
design the other two optional strategies. Variation1 adopts
independent tokens for each small cube in the discrete 3D
space, so σ3 tokens are required for sampling rate σ. Varia-
tion2 only considers three basis vectors on three dimensions
and uses the linear combination of three basis vectors to ex-
press the layout features of each small cube.

The comparisons are shown in Tab. 5, which proves that
our strategy is better than these two variations. The number
of tokens required by the Variation1 is very large, which
will lead to insufficient training. The performance of Vari-
ation2 is still limited, indicating that the layout space is not
consistent with linear space. Our strategy achieves a bal-
ance between the cost of tokens and the performance and
achieves the best performance with relatively few tokens.

The effect of pretrained on City1M. We analyze the
cross-dataset evaluation of our City1M on other datasets
and the performances have been shown in Fig. 7. If
the model pretrained on City1M is directly tested on
other datasets, Rank1 has exceeded MACG on CSG and
DukeGroup. This shows that City1M already contains more
diverse groups, which is close to the distribution of the real
dataset. The RoadGroup provides the cropped image in-
stead of the original images. Therefore, the token pretrained
on City1M cannot directly satisfy the layout of RoadGroup.

DotSCN uses the extra Market1501 dataset. Compared
with the 3DT+, using the City1M will bring more perfor-
mance improvement, which shows that the City1M is more
suitable for GReID and can be widely used in the pretrain-
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Figure 7. The effect of the proposed pretrained dataset City1M.
Rank1 (%) is reported on three datasets. “DiTransfer” representa-
tives directly test the model pretrained in City1M on each dataset.

Table 6. The performances of City1M (%).

Method Setting Rank1 Rank5 Rank10
Protocol@1 85.64 86.53 86.81
Protocol@2 85.34 86.48 86.773DT

Overall 85.49 86.51 86.79

ing stage to obtain better performance.
The performance of City1M. We provide two evalua-

tion protocols. Protocol@1 and protocol@2 split City1M
equally into two parts. The training set and testing set in
each protocol have 5.75K groups with 460K images respec-
tively. Groups in the gallery that do not exist in query are
regarded as distractions. Optionally, the last 10% of the
training set can be treated as the validation set. Protocol@1
focuses on training in groups with fewer members and test-
ing in groups with more members, and protocol@2 is just
the opposite. The overall performances are the average of
these two protocols, which are shown in Tab. 6.

6. Conclusion
In this paper, we extract group features with 3D layout

modeling. Specifically, the proposed 3DT discretizes and
samples the reconstructed 3D space. For each spatial cube,
we use the combination of tokens with three dimensions as
its layout feature. Furthermore, we propose a large-scale
synthetic dataset, City1M, to alleviate the shortcomings of
the existing GReID datasets. The experimental results show
the superiority of our method and dataset.
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