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Abstract

How to achieve better results with fewer labeling costs
remains a challenging task. In this paper, we present a new
active learning framework, which for the first time incor-
porates contrastive learning into recently proposed one-bit
supervision. Here one-bit supervision denotes a simple Yes
or No query about the correctness of the model’s prediction,
and is more efficient than previous active learning methods
requiring assigning accurate labels to the queried samples.
We claim that such one-bit information is intrinsically in
accordance with the goal of contrastive loss that pulls pos-
itive pairs together and pushes negative samples away. To-
wards this goal, we design an uncertainty metric to actively
select samples for query. These samples are then fed into
different branches according to the queried results. The
Yes query is treated as positive pairs of the queried cate-
gory for contrastive pulling, while the No query is treated
as hard negative pairs for contrastive repelling. Addition-
ally, we design a negative loss that penalizes the negative
samples away from the incorrect predicted class, which can
be treated as optimizing hard negatives for the correspond-
ing category. Our method, termed as ObCP, produces a
more powerful active learning framework, and experiments
on several benchmarks demonstrate its superiority.

1. Introduction

Active learning is particularly useful in many modern
machine learning systems, where data may be sufficient,
but labels are scarce or expensive to obtain [12, 14,24,25].
The key hypothesis of active learning is that one can build a
good predictive model with less labeled samples if a model
already knows which samples should be labeled to help im-
prove predictive performance. Generally, an active learning
algorithm iteratively selects samples to label, based on the
prediction results of current model. Once the samples are
labeled, they are added to the training set, and such process
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Figure 1. Illustration of differences between conventional active
learning and one-bit supervision. The latter leverages a simple
yes or no query about the correctness of the model’s prediction
instead of assigning an accurate label. In this paper, we adopt one-
bit supervision in our active learning framework and combine it
with contrastive learning for jointly optimization.

continues till the labeled budget is used up. However, con-
ventional active learning strategies are usually constrained
by annotating samples with accurate labels, i.e., which exact
class one sample belongs to. While it is difficult for the la-
beler to memorize and distinguish all categories especially
when the number of categories scales up, like ImageNet [7]
which consists of 1K categories.

Recently, a novel active annotation method called one-
bit supervision [ 18] is proposed, which labels samples with
one bit information by answering a simple yes-or-no ques-
tion, i.e., whether an image belongs to a specified class c,
this method can facilitate the learned procedure more effi-
ciently under the same amount of supervision. For exam-
ple, if we can get the model’s prediction on unlabeled data,
we only need to inquiry the labeler “Does the model pre-
dict this sample right?” It is a more efficient query strategy
compared with traditional labeling procedure in terms of bit
information, since for a C-classes classification problem,
accurately labeling a sample needs log, C bits of informa-
tion, while the one-bit query only needs one bit. This means
that with the same amount of annotations, we are able to
query more samples to get more information accordingly.
The differences between conventional active learning and
the one-bit method are shown in Figure 1. However, previ-
ous one-bit method [ 18] only makes use of the correct pre-
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dictions like conventional supervised learning, while does
not take full advantage of the information such as negative
query, and hence limits its performance.

The one-bit supervision returns Yes or No results, based
on this, we are able to obtain information whether the two
samples (one is the queried sample, and the other is a ran-
dom sample from the queried category) are from the same
category or not, which is reminiscent of recent contrastive
learning strategy [15]. In contrastive learning, the goal is to
learn an encoder that is able to map positive pairs to similar
representations while pushing away those negative samples
in the embedding space. We claim that contrastive loss is
intrinsically in accordance with the one-bit query, and
we are able to simply treat the Yes query as positive pairs,
while those No query as negative pairs. In this way, we are
able to take full advantages of the queried results. Towards
this goal, we develop a novel active learning approach that
combines semi-supervised learning and contrastive learning
with efficient one-bit supervision.

Specifically, firstly, we jointly train the model via com-
bining supervised cross-entropy loss with contrastive loss,
and obtain a pre-trained model for the next stage one-bit
query. Then we develop an uncertainty measurement met-
ric, which is based on the variance of the model’s prediction
during the training process, to help decide which samples
to query. According to the queried results, for the correct
prediction with Yes query, we extend the contrastive loss
function to allow for multiple positive samples during each
forward propagation so that images with the same ground
truth label will be pulled together for compact representa-
tion. While for the incorrect prediction with No query re-
sults, we integrate this incorrect negative label information
into contrastive learning to help these samples keep away
from their queried class. Moreover, we design a negative
loss that penalizes the negative samples away from the in-
correct prediction class, which can be treated as optimiz-
ing hard negatives for the corresponding category. Integrat-
ing one-bit supervision into contrastive learning produces a
much more powerful framework, and experimental results
on several well-known datasets demonstrate its superiority.

Overall, we summarize our contributions as follows:

* We present a novel active learning framework, which
combines contrastive learning with one-bit supervision
for the first time, and take full advantages of the su-
pervised information. We hope that such framework
would shed light on active learning community and of-
fer one possible direction for future research.

* We achieve significant leading performance on several
widely used image classification benchmarks. Espe-
cially on ImageNet, with only 10% labels in terms of
bit information, ObCP exceeds previous state-of-the-
art that even uses 30% labels.

2. Related Work

Our approach is closely related to recent advances cover-
ing contrastive learning and active learning. We briefly re-
view related works and clarify the differences between them
and our method.

2.1. Active Learning

Active learning is an efficient way to use label informa-
tion, which aims at minimizing the labeling cost by select-
ing high value data that can best improve the model per-
formance, and plays an important role in modern machine
learning systems. It can be classified into three categories.
The first category is the uncertainty-based method which
usually uses the probability distribution of prediction [6].
The diversity-based approach is the second category select-
ing diverse samples that expanse the input space maximally
and represent the whole distribution of the unlabeled pool
[14,24]. The last category is based on model performance
change, which selects the data points that would cause the
greatest change to the current model parameters and encour-
age optimal model improvement [9,26]. Besides the above
three categories, [|8] proposed one-bit supervision, which
can be considered as a novel type of active learning that only
inquires the most informative part in the class level. Differ-
ent from the mentioned works, our approach can utilize the
label information more efficiently by combining one-bit su-
pervision with semi-supervised contrastive learning.

2.2. Contrastive Learning

In recent years, contrastive learning [4,5,8,13,15,17,23]
has attracted a lot of attention. It regards each image and
its augmentations as the same class and others as negative
ones. The researchers used different ways to maintain a
training queue. A memory bank is used in [30] to store
the pre-computed representations from which positive ex-
amples are repossessed given a query. Based on this, a
momentum update mechanism is used in [15] to maintain
a long queue of negative examples for contrastive learn-
ing, while [4] uses a large batch to produce enough nega-
tive samples. [3] adopted a set of trainable “code” vector
to compute different views of image, while [13] predicted
previous version of itself. [22] solves transfer issue with
few-label based on contrastive pretraining. These works
prove that contrastive learning reaches better performance
on learning data characteristics. Previous contrastive based
semi-supervised learning works are almost two-stage ones,
i.e., using contrastive learning to pretrain a backbone model
and then using few shot labeled data to fine-tune it. How-
ever, the proposed method integrates contrastive learning
into semi-supervised learning in an end-to-end way, and
introduces one-bit supervision to help contrastive learning
generate its positive and negative samples, which will help
the model maximize the use of annotations.
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Figure 2. An illustration of our pipeline in query stage. The one-bit query will be operated in the unlabeled samples selected by our
uncertainty measurement module. After that, the correct prediction will be added into the labeled pool and used not only for the supervised
loss but also for contrastive learning. As for the incorrect prediction, they will be leveraged for generating negative samples for contrasting

and be optimized by the designed negative loss.

3. Method
3.1. Framework Overview

We first give an overview of the proposed active learning
framework. For better understanding, we split the whole
procedure into two stages. The model is firstly trained with
ground truth labels, using a conventional cross entropy su-
pervised loss L, for labeled data as well as the original
contrastive loss L., for unlabeled data, so as to generate
pretrained model for the next data mining stage. Then as
illustrated in Figure 2, once the model is initialized, we de-
liberately select samples from the unlabeled pool for query,
using the proposed uncertainty estimation criterion. The
active learning process only needs to return whether the
queried question is correct or not, which we denote as one-
bit query. According to the queried Yes or No results, the
samples are fed to different branches for training, i.e., for
the Yes query with accurate labels, we add samples to the su-
pervised loss term L, and contrastive loss term L., and
for the No query that we only know samples do not belong
to a certain category, we treat these samples as hard negative
ones for the queried category. These samples are used for
training in two-fold, on one hand, we incorporate them into
the contrastive loss term L., and highlight as hard negative
samples of the queried category, and on the other hand, we
design a negative loss function £,,., to make these samples
away from the No queried label. The overall loss can be
formulated as:

L= ['sup + /\ctrﬁctr + Aneg£neg~ (1)

where the supervised loss is defined as L, = H(p,y),
p and y denote the prediction and ground truth labels, re-
spectively, and H (-) denotes the conventional cross-entropy
loss. L. is the modified contrastive loss appears with dif-

ferent formats according to the labeled status of the sam-
ples. L4 is the negative loss term that keeps the hard neg-
ative samples away from the queried categories. A,y and
Aneg are two balancing factors that control the weights of
the two losses respectively.

Note that similar with conventional active learning pro-
cedure, the query and model training are interchanged, and
we are able to conveniently control the query times during
the model training until the query budget is used up. Please
refer to Figure 6 for detailed analysis. Besides, those sam-
ples that have incorrect prediction may be queried in the
next query stage. The whole pipeline is presented in Algo-
rithm 1. In the following parts, we first elaborate how to
deal with different query results by designing different loss
branches, as well as how to update the corresponding loss.
Then we describe our uncertainty estimation criterion for
sample selection.

3.2. Contrastive Loss with One-bit Query

In this section, we will elaborate how to construct the
contrastive loss term L., for different levels of annotated
samples. For a C category classification task, denote a bi-
nary label y. € {0,1}“ that only the cth dimension is 1
while others are 0. Given the queried category ¢, an un-
labeled sample x can be categorized into three conditions
during the active query procedure, i.e., the Yes query means
that y. is the accurate label; the No query means that ¥, is
the negative label, which also represents that x definitely
does not belong to category c; and an unlabeled status that
does not undergo the active query procedure.

L. for unlabeled data. For unlabeled data that we do
not have any available human feed back label prior, we sim-
ply use original contrastive loss L., [15] to optimize it.
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Algorithm 1 Contrastive learning based one-bit supervision
framework

Input: Labeled pool as D;, unlabeled pool as D,,, epochs
for stage 1 as 17, epochs for stage 2 as T5.

1: fort=0,...,71—1do

2 Stage 1

3 Train the model with Ly + Actr Lo w
4: end for
5
6
7

cfort=T1,...,T2 —1do
Stage 2
Select K samples from D,, to form a query pool D,
using U(x)
8:  for sample z ¢ D, do

9: use x to calculate L ,,
10: end for
11: for sample x and its prediction § € D, do
12: if g is correct then
13: DUz, D, \z
14: Use g to generate positives for L.
15: else
16: Use 7 to generate negatives for L.,
17: Use 3 to calculate L,
18: end if
19: end for

20: Build contrastive loss by L.t = Lo+ Lo+ Len
21: Train the model with Ly, + AnegLneg + ActrLetr
22: end for

Given an unlabeled sample x, we denote its feature of two
augmented views as q and k™, and let M be a memory bank
of size K. The objective can be defined as:

exp(q-kT/7)
exp(q-k*/7) + > cmexp(a - k/7) ’(2)

L, =—log

where 7 is a temperature parameter.

Lt for Yes query. Once we get the Yes answer in the
query stage, which exactly corresponds to accurate labels as
in conventional labeling strategy. Denote the labeled dataset
as €2, for the view of labeled data qq, (including correct pre-
diction sample), we not only use its different views kT as
positives, but also generate its positives by randomly select-
ing samples kg from 2 which have the same labels with
them. The function is defined as:

L1 exp(qq - k*/7)
7T 8 explan K /T) + Sopen eXD(an - K/7)
Lkt
© log exp(aq - k& /7)

exp(qa - k§/7) + Ygemexp(an  k/7)
3)

where each labeled sample qq, is pulled with two views k™
and kg, and pushed away with other samples in the memory
bank M. There is no doubt that incorporate class specific
priors into contrastive training will be better for classifica-
tion task. The specific benefits will be shown in Sec. 4.4.

L.t for No query. If the prediction y,. for sample z is in-
correct in query stage, which means that sample x definitely
does not belong to category c. Denote y. as its negative la-
bel for sample , we can infer from this incorrect prediction
that the model cannot distinguish x from class c easily since
they suffer certain similarities in feature space, so pushing
away the feature of class ¢ will benefit the model training.
Towards this goal, We redesigned a reasonable generation
method of negative samples in contrastive learning for those
samples with incorrect predictions.

In previous contrastive learning method, negative pairs
are simply formed by sampling views from other images,
which is denoted as M = {ki,...,kgx}. While in our
method, we first create a labeled feature set L to store the
features of (), then sample N features n;,i = 1,..., N, N <
K from L whose label is y.. Then we use these features
to replace the random N samples in M. After that, the
negative queue Q for the samples have incorrect prediction
becomes Q = {ni,...,ny,kny1,..., kg }, while the loss
function is defined as:

exp(q -kt /7)

oxp(@ K/7) + Sneqexp(a kjr)

Len =—log

It is worth mentioning that since the labeled data is lim-
ited, unlike previous contrastive learning methods that make
use of large size of memory bank (e.g, 65536), we are able
to substantially reduce K (e.g, down to 256) without much
influence to the model performance.

In summary, the function £, used in Eq. (1) can be for-
mulated as following, where different forms of contrastive
function correspond to different types of annotations.

ACctr = Ec,u + ACz:,l + ‘Cc,n (5)

3.3. Negative Loss

In the other way, we can use the negative label y.. to teach
the model that “the sample does not belong to this class”.
Different from other random noisy labels [20], these nega-
tive labels illustrate that the model is easily to mispredict the
samples to these categories in the training process. Since
that, it is very helpful for the model to keep the samples
away from these negative labels. Inspired by [20], we de-
sign the negative loss function to overcome this issue:

C
1
Eneg = _l(pc > 5) Zyc log(l —pi)’ (6)
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where p denotes the probability which represents the predic-
tion output by the model, and p; represents the ith element
of p. Eq. (6) enables the probability value of the incorrect
label to be optimized as zero, resulting in an increase in the
probability values of other classes, which meets our pur-
pose. Besides, we adopt an indicator function 1 that only
train the model with those predictions whose confidence is
above threshold 1/C'. This operation can prevent the model
from over minimizing those incorrect samples.

3.4. Uncertainty Estimation

We now return to the sample selection process to elabo-
rate how to select valuable samples from the unlabeled pool
for active learning. In a nutshell, the selected samples fed
for active query should be endowed with high uncertainty
prediction with respect to current model, thus we are able
to reduce uncertainty as much as possible after the active
query procedure. To achieve this goal, we define the model
uncertainty metric via diagnosing the output of a sample
during consecutive training epochs.

In this part, we explain how to measure the uncertainty
of a sample during the training procedure. Intuitively, the
uncertain samples are defined as those predicted sometimes
incorrectly during training and correctly at other times, as
illustrated in Figure 3. Formally, during the training proce-
dure, we maintain a running average of the model’s predic-
tion on all unlabeled data over the last m epochs, we refer
to it as p(y), which represents an average probability distri-
bution of the sample’s prediction during the training proce-
dure. Let g represent the model’s prediction on all unlabeled
data at the current epoch, we use the probability vector of
each sample during the last ¢ epochs (g;,¢ = 1,2...,%) to
calculate the uncertainty U (), which is defined as:

Ux) = — Zﬁ(y) log(q:) (7

After calculating the uncertainty value, we sort the unla-
beled samples in descending order according to their uncer-
tainty and choose top ranked samples to query.

4. Experiment

In this section, we conduct extensive experiments on sev-
eral widely-used benchmarks to validate the effectiveness
of our proposed active learning framework, as well as de-
tailed ablation studies to uncover how each module affects
the performance. All experiments are trained on 8 NVIDIA
Tesla-V100 GPUs, and the results are reported over 3 times
with random initial network weights and labeled pool.

Dataset. We evaluate our method on several standard
image classification benchmarks, including CIFAR-10/100
[21] and ImageNet [7]. Specifically, both CIFAR-10 and

dog: 0.5
cat: 0.6 cat: 0.3 cat:0.6
o
‘ - I - I -
'™ M | PR |
dog:0.7 dog:0.5 dog:0.6

§ﬂ> IIIIIW> I-IIIW>I|III

Training epoch

Figure 3. Some toy cases of sample’s prediction performance dur-
ing the training process. The top sub-figure represents an unstable
prediction case, whose result often changes with training iteration
while the bottom is stable. Labeling uncertain samples will pro-
vide greater help for model training.

Table 1. The correspondence of information bits between one-bit
and conventional annotations on different dataset.

| CIFAR-10 | CIFAR-100 | ImageNet

log, C 3.3219 6.6439 9.9658

|P] 10K 10K 128K

bits of information 33.2K 66.4K 1276K
|z 5K 5K 13K

|T°] 16.6K 332K 1146K

bits of information 33.2K 66.4K 1276K

CIFAR-100 consist of 60K images, of which 50K are used
for training and the rest 10K for testing, while CIFAR-10
contains 10 classes and CIFAR-100 has 100 classes. Ima-
geNet is a large-scale dataset that contains about 1.2M im-
ages ranging 1K classes.

Active learning settings. We conduct our experiments on
different number of labeled pool P~. For fair comparison,
we denote the initial labeled data used for training Stage
1 as Z°, and one-bit query budgets as 7. Based on the
description in Sec. 1, these three items satisfy: |P%| ~
|IS | + |TO| /log, C. The details about labeled number
and its corresponding bits of information and query times
are shown in Table 1.

4.1. Comparison with Active Learning Methods
4.1.1 CIFAR-10/100

Baseline method. We compare ObCP against several
well-known methods, which including VAAL [28], LL4AL
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Figure 4. The comparison results of image classification on CIFAR10/100.

[31], Core-set [
sembles w.VarR) [ 1], UncertainGCN [2], SRAAL [
VAAL [19], DBAL [11] and MC-Dropout [10].

], Ensembles using Variation Ratios (En-
]’ TA-

Implementation details. Following the conventional
practices in deep active learning [19], for fair comparison,
we adopt ResNet-18 [16] as the base model. The total train-
ing epochs is 200 while the first 100 epoch is used for Stage
1 shown in Algorithm 1. The momentum coefficient is set
to 0.9 with a weight decay of 5e-4. We use SGD optimizer
to update the parameters of the model, and the learning rate
is set to 0.03 with cosine decay schedule with batch size of
64. The data augmentation methods we used for contrastive
learning are consistent with that used in [15]. We conduct
experiments on different labeled budgets and Z9 is set to
10%, then in query stage we use up the total query budget
’7'0 in four times. The m is set to 30 while ¢ set to 5. Be-
sides, we simply set N = K /2 during experiments, and the
Actr and Ay,cq are set to 0.1.

Results. The comparison results of image classification
performance are shown in Figure 4. It can be observed that
our method outperforms all other active learning methods
on both two benchmark datasets at each active cycle. Ad-
ditionally, we have the following observations. For CIFAR-
10, we obtain an accuracy of 92.6% with 25% labels, even
better than other methods (e.g., SRAAL [32], 92.3%) which
need 40% labels. The accuracy is 94.1% when using 40%
labels, which surpasses other method by a large margin.
Similar trends can be observed on more difficult dataset
CIFAR-100, ObCP shows robust superior performance with
respect to different cycles. We achieve an accuracy of 68%
with 35% labels, which has already outperformed all other
methods with 40% labels, and the result can be further im-
proved to 69.2% with 40% labels. This mainly owes to the

Table 2. Comparison of accuracy on ImageNet dataset, where 10%
labels bits of information is used.

ImageNet

Method Backbone | [Z°] | |P*] | Acc.(%)
VAAL VGG16 | 10% | 30% 53.3
Core-set VGG16 | 10% | 30% 522
MC-Dropout VGG16 | 10% | 30% 48.9
DBAL VGGI16 | 10% | 30% 50.4
Ensembles w. VarR | VGG16 | 10% | 30% 52.0
ObCP VGGI16 1% | 10% 61.3
ObCP Res50 1% | 10% 64.9

designed one-bit query strategies and loss, which is able to
efficiently make use of returned answers.

4.1.2 ImageNet

Implementation details. For fair comparison, we con-
duct experiments using VGG-16 [27] as our backbone fol-
low other baseline methods. For model training, we set the
learning rate as 0.01 with batch size of 128. The A, is set
to 5 while Ajcq is set to 0.1. We train our model for 100
epochs and start the one-bit query at 60. Other details are
consistent with experiments on CIFAR10/100. Besides, for
baseline methods, their results are borrowed from [28].

Results. As can be seen from Table 2, the performance
of our model also demonstrates its superiority. Specifically,
when we set the total labeled pool |73L | as only 10%, we
achieve the result of 61.3%, which improves the best base-
line VAAL [28] that conducts over 30% labels by 8% ac-
curacy. What’s more, with a deeper architecture ResNet50
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Table 3. Comparison of our method with the previous one-bit su-
pervision method.

Dataset ‘ Settings ‘ One-bit ‘ ObCP

CIFAR100 | |Z%]: 3K,

TOL 47K | 595% | 621%

ImageNet ‘ }IS‘: 30K,

TO[: 977K | 604% | 63.8%

—&— ObCP
—A— Random
Diff2
—»— Max

65.0

Accuracy (%)
w (6] o)} ()}
w ~ o N
o v o u

T T T

10 15 20 25 30
% of Labeled Data

Figure 5. Model performance comparison with different sample
selection methods on CIFAR-100.

[16], our result can be further improved to 64.9%, which
demonstrates the robustness of our approach.

4.2. Comparison with One-bit Supervision Method

In order to better demonstrate the superiority of our de-
signed strategies, we compare our approach with previous
one-bit supervision [18] under the same protocol. We re-
implemented the one-bit method by using the source-code
! and all hyper-parameters follow its original settings. We
conduct over ResNet-18 for CIFAR-100 dataset and train
for 200 epochs, and ResNet-50 is used for the ImageNet
dataset, which is trained for 60 epochs.

As shown in Table 3, we can observe that ObCP sur-
passes previous one-bit approach by a large margin on both
CIFAR100 and ImageNet dataset. The improvement is
59.5% to 62.1% for CIFAR100, and 60.4% to 63.8% for Im-
ageNet. The reason may be that the previous one-bit method
only adopts correct prediction in the supervised term, which
is optimized by cross-entropy loss, and does not effectively
leverage the information of negative label. However, our de-
signed pipeline maximizes the revenue generated by inquiry
and significantly improves the performance of the model.

4.3. Comparisons of Different Sample Selection
Strategies

In this section, we focus on comparing the perfor-
mance with several selection methods re-implemented in
our framework. For a C'-classification problem, we denote

Uhttps://github.com/huhengtong/one-bit-supervision

p as the probability which represents the prediction output
by the model, p. is the cth element of p which represents
the probability of assigning x to class c. We summarize the
compared metrics [29] as follows:

* Random: which means each unlabeled sample is se-
lected for active query under same probability.

* diff2: measuring the gap margin between the two most
likely classes in prediction, here U (z) = 1 — (pe1 —
Pe2), where ¢l and ¢2 denote the classes with 1st and
2nd highest probabilities.

e max: measuring the maximum confidence that the
model has in any one label, here U (z) = 1 — max, p.

We conduct the comparison experiments on CIFAR-100
and all settings are consistent except for sample selecting
methods, and the results are shown in Figure 5. It can be
observed that our method outperforms other baselines by
a clear margin. Specifically, with 30% labels budgets, our
method is superior to Random by ~ 4.1% and max by ~
2.3%, as well as outperforms diff2 by ~ 2.4%. What’s more,
our selection method is more labeling-efficient, and we can
get better results even with 25% labels than other methods
which have 30% labels budgets. These results demonstrate
that under the same label budget, our measurement can se-
lect more valuable samples, thus greatly improving the per-
formance of the model.

4.4. Ablation Study

In this section, we conduct detailed ablation studies to
inspect how each module affects the performance. For effi-
ciency, unless specified, all experiments are conducted
on ResNet-50 with 100 epochs using a randomly se-
lected subset of 100 categories in ImageNet, and we call
it ImageNet-100. We report top-1 accuracy in each experi-
ment, where we achieve 79.3% accuracy with our proposed
active learning strategy using 10% labeling budgets in total.

4.4.1 The Effectiveness of Each Module

We first conduct ablations to reveal the effectiveness of each
module. The main modules include adding the correct pre-
diction into the supervised loss, the modified contrastive
loss, and the designed negative module. The results are
summarized in Table 4, and we explain them as follows.

* The first and second rows represent the influence of our
designed negative learning strategies. We notice that
the negative contrasting and negative loss can bring
about 0.8% and 2.2% improvement, respectively. Our
guess is that this strategy helps the model eliminate a
difficult option and enables the model with more pow-
erful discriminative ability.
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are (1) Varying the number of labels we used in stage 1. (2) Vary-
ing the query times.

Table 4. The influence of different modules. Results are based on
ImageNet-100 for 100 epochs.

Adding in sup. Adding in ctr. Neg ctr. Neg loss. ‘ Acc.
v v X v |78.5% (-0.8%)
v v v X 177.1% (-2.2%)
v X v v |76.8% (-2.5%)
X v v Vo (72.9% (-6.4%)
v v v v 79.3%

* The third row means we include the correct label into
contrastive loss, as shown in Eq. (3). We observe that
this operation can also improve the model performance
by 2.5%. It is because that incorporating class prior
into contrasive makes the samples belong to the same
category closer in feature space, which is beneficial for
the classification task.

* The fourth row means we use the correct query label
in the supervised loss. we can observe that this module
clearly enhances the model’s performance (+6.4%),
which demonstrates that giving a correct label to un-
certainty samples is more beneficial for classification.

4.4.2 Hyperparameters Analysis

Then we analyze the impact of several hyper-parameters,
which include query times and initial labeled number Z°.

Query times. The query time means that how many times
we need to run out the one-bit query budgets 7. For sim-
plicity, we equally assign the query quota according to the
number of query times. The results are summarized in Fig-
ure 6. The advantage of using quota in multi-stage is clear,
and the result of running out the quota 7¢ in 4 times is
~6% higher than using up them at once. This mainly owes
to the reason that the intermediate model is strengthened by
ObCP and thus can find more positive labels than the ini-
tial model. We can also observe that too many query times

may not bring positive impact on performance, and finally
we choose it as 4 for our experiments.

Initial labeled number ‘IS ] Here we study the impact
of different sizes of |Z°| when given the fixed label budget,
which is used for the training of stage one. We adjust its
size to 1% - 5% while given a fixed labeled pool |PL | of
10%. As shown in Figure 6, the larger full-bit supervision
data may not bring positive results, for it may reduce the
advantage of our designed active learning cycle and one-bit
learning strategies, which may make the framework degen-
erate to a regular semi-supervised learning method.

5. Limitations

As a new active learning framework, ObCP still suffers
some limitations. For example, ObCP and previous one-
bit supervision method [ 18] all focus on classification task.
However, how to transfer this idea to other tasks, such as
object detection, is still an open problem. For example, we
can annotate image by querying “Does the bounding box
is correct?” rather than giving an accurate box-level labels.
But there exists many details to be fixed due to the intro-
duction of localized bounding boxes. This remains to be
studied in the future research.

6. Conclusion

This paper proposed a novel active learning framework,
which integrates contrastive learning into a novel active
learning method named one-bit query. We claim that the
yes-or-no setting in one-bit query is intrinsically in accor-
dance with contrastive learning that pulls positive pairs to-
gether and pushes negative samples away. Towards this
goal, we design an uncertainty-based sample selection met-
ric according to the variance of the model’s prediction dur-
ing the training process. Then in order to make better use
of queried information, we design two branches accord-
ing to different queried situations. The correct prediction
will be added into the labeled pool and help improve the
performance of contrastive learning. As for the incorrect
prediction, we not only use this incorrect label information
to generate hard negative samples for contrastive repelling,
but also design a negative loss to keep samples away from
the queried category. Experiments on several benchmarks
demonstrate the effectiveness of the proposed framework,
especially on the large-scale dataset.
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