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Abstract

We study the problem of efficient object detection of 3D
LiDAR point clouds. To reduce the memory and compu-
tational cost, existing point-based pipelines usually adopt
task-agnostic random sampling or farthest point sampling
to progressively downsample input point clouds, despite the
fact that not all points are equally important to the task of
object detection. In particular, the foreground points are in-
herently more important than background points for object
detectors. Motivated by this, we propose a highly-efficient
single-stage point-based 3D detector in this paper, termed
IA-SSD. The key of our approach is to exploit two learn-
able, task-oriented, instance-aware downsampling strate-
gies to hierarchically select the foreground points belong-
ing to objects of interest. Additionally, we also introduce
a contextual centroid perception module to further estimate
precise instance centers. Finally, we build our IA-SSD fol-
lowing the encoder-only architecture for efficiency. Exten-
sive experiments conducted on several large-scale detec-
tion benchmarks demonstrate the competitive performance
of our IA-SSD. Thanks to the low memory footprint and a
high degree of parallelism, it achieves a superior speed of
80+ frames-per-second on the KITTI dataset with a sin-
gle RTX2080Ti GPU. The code is available at https:
//github.com/yifanzhang713/IA-SSD.

1. Introduction
Accurate recognition and localization of specific 3D ob-

jects is a fundamental research problem in 3D computer vi-

sion [10]. As a commonly-used 3D representation, point

cloud has attracted increasing attention for its flexibility and

compactness. However, the task of 3D object detection in

LiDAR point clouds (i.e., predicting 3D bounding boxes

with 7 degrees-of-free including 3D-location, 3D-size, ori-

entation, and class labels) remains highly challenging due to

the complex geometrical structure and non-uniform density.

*Corresponding author

Figure 1. Comparison of the detection performance (accuracy)

and efficiency (computational and memory) of different methods

in KITTI benchmark. All experiments are conducted on a single

RTX2080Ti GPU. Note that, we evaluate the memory efficiency

by calculating the maximum number of parallel frames during in-

ference when fully utilizing the GPU memory. Additionally, the

FPS is calculated with the full utilization of GPU memory, more

detailed analysis could be found in Table 6.

Due to the unstructured and orderless nature of 3D point

clouds, early works usually first convert the raw point

clouds into intermediate regular representation, including

projecting the 3D point clouds into 2D images from birds-

eye-view or frontal view [1, 17, 18, 41, 42, 50, 60], or trans-

formed into dense 3D voxels [49, 61]. Then, several well-

developed 2D detection paradigms can be deployed into the

task of 3D object detection. Although remarkable progress

has been achieved recently [2, 3, 7, 11, 24, 39, 53, 54], these
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methods introduce the quantization error due to the 3D-

2D projection or voxelization, which inevitably limits their

performance of existing methods. Another stream of tech-

niques following the point-based pipeline to directly operate

on raw point clouds [12, 13, 15, 38, 40, 48, 52]. They usu-

ally learn point-wise features and then aggregate through

specific symmetric functions such as max-pooling [31, 32].

Although promising and without any explicit information

loss, these methods still suffer from expensive computa-

tional/memory costs and limited detection performance.

In this paper, we first dive deep into the existing point-

based frameworks and experimentally find that the heuris-

tic sampling strategies used are far from satisfactory, since

a number of the important foreground points have been

dropped before the final bounding box regression step. As

such, the detection performance, especially for small ob-

jects such as pedestrians, has been fundamentally limited.

In this paper, we argue that not all points are equally im-
portant to the task of object detection. In particular, only

the foreground points, are the things we really care about.

Motivated by this, we aim to propose a task-oriented,

instance-aware downsampling framework, to explicitly

preserve foreground points while reducing the mem-

ory/computational cost. Specifically, two variants, namely

class-aware and centroid-aware sampling strategies are

proposed. In addition, we also present a contextual instance

centroid perception, to fully exploit the meaningful con-

text information around bounding boxes for instance cen-

ter regression. Finally, we build our IA-SSD based on the

bottom-up single-stage framework. As shown in Figure 1,

the proposed IA-SSD demonstrated to be highly efficient

(up to inference 100 frames in parallel in a single pass, with

a speed of 83 FPS on a single RTX 2080Ti GPU) and ac-

curate on the KITTI benchmark [8]. In particular, thanks to

the high instance recall ratio of the proposed sampling strat-

egy, the proposed IA-SSD can be directly trained with mul-

tiple object categories, rather than the common practice, i.e.,
train separate models for different categories. Extensive ex-

periments on Section 4 justify the compelling performance

and superior efficiency of our method.

To summarize, the contributions are listed as follows:

• We identify the sampling issue in existing point-based

detectors, and proposed an efficient point-based 3D

detector by introducing two learning-based instance-

aware downsampling strategies.

• The proposed IA-SSD is highly efficient and capable

of detecting multi-class objects on LiDAR point clouds

in a single pass. We also provided a detailed memory

footprint vs. inference-speed analysis to further vali-

date the superiority of the proposed method.

• Extensive experiments on several large-scale datasets

demonstrate the superior efficiency and accurate de-

tection performance of the proposed method.

2. Related Work

Here, we give a brief overview of existing voxel-based

detectors, point-based detectors, and point-voxel detectors.

2.1. Voxel-based Detectors

To process unstructured 3D point clouds, voxel-based

detectors usually first convert the irregular point clouds into

regular voxel grids. This further allows leveraging the ma-

ture convolution neural architectures. Early works such

as [46] densely voxelized the input point clouds and then

utilized convolutional neural networks to learn specific ge-

ometrical patterns. However, efficiency is one of the main

limitations of these methods, since the computational and

memory cost grow cubically with the input resolution. To

this end, Yan et al. [49] present an efficient architecture

called SECOND by leveraging the 3D submanifold sparse

convolution [9]. By reducing the calculation on empty vox-

els, the computational and memory efficiency have been

significantly improved. Further, PointPillars [18] is pro-

posed to further simplify the voxels to pillars (i.e., only vox-

elization in the plane).

The existing approaches can be roughly divided into

single-stage [7, 11, 54, 55, 57, 58] and two-stage detectors

[4, 36–39, 53]. Albeit simple and efficient, they usually

failed to achieve satisfactory detection performance due to

the downscaled spatial resolution and insufficient structural

information, especially for small objects with sparse points.

To this end, He et al. [11] present SA-SSD to leverage the

structure information by introducing an auxiliary network.

Ye et al. [54] introduce a Hybrid Voxel network (HVNet)

to attentively aggregate and project the multi-scale feature

maps to achieve better performance. Zheng et al. [58]

present the Confident IoU-Aware (CIA-SSD) network to

extract spatial-semantic features for object detection. In

comparison, two-stage detectors can achieve better perfor-

mance, but with high computational/memory cost. Shi et

al. [39] propose a two-stage detector namely Part-A2, which

is composed of the part-aware and aggregation module to

exploit the intra-object part locations. Deng et al. [5] extend

the PV-RCNN [36] by introducing a fully convolutional net-

work to further exploit volumetric representation for raw

point cloud and refinement simultaneously.

Overall, voxel-based methods can achieve good detec-

tion performance with promising efficiency. However, vox-

elization inevitably introduces quantization loss. In or-

der to compensate for the structural distortion in the pre-

processing phase, complex module design needs to be in-

troduced in [20, 25, 27, 28, 35], which in turn greatly dete-

riorate the final detection efficiency. Additionally, it is not

easy to determine the optimal resolution in practice, consid-

ering the complex geometry and various different objects.
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2.2. Point-based Detectors

Different from voxel-based methods, point-based meth-

ods [30, 38, 52] directly learning geometry from unstruc-

tured point clouds, further generate specific proposals for

objects of interest. Considering the orderless nature of 3D

point clouds, these methods typically adopt PointNet [31]

and its variants [22,32,33, 45,47] to aggregate independent

point-wise features using symmetric functions. Shi et al.

[38] propose PointRCNN, a two-stage 3D region proposal

framework for 3D object detection. This method first gen-

erates object proposals from segmented foreground points,

and high-quality 3D bounding boxes are then regressed by

exploiting the semantic feature and local spatial cues. Qi et

al. [30] introduce VoteNet, a one-stage point-based 3D de-

tector based on deep Hough voting to predict the instance

centroid. Inspired by single-stage detectors [21] in 2D im-

ages, Yang et al. [52] presents a 3D Single-Stage Detection

(3DSSD) framework, while the key is a fusion sampling

strategy comprising the Farthest Point Sampling on feature

and Euclidean space. PointGNN [40] is a framework by

generalizing graph neural network to 3D object detection.

Point-based methods directly operate on the raw point

clouds, without any extra preprocessing steps such as vox-

elization, hence usually intuitive and straightforward. How-

ever, the main bottleneck of point-based methods is insuffi-

cient learning capacity and limited efficiency.

2.3. Point-Voxel Methods

To overcome the drawbacks of both point-based meth-

ods (i.e., irregular and sparse data access, poor memory

locality [23]) and voxel-based methods (i.e., quantization

loss), several methods [3, 16, 36, 37, 53] have started to

learning from 3D point clouds using point-voxel joint rep-

resentations. Specifically, PV-RCNN [36] and its follow-up

work [37] extract point-wise features from voxel abstraction

networks to refine the proposals generated from 3D voxel

backbone. Further, HVPR [29], a single-stage 3D detector,

introduces an efficient memory module to augment point-

based features, thereby providing a better compromise be-

tween accuracy and efficiency. Qian et al. [34] propose

a lightweight region aggregation refine network (BANet)

via local neighborhood graph construction, which produces

more accurate box boundary prediction.

Overall, different detection pipelines have their own

merits. In this paper, we propose IA-SSD, a single-stage

point-based detector, to simultaneously improve the detec-

tion accuracy and runtime efficiency. In particular, the key

differences between our IA-SSD and existing point-based

techniques lie in the instance-aware sampling strategies and

the contextual instance centroid perception module, as il-

lustrated in the following sections.

3. The Proposed IA-SSD

3.1. Overview

Different from dense prediction tasks such as 3D seman-

tic segmentation, where point-wise prediction is required,

3D object detection naturally focus on the small yet im-
portant foreground objects (i.e., instances of interest in-

cluding car, pedestrian, etc.). However, existing point-

based detectors usually adopt task-agnostic downsampling

approaches such as random sampling [14] or farthest point

sampling [32, 52] in their framework. Albeit effective for

memory/computational cost reduction, the most important

foreground points are also diminished in progressive down-

sampling. Additionally, due to the large difference in size

and geometrical shape of different objects, existing detec-

tors usually train separate models with various carefully

tuned hyperparameters for different types of objects. How-

ever, this inevitably affects the deployment of these models

in practice. Therefore, the objective of this paper is: Can
we train a single point-based model, which is efficient and
capable of detecting multi-class objects in a single pass?

Motivated by this, we propose an efficient, single-stage

detector by introducing the instance-aware downsampling

and contextual centroid perception module. As shown in

Figure 2, our IA-SSD follows the lightweight encoder-only

architecture used in [52] for efficiency. The input LiDAR

point clouds are first fed into the network to extract point-

wise features, followed by the proposed instance-aware

downsampling to progressively reduce the computational

cost, while preserving the informative foreground points si-

multaneously. The learned latent features are further input

to the contextual centroid perception module to generate in-

stance proposals and regress the final bounding boxes.

3.2. Instance-aware Downsampling Strategy

For efficient 3D object detection, it is essential to reduce

the memory and computational cost through progressive

downsampling, especially for large-scale 3D point clouds.

However, aggressive downsampling may lose most of the

information of the foreground objects. Overall, it remains

unclear how to achieve a desirable trade-off between com-

putational efficiency and the preservation of foreground

points. To this end, we first conduct an empirical study to

quantitatively evaluate different sampling approaches. In

particular, we follow the commonly-used encoding archi-

tecture (i.e., PointNet++ [32] with 4 encoding layers), and

report the Instance Recall (i.e., the ratio of instance retained

after sampling) at each layer in Table 1. In particular, ran-

dom point sampling [14], FPS based on Euclidean distance

(D-FPS) [32] and feature distance (Feat-FPS) [52] are re-

ported.

Analysis. It can be seen that: 1) The instance recall rate

dropped significantly after several random downsampling
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Figure 2. Illustration of the proposed IA-SSD. The input point clouds are first fed into several Set Abstraction (SA) layers, followed by the

instance-aware downsampling to progressively reduce the memory and computational cost. The preserved representative points are further

fed into the contextual centroid perception module for instance center prediction and proposal generation. Finally, the 3D bounding box

and associated class labels are outputted.

operations, indicating massive foreground points have been

dropped. 2) Both D-FPS and Feat-FPS achieve a relatively

better instance recall rate at the early stage, but also fail

to preserve enough foreground points at the last encoding

layer. As such, it remains challenging to precisely detect

the objects of interest, especially for small objects such as

pedestrians and cyclists, where only extremely limited fore-

ground points are left.

Solutions. To preserve foreground points as much as

possible, we turn to leverage the latent semantics of each

point, since the learned point features may incorporate

richer semantic information as the hierarchical aggregation

operates in each layer. Following this idea, we propose the

following two task-oriented sampling approaches by incor-

porating the foreground semantic priors into the network

training pipelines.

Class-aware Sampling. This sampling strategy aims

to learn semantics for each point, so as to achieve selec-

tive downsampling. To achieve this, we introduce extra

branches to exploit the rich semantics in latent features. In

particular, two MLP layers were appended to the encoding

layers to further estimate the semantic categories of each

point. The point-wise one-hot semantic labels generated

from the original bounding box annotations are used for su-

pervision. Here we use the vanilla cross-entropy loss:

Lcls-aware = −
C∑

c=1

(silog(ŝi) + (1− si)log(1− ŝi)) (1)

where C denotes the number of categories, si is the one-hot

labels and ŝi denotes the predicted logits. During inference,

the points with the top k foreground scores are retained and

regarded as the representative points that feed into the next

encoding layers. As shown in Table 1, this strategy tends

to preserve more foreground points, hence achieving a high

ratio of instance recall.

Centroid-aware Sampling. Considering instance center

estimation is the key for final object detection, we further

propose a centroid-aware downsampling strategy to give

higher weight to points closer to instance centroid. Specifi-

cally, we define the soft point mask of instance i as follows:

Maski =
3

√
min(f∗, b∗)
max(f∗, b∗)

× min(l∗, r∗)
max(l∗, r∗)

× min(u∗, d∗)
max(u∗, d∗)

(2)

where f∗, b∗, l∗, r∗, u∗, d∗ represent the distance of a

point to the 6 surfaces (front, back, left, right, up and down)

of the bounding box, respectively. In this case, the point

closer to the centroid of the box is likely to have a higher

mask score (max value is 1), while the point that lies on the

surface will have a mask score of 0. During training, the

soft point mask will be used to assign different weights for

points within a bounding box based on the spatial locations,

hence implicitly incorporates the geometry priors into the

network training. In particular, the weighted cross-entropy

loss is calculated as follows:

Lctr-aware = −
C∑

c=1

(Maski · silog(ŝi) + (1− si)log(1− ŝi)) (3)

The soft point mask is multiplied with the loss term of

foreground points, so as to assign a higher probability to

the points near the center. Note that, the bounding boxes are

no longer required during inference, we simply preserve the

top k points with the highest scores after downsampling, if

the model is well-trained.
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Sampling strategies
4096 points 1024 points 512 points 256 points

Car Ped. Cyc. Car Ped. Cyc. Car Ped. Cyc. Car Ped. Cyc.
Random [14] 96.6% 99.1% 97.4% 87.5% 92.7% 84.1% 78.8% 84.9% 73.3% 67.4% 72.1% 57.3%

D-FPS [32] 98.3% 100% 97.2% 97.9% 99.3% 97.2% 96.8% 90.6% 90.8% 91.4% 69.1% 71.6%
Feat-FPS [52] 98.3% 100% 97.2% 97.7% 98.0% 97.2% 96.3% 87.6% 94.5% 95.3% 80.1% 91.7%

Cls-aware (Ours) 98.3% 100% 97.2% 97.9% 99.3% 97.2% 97.9% 99.0% 95.4% 97.9% 97.4% 92.7%
Ctr-aware (Ours) 98.3% 100% 97.2% 97.9% 99.3% 97.2% 97.9% 99.0% 97.2% 97.9% 98.4% 97.2%

Table 1. The instance recall rate for foreground points (i.e., car, pedestrian, and cyclist) after several downsampling on the entire validation
set (3769 frames) of the KITTI benchmark. Note that, the input point clouds with 16384 points are progressively downsampled to 256

points through four downsampling layers. D-FPS are used in the first two layers for the proposed instance aware downsampling strategies.

3.3. Contextual Instance Centroid Perception

Contextual Centroid Prediction. Inspired by the suc-

cess of context prediction in 2D images [6, 51], we attempt

to leverage the contextual cues around the bounding box for

instance centroid prediction. Specifically, we follow [30]

to explicitly predict an offset Δĉij to the instance center.

Additionally, a regularization term is added to minimize the

uncertainty of the centroid prediction. Specifically, all votes

per instance are aggregated in light of the surrounding in-

terference, where the ci is the mean destination of i-th in-

stance. Therefore, the centroid prediction loss is formulated

as follows:

Lcent =
1

|F+|
1

|S+|
∑

i

∑

j

(|Δĉij − Δcij | + |ĉij − ci|) · IS(pij)

where ci =
1

|S+|
∑

j

ĉij , IS : P → {0, 1}
(4)

where Δcij denotes the ground-truth offset from point

pij to the center point. IS is an indicator function to de-

termine whether this point is used to estimate the instance

center or not. |S+| is the number of points used to pre-

dict the instance center. Note that, instead of only using

the points or the shifted points within the bounding box

for instance center prediction [30, 52], we also exploit the

surrounding representative points from a large context for

centroid prediction in this paper. Specifically, we empir-

ically investigate the impact of simple contextual cues on

final detection performance. In particular, we manually ex-

pand the ground-truth bounding boxes or proportional en-

large the box to cover more related context near the objects.

The sampled points that fall in the expanded bounding box

are utilized to estimate offset and then shifted.

Centroid-based Instance Aggregation. For shifted rep-

resentative (centroid) points, we further utilize a Point-

Net++ module to learn a latent representation for each in-

stance. Specifically, we transform the neighboring points

to a local canonical coordinate system, then aggregate the

point feature through shared MLPs and symmetric func-

tions.

Proposal Generation Head. The aggregated centroid

point features are then fed into proposal generation head to

predict bounding boxes with classes. We encode the pro-

posal as a multidimensional representation with location,

scale, and orientation. Finally, all proposals are filtered by

3D-NMS post-processing with a specific IoU threshold.

3.4. End-to-End Learning

Our IA-SSD can be trained in an end-to-end fashion.

Multi-task loss is used in our framework for joint optimiza-

tion. The total loss Ltotal is composed of downsampling

strategy loss Lsample, centroid prediction loss Lcent, clas-

sification loss Lcls and box generation loss Lbox:

Ltotal = Lsample + Lcent + Lcls + Lbox (5)

In particular, the box generation loss can be further de-

composed into location, size, angle-bin, angle-res, and cor-

ner parts:

Lbox = Lloc +Lsize +Langle-bin +Langle-res +Lcorner (6)

4. Experiments

4.1. Implementation Details

We build our IA-SSD based on single-stage, encoder-

only architecture for efficiency. Specifically, a number

of SA layers [32] are used to extract point-wise features.

Multi-scale grouping with increasing radius groups is used

([0.2, 0.8], [0.8, 1.6], [1.6, 4.8]) to steady extract local ge-

ometrical features. Considering limited semantics incor-

porated in early layers, we adopt D-FPS in the first two

encoding layers, followed by the proposed instance-aware

downsampling. Next, 256 representative point features are

fed into the contextual centroid prediction module, followed

by three MLP layers (256→256→3) to predict the instance

centroid. Finally, the classification and regression layers

(three MLP layers) are appended to output the semantic la-

bels and the corresponding bounding boxes. More imple-

mentation details are reported in the Appendix.
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Method Reference Type
3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5)

Speed
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

V
o

x
el

-b
as

ed

VoxelNet [61] CVPR 2018 1-stage 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37 4.5

SECOND [49] Sensors 2018 1-stage 84.65 75.96 68.71 45.31 35.52 33.14 75.83 60.82 53.67 20

PointPillars [18] CVPR 2019 1-stage 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92 42.4

3D IoU Loss [59] 3DV 2019 1-stage 86.16 76.50 71.39 - - - - - - 12.5

Associate-3Ddet [7] CVPR 2020 1-stage 85.99 77.40 70.53 - - - - - - 20

SA-SSD [11] CVPR 2020 1-stage 88.75 79.79 74.16 - - - - - - 25

CIA-SSD [58] AAAI 2021 1-stage 89.59 80.28 72.87 - - - - - - 32

TANet [24] AAAI 2020 2-stage 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53 28.5

Part-A2 [39] TPAMI 2020 2-stage 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93 12.5

P
o

in
t-

V
o

x
el Fast Point R-CNN [3] ICCV 2019 2-stage 85.29 77.40 70.24 - - - - - - 16.7

STD [53] ICCV 2019 2-stage 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.30 12.5

PV-RCNN [36] CVPR 2020 2-stage 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65 12.5

VIC-Net [16] ICRA 2021 1-stage 88.25 80.61 75.83 43.82 37.18 35.35 78.29 63.65 57.27 17

HVPR [29] CVPR 2021 1-stage 86.38 77.92 73.04 53.47 43.96 40.64 - - - 36.1

P
o

in
t-

b
as

ed

PointRCNN [38] CVPR 2019 2-stage 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 10

3D IoU-Net [19] Arxiv 2020 2-stage 87.96 79.03 72.78 - - - - - - 10

Point-GNN [40] CVPR 2020 1-stage 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08 1.6

3DSSD [52] CVPR 2020 1-stage 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90 25

3DSSD†(Reproduced) CVPR 2020 1-stage 87.73 78.58 72.01 35.03 27.76 26.08 66.69 59.00 55.62 23

3DSSD‡(OpenPCDet) CVPR 2020 1-stage 87.91 79.55 74.71 3.63 3.18 2.57 27.08 21.38 19.68 28

IA-SSD (single-class) - 1-stage 88.87 80.32 75.10 49.01 41.20 38.03 80.78 66.01 58.12 85
IA-SSD (multi-class) - 1-stage 88.34 80.13 75.04 46.51 39.03 35.60 78.35 61.94 55.70 83

Table 2. Quantitative detection performance achieved by different methods on the KITTI test set. All results are evaluated by mean Average

Precision with 40 recall positions via the official KITTI evaluation server. The results of our IA-SSD are shown in bold, and the best results

are underlined.

Method References Type
Car Mod Ped. Mod Cyc. Mod

(IoU=0.7) (IoU=0.5) (IoU=0.5)

V
o
x
el

-b
as

ed

VoxelNet [61] CVPR 2018 1-stage 65.46 53.42 47.65

SECOND [49] Sensors 2018 1-stage 76.48 - -

PointPillars [18] CVPR 2019 1-stage 77.98 - -

TANet [24] AAAI 2020 1-stage 77.85 63.45 64.95

Associate-3Ddet [7] CVPR 2020 1-stage 79.17 - -

SA-SSD [11] CVPR 2020 1-stage 79.91 - -

CIA-SSD [58] AAAI 2021 1-stage 79.81 - -

Part-A2 [39] TPAMI 2020 2-stage 79.47 63.84 73.07

P
o
in

t-
V

o
x
el Fast Point R-CNN [3] ICCV 2019 2-stage 79.00 - -

STD [53] ICCV 2019 2-stage 79.8 - -

PV-RCNN [36] CVPR 2020 2-stage 83.90 - -

VIC-Net [16] ICRA 2021 1-stage 79.25 - -

P
o
in

t-
b
as

ed

PointRCNN [38] CVPR 2019 2-stage 78.63 - -

3D IoU-Net [19] Arxiv 2020 2-stage 79.26 - -

PointGNN [40] CVPR 2020 1-stage 78.34 - -

3DSSD [52] CVPR 2020 1-stage 79.45 - -

IA-SSD (Ours) - 1-stage 79.57 58.91 71.24

Table 3. Quantitative comparison of different approaches on the

validation split of the KITTI dataset. The average precision is

measured with 11 recall positions (vs. 40 recall positions in the

KITTI test set) [8]. The results achieved by our IA-SSD are shown

in bold, while the top-performed results are shown in underline.

4.2. Comparison with State-of-the-Art Methods

Evaluation on KITTI Dataset. In the KITTI bench-

mark, objects belong to car, pedestrian and cyclist are clas-

sified into three subsets (“Easy”, “Moderate” and “Hard”)

based on the levels of difficulty. The results on “Moderate”

are usually adopted as the main indicator for final ranking.

We report the results achieved by different methods (voxel,

point, and point-voxel-based methods) on the test set of the

KITTI dataset in Table 2. Note that, since [52] does not

provide reproducible implementation or pre-trained models

for pedestrian and cyclist, we have no choice but to provide

both the results reported in their paper, the best-reproduced

results, and the results achieved by OpenPCDet1 implemen-

tation for a fair comparison.

Analysis. It can be seen that: 1) the proposed IA-

SSD achieves the best cyclist detection performance, even

outperforming several strong point-voxel and voxel detec-

tors [36, 39]. This is mainly because the proposed in-

stance aware sampling can effectively preserve foreground

points, enabling accurate detection of small objects. 2)

Our IA-SSD also achieves best car detection performance

compared with other point-based detectors, outperforming

PointRCNN [38] by (1.91%, 4.68%, 4.4%), and the SoTA

method 3DSSD [52] by (0.51%, 0.75%, 0.55%) mAP. 3)

Despite the competitive detection performance, the pro-

posed IA-SSD also shows superior efficiency. It can detect

with a speed of 85 FPS on a single NVIDIA RTX 2080Ti

with Intel I9-10900X CPU@3.7GHz. 4) Thanks to the

instance-aware sampling strategy and the contextual cen-

troid perception module, our framework can be trained with

multi-class together (i.e., training a single model for detect-

ing multi-class objects), rather than training separate mod-

els for different objects [52]. In particular, the performance

is still comparable with other state-of-the-art approaches.

This allows our model much more efficient and flexible dur-

ing inference. Finally, we also show the qualitative results

achieved by our IA-SSD in Figure 3. We can clearly see

1https://github.com/open-mmlab/OpenPCDet
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Method Type
Vehicle (LEVEL 1) Vehicle (LEVEL 2) Ped. (LEVEL 1) Ped. (LEVEL 2) Cyc. (LEVEL 1) Cyc. (LEVEL 2)

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

PointPillars [18] Voxel-based 60.67 59.79 52.78 52.01 43.49 23.51 37.32 20.17 35.94 28.34 34.60 27.29

SECOND [49] Voxel-based 68.03 67.44 59.57 59.04 61.14 50.33 53.00 43.56 54.66 53.31 52.67 51.37

Part-A2 [39] Voxel-based 71.82 71.29 64.33 63.82 63.15 54.96 54.24 47.11 65.23 63.92 62.61 61.35

PV-RCNN [36] Point-Voxel 74.06 73.38 64.99 64.38 62.66 52.68 53.80 45.14 63.32 61.71 60.72 59.18

IA-SSD (Ours) Point-based 70.53 69.67 61.55 60.80 69.38 58.47 60.30 50.73 67.67 65.30 64.98 62.71

Table 4. Quantitative detection performance achieved by different methods on the Waymo [44] validation set. The results of our IA-SSD

are shown in bold, and the best results are underlined.

Method Type
Vehicle Pedestrian Cyclist

mAP
overall 0-30m 30-50m >50m overall 0-30m 30-50m >50m overall 0-30m 30-50m >50m

PointPillars [18] Voxel-based 68.57 80.86 62.07 47.04 17.63 19.74 15.15 10.23 46.81 58.33 40.32 25.86 44.34

SECOND [49] Voxel-based 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61 51.89

CenterPoints [56] Voxel-based 66.79 80.10 59.55 43.39 49.90 56.24 42.61 26.27 63.45 74.28 57.94 41.48 60.05

PV-RCNN [36] Point-Voxel 77.77 89.39 72.55 58.64 23.50 25.61 22.84 17.27 59.37 71.66 52.58 36.17 53.55

PointRCNN [38] Point-based 52.09 74.45 40.89 16.81 4.28 6.17 2.40 0.91 29.84 46.03 20.94 5.46 28.74

IA-SSD (Ours) Point-based 70.30 83.01 62.84 47.01 39.82 47.45 32.75 18.99 62.17 73.78 56.31 39.53 57.43

Table 5. Quantitative detection performance on the ONCE [26] validation set. The results of our IA-SSD are shown in bold, and the best

results are underlined.

that the proposed IA-SSD is capable of detecting small and

far-away instances such as pedestrian and cyclist.
Apart from the detection results on the test split, we

also report the performance comparison on the validation
set of the KITTI dataset in Table 3. We can see our IA-

SSD achieved the best performance for all three classes

among all point-based detectors. In particular, our IA-SSD

is single-stage, lightweight, and efficient, requiring only a

single model for detecting multi-class objects.

Evaluation on Waymo Dataset. We further evaluate

the performance of our IA-SSD on Waymo [44] dataset.

This dataset is composed of nearly 160k 360-degree Li-

DAR samples in the training set and 40k in the validation
set with panoramic annotated objects. For a fair compar-

ison, we adapt our framework on the Waymo Dataset by

only changing the number of input points from 16384 to

65536, and increasing the sampling scale up to fourfold in

each sampling layer, while remaining the rest unchanged.

Additionally, all baselines are implemented based on the

OpenPCDet codebase for a rigorous comparison. As shown

in Table 4, our IA-SSD achieves significantly better detec-

tion performance on pedestrian and cyclist compared with

other strong baselines, showing that the proposed instance-

aware sampling can indeed improve the perception capacity

of small objects. We also noticed that our IA-SSD shows

slightly inferior detection performance on vehicle compared

with other voxel-based methods, this may be caused by the

relatively complicated distribution of the 3D size of such

instances. We will leave this issue for future exploration.

Evaluation on ONCE Dataset. To further verify the

generalization of IA-SSD on more complex and realistic sit-

uations, we also evaluate the performance of our IA-SSD

on the latest ONCE Dataset [26]. Specifically, we feed 60k

points into the IA-SSD similar to the setting on the Waymo

Dataset, and train 80 epochs for a fair comparison. As

Method Mem. Paral. Speed⊥ Speed� Input Scale
PointPillars [18] 354 MB 28 48 58 2∼9k

SECOND [49] 710 MB 14 30 40 11∼17k

TANet [24] 3000 MB 3 20 28 <12k

3DSSD [52] 502 MB 19 11 28 16384

PointRCNN [38] 560 MB 18 10 14 16384

Part-A2 [39] 702 MB 13 12 19 11∼17k

PV-RCNN [36] 1223 MB 8 8 10 11∼17k

IA-SSD (Ours) 102 MB 100 23/48† 83 16384

Table 6. Efficiency comparison of different methods on the KITTI

validation set. Here, “Mem.” and “Paral.” denote the GPU mem-

ory footprint per frame during inference and the maximum number

of batches that can be parallelized on one RTX2080Ti (11GB).

”Speed⊥”, ”Speed�” is inference speed when processing one

frame or full-loaded GPU memory, † means dividing the scene

into four parallel parts to speed up the first sampling layer. For a

fair comparison, we also report each input scale of voxels/points

according to their official setting.

shown in Table 5, our method yields the competitive per-

formance among all baselines. This again verifies the su-

periority of the proposed component and the efficiency of

our method applied on the large-scale complicated LiDAR

scenarios.

Efficiency of IA-SSD. Next, we evaluate the computa-

tional and memory efficiency of the proposed IA-SSD. In

light of the performance variations on different hardware

configurations, we re-implemented several representative

approaches and report the memory and speed on the same

platform for a fair comparison. Note that, we report the

memory consumption by feeding the same input point cloud

with 16384 points following the OpenPCDet configuration.

For speed evaluation, different models are inference with

batch point clouds with the full utilization of the same hard-

ware. As shown in Table 6, the proposed IA-SSD has the

lowest GPU memory consumption (up to 100 frames in par-

allel) with the highest inference speed (83 FPS) compared

with existing benchmark approaches.
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Figure 3. Qualitative results achieved on the KITTI test set. Red point for centroid perception, while gold points denote the 256 represen-

tative points. Green boxes for car, cyan for pedestrian and yellow for cyclist. Best viewed in color.

D-FPS
Feat-FPS

Cls-aware
Ctr-aware Car Mod Ped. Mod Cyc. Mod

(IoU=0.7) (IoU=0.5) (IoU=0.5)

(1) � - - - 78.12 50.46 65.19

(2) � � - - 79.00 54.31 71.08

(3) � - � - 79.19 58.81 70.15

(4) � - � � 79.54 58.49 71.33

(5) � - - � 79.57 58.91 71.24

Table 7. Ablation study of IA-SSD on different sampling strate-

gies, in which we report the 3D mAP with 11 recalls. Here D-FPS

is the traditional Farthest Point Sampling, Feat-FPS represents the

Feature-based FPS and Cls/Ctr-aware denote the proposed two

learning based sampling methods.

4.3. Ablation Experiments

In the following ablation studies, we train our IA-SSD

with multi-class objects in a single model, and all experi-

ments are conducted on the KITTI validation set.

Ablation on Downsampling Strategies. To further ver-

ify the effectiveness of the proposed instance-aware sam-

pling, we replace it with the D-FPS and Feat-FPS. As shown

in Table 7, the proposed instance-aware sampling achieves

the best detection performance in all three categories, es-

pecially the small objects such as pedestrians and cyclists.

This shows that the proposed sampling strategy can effec-

tively preserve the foreground information during down-

sampling process, thereby achieving better detection. We

also find that centroid-aware sampling (row 5) performs bet-

ter on pedestrians and cars, but slightly inferior in detect

cyclist compared with mixed sampling (row 4), primarily

because this sampling strategy focus on the instance center,

hence tends to ignore the distal geometric details of objects

such as cyclist with large aspect ratios.

Ablation on Contextual Centroid Perception. We

further validate the effectiveness of the proposed contex-

tual centroid perception module. Here, by replacing this

module with the vanilla center-assign2 or original-assign

used in [30], the detection performance shows clearly de-

crease. Table 8 shows that the inclusion of contextual points

can indeed improve the detection performance, especially

2https://github.com/qiqihaer/3DSSD-pytorch-openPCDet

Centroid Perception Type
Car Mod Ped. Mod Cyc. Mod

(IoU=0.7) (IoU=0.5) (IoU=0.5)

(1) Centers-assign 79.27 24.90 37.12

(2) Origin-assign 79.18 55.62 69.37

(3) Extend-factor assign 79.37 58.36 68.16

(4) Extend-length assign 79.57 58.91 71.24

Table 8. Ablation study of IA-SSD framework with different cen-

troid perception strategies.

for small objects, since the representative points lie in the

ground-truth bounding boxes are actually quite limited. We

are also noticed that both the extend-factor (2× size for each

bounding box) and extend-length (+1.0m for each bound-

ing box) have their own advantage in specific categories,

showing that different contextual information may have a

varying impact on different objects.

5. Conclusion
In this paper, we propose an efficient solution termed IA-

SSD for point-based 3D object detection in LiDAR point

clouds. Considering the task of object detection inher-

ently focuses on the foreground information, we propose

an instance-aware learning-based downsampling way to au-

tomatically select the sparse yet important instance points.

Additionally, a dedicated contextual centroid perception

module is proposed to fully exploit the geometrical struc-

ture around the bounding boxes. Extensive experiments

conducted on three detection benchmarks demonstrated the

superior efficiency and accuracy of the proposed IA-SSD.

Limitations. Although the proposed IA-SSD can achieve

remarkable efficiency in object detection of large-scale

LiDAR points clouds, it also has limitations. e.g., the

instance-aware sampling relies on the semantic prediction

of each point, which is susceptible to class imbalances dis-

tribution. For future work, we will further explore advanced

techniques to alleviate the imbalanced issue.
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