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Abstract

This paper presents a novel Physically-guided Disen-
tangled Implicit Rendering (PhyDIR) framework for high-
fidelity 3D face modeling. The motivation comes from two
observations: Widely-used graphics renderers yield exces-
sive approximations against photo-realistic imaging, while
neural rendering methods produce superior appearances
but are highly entangled to perceive 3D-aware operations.
Hence, we learn to disentangle the implicit rendering via
explicit physical guidance, while guaranteeing the proper-
ties of: (1) 3D-aware comprehension and (2) high-reality
image formation. For the former one, PhyDIR explicitly
adopts 3D shading and rasterizing modules to control the
renderer, which disentangles the light, facial shape, and
viewpoint from neural reasoning. Specifically, PhyDIR pro-
poses a novel multi-image shading strategy to compensate
for the monocular limitation, so that the lighting variations
are accessible to the neural renderer. For the latter, PhyDIR
learns the face-collection implicit texture to avoid ill-posed
intrinsic factorization, then leverages a series of consisten-
cy losses to constrain the rendering robustness. With the
disentangled method, we make 3D face modeling benefit
from both kinds of rendering strategies. Extensive experi-
ments on benchmarks show that PhyDIR obtains superior
performance than state-of-the-art explicit/implicit methods
on geometry/texture modeling.

1. Introduction
3D face reconstruction gets increasingly attraction with

applications such as digital human, games and mobile pho-

∗Chengjie Wang and Dongjin Huang are corresponding authors
†CAS Key Laboratory of Electromagnetic Space Information of USTC.

tography. The pioneering effort is 3DMM [6] which pro-

vides reliable facial priors. With this parametric model,

the reconstruction can be achieved by optimization and fit-

ting [47, 48, 79]. With the development of deep learn-

ing, recent methods [15, 18, 33, 45, 77] learn to regress

3DMM parameters from input images. Subsequent work-

s are also proposed to contribute on non-linear model-

ing [17, 19, 56, 57, 59, 67, 76] and multi-view consisten-

cy [5, 9, 54, 64, 69]. Besides 3DMM based approaches, re-

cent efforts [50, 65, 75] attempt to model 3D face without

shape assumptions. These non-parametric methods have

potential ability to improve the modeling quality over 3D-

MM limitations.

Actually, the aforementioned learning-based methods

need differentiable renderers including OpenDR [36], neu-

ral mesh renderer [29], SoftRas [34] and Ray-tracing [32]

for unsupervised learning. These renderers perform image

formation under graphics pipelines which are well explain-

able. With the explicit 3D operations, the fine-grained 3D

controls are naturally achieved. However, these graphics

renderers yield hand-crafted approximation or ill-posed de-

composition on reflectence, illumination or other 3D clues.

In Fig. 1-(a), we observe the graphics-renderer-based meth-

ods [13, 32, 75] struggle to produce photo-realistic texture,

which also limits their geometry reconstruction.

Against these limitations, another approach is employ-

ing a neural renderer such as StyleGAN [27, 28] to avoid

approximation or ill-posed decomposition. Existing meth-

ods [7, 12, 42, 43, 66] mainly learn to embed 3DMM coef-

ficients into StyleGAN’s manifold, and constrain the gen-

erative network with 3DMM consistency. In this way, 3D

controls are achieved implicitly by tuning the parameters.

With StyleGAN’s effectiveness, these methods show high-

reality texture modeling performance. However, in Fig. 1-
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Figure 1. (a) Comparison with graphics-renderer based method-

s LAP [75], D3DFR [13] and Albedo MM [52] + Ray-tracing

(redner) [32]. Our method models detailed facial shapes, photo-

realistic texture and lighting effects. (b) Comparison with neural

rendering methods DFG [12] and PIRender [43]. Our method pro-

duces more robust 3D controls and relighting results. (c) Results

of 3D-aware generative method [7]. Our method well addresses

real-world images and photo-realistic lighting effects.

(b), we observe that they cannot guarantee the identity, fa-

cial shape, lighting effect or texture consistency during 3D

operating. The reason is due to the entangled image forma-

tion procedure. StyleGAN is trained as a 2D-aware ‘black

box’ without 3D physical modeling. Hence, even with high-

level 3D representations, the generator essentially needs to

guess and simulate the exact 3D operations, which is high-

ly indirect and complicated. Recent 3D-aware generative

approaches [7, 8, 39, 42] are proposed against this problem

and achieve better 3D controls. However, in Fig. 1-(c), we

observe that this kinds of method cannot address real-world

images nor lighting effects.

On top of these discussions, we argue that a proper

rendering strategy should support (1) explicit and fine-
grained 3D controls, (2) a disentangled neural reason-
ing for high-quality image formation and (3) easily inverse
rendering to model faces from real images. In this pa-

per, we propose a novel Physically-guided Disentangled

Implicit Rendering (PhyDIR) framework for 3D face re-

construction. As shown in Fig. 1, by disentangling 3D

physical pipelines from neural reasoning, PhyDIR achieves

robust and photo-realistic 3D modeling/editing from input

facial photos. The neural reasoning of PhyDIR contain-

s a texture modeling network and a 2D-aware neural ap-

pearance renderer, while the 3D physical guidance bridges

this two stages with explicit 3D pipelines. Concretely, the

texture modeling network learns canonical implicit texture

Methods 3D Controls Image Formation Photo Collection

Graphics-renderer-based Explicit Explainable
MOFA [57], DECA [17], Unsup3D [65]

Shape | Pose | Light 3D Graphics Pipelines
×

LAP [75], FML [54], MVF [64] �
Neural-rendering-based Implicit Entangled

DFG [12], StyleRig [55], PIRender [43] 3DMM Parameters ‘Black Box’ ×
3D-aware Generative Explicit Disentangled

VariTex [7], Pi-GAN [8], GIRAFFE [39] Shape | Pose
3D Operations + ×

2D Neural Reasoning

Explicit Disentangled

Ours Shape | Pose | Light
3D Operations + �

2D Neural Reasoning

Table 1. Discussion with selected existing methods.

from input images, which avoids ill-posed intrinsic factor-

ization. Then, PhyDIR employs facial shading and raster-

ization from a 3D proxy to warp the implicit texture into

2D space. Thus the fine-grained 3D controls, including fa-

cial shape, viewpoint and lighting, are explicitly modeled.

Specifically, PhyDIR leverages a novel multi-image shading

module to compensate for the monocular ambiguity, mak-

ing the lighting variation well accessible in an unsupervised

manner. After that, the neural appearance renderer takes the

projected 2D texture for image formation, constrained by a

series of 3D consistency losses. In this way, PhyDIR guar-

antees explainable 3D controls and photo-realistic image

formation without hand-crafted rules. Finally, we demon-

strate that with the disentangled paradigm, PhyDIR well

acts as a reliable renderer to model detailed facial shapes.

In summary, our contributions are as follows:

1) A novel Physically-guided Disentangled Implicit Ren-

dering (PhyDIR) framework is proposed to model high-

fidelity 3D face. PhyDIR well integrates the advantages

of graphics/neural renderers, and gets over the hand-crafted

graphics rules or entangled neural image formation.

2) With the novel multi-image rasterizing, shading and

texture mapping modules, PhyDIR guarantees fine-grained

3D controls of shape, viewpoint and lighting, as well as the

photo-realistic imaging.

3) With a series of novel consistency losses, PhyDIR

guarantees the rendering robustness under 3D operations.

2. Related Works
In Table 1, we make a discussion on existing face mod-

eling methods. Compared with graphics-renderer-based

methods, PhyDIR benefits from neural reasoning on photo-

realistic image formation. Compared with neural-renderer-

based approaches, PhyDIR tackles more explicit and ex-

plainable 3D controls. The most related works are the 3D-

aware generative models. In contrast, our method addresses

real-world images, multi-view consistency and light model-

ing which are crucial for 3D facial shape recovering.

3D Face Reconstruction: 3D face reconstruction is a

long-standing problem [16] which can be divided into two

mainstreams: i.e., Parametric and non-parametric method-

s. The parametric methods are mainly developed from 3D-

MM [6]. Early works try to find suitable 3DMM param-

eters via optimization [47, 48, 79], while recent approach-
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es [15, 18, 45, 77, 78] leverage deep neural networks to di-

rectly regress the parameters from input images. With the

differentiable renderers proposed, efforts are made on as-

pects of unsupervised learning [20, 46, 57], improving the

non-linear feasibility [14, 17, 19, 57, 59, 76] and multi-view

consistency [5, 9, 54, 64, 69]. More recent works attempt to

learn complete 3DMM basis [56] or implicit functions [67]

which brings new possibilities to this topic.

For the non-parametric methods, part of recent work-

s are developed by data-driven supervised training [3, 24,

60, 71]. Other efforts are also developed from shape-from-

shading [72], including SFS-Net [50] and Unsup3D [65].

More recently, Zhang et al. propose LAP method [75]

to leverage multi-image consistency in non-parametric

paradigm. Gan2Shape [40] and LiftedGAN [51] try to dis-

till knowledge from 2D GANs for 3D reconstruction. D-

ifferent from these discussed methods, PhyDIR contributes

3D face modeling from a perspective of rendering process,

in which it successfully integrates advantages from both

graphics and neural rendering strategies.

Differentiable Graphics Renderer: Differentiable ren-

dering is crucial for inverse graphics such as 3D face model-

ing, which is also a long-standing problem [23, 53]. Recent

efforts such as OpenDR [36] and neural mesh renderer [29]

are proposed as general pipelines, in which they approxi-

mate the primary visibility gradients for multi-triangle solu-

tion. Rezende et al. [26] leverages OpenGL renderer for 3D

reconstruction. SoftRas [34] proposes differentiable func-

tions upon the backward derivatives. Li et al. propose an

edge-sampling solution for ray-tracing [32]. Cole et al. [10]

propose an efficient surface rendering approach that sup-

ports different representations. In summary, these methods

yields approximations or concessions on modeling realistic

3D faces. In contrast, PhyDIR gets rid of the limitations by

integrating neural rendering, which confronts less ill-posed

factorization or appearance degradation.

Neural Rendering for Face Reconstruction: Neural

rendering methods on face modeling mainly depend on gen-

erative models such as GANs [27, 28]. General encoding

methods [2, 44] introduce style vectors to control the fa-

cial attributes. By using 3D embeddings, StyleRig [55],

DFG [12] and PIRender [43] implicitly control the GAN’s

prediction on pose, identity and lighting, but they cannot

guarantee the robustness on physical perspective. Recently,

approaches based on NeRF [37] are employed into GANs

to accomplish 3D-aware operations [8, 39], but they cannot

model high-quality geometry. More related works [7, 42]

combines explicit 3D shapes with neural renderers. In con-

trast, PhyDIR has superiority on (1) addressing real-world

images without per-image inversion; (2) explicitly model-

ing lighting and shadows which are also crucial for geom-

etry learning and (3) leveraging multi-image mappings and

consistency to better constrain reality and 3D robustness.

3. 3D Proxy Building
Implementing neural networks as renderers for face

modeling is not trivial, as the rendering procedure is high-

ly entangled. All of the existing methods [7, 12, 42, 43, 55]

encode 3D priors to the forms that are accessible to the net-

works. Following this perspective, we first physically guide

the neural renderer with a 3D proxy for high-quality ap-

pearance modeling, then leverage the learned renderer to

improve the geometry reconstruction. Theoretically, the

proxy can be arbitrary. Here we choose Unsup3D [65] and

LAP [75] to get 3D proxy, as they require no supervision

and limited priors, meanwhile have good efficiency, non-

linearity and source code.

Unsup3D and LAP share a similar framework and for-

mulation. In summary, they disentangle a facial image

I into intrinsic factors (d, a, ω, l) comprising a depth map

d ∈ R+, an albedo image a ∈ R
3, a directional light l ∈ S

2

and a viewpoint ω ∈ R
6, where d, a, and l are in canonical

space. Each factor is predicted by a separate network which

we denote as Φd,Φa,Φω and Φl, respectively. Then, the 3D

face can be reconstructed using these factors by lighting Λ
and rasterization Π as follows:

Î = Π(Λ(a, d, l), d, ω), (1)

where Π is achieved by a differentiable renderer [29]. They

also utilize a weakly symmetric canonical space by hori-

zontally flipping: Î′ = Π(Λ(a′, d′, l), d′, ω), where a′ and

d′ are the flipped version of a, d. Learning encourages

I ≈ Î, Î′. Confidence maps σ, σ′ ∈ R+ are predicted by

a network Φσ to calibrate the loss as follows:

L(Î, I, σ) = − 1

|Ω|
∑

ln
1√
2σ

exp−
√
2|Î− I|
σ

, (2)

where Ω is the normalization factor. The flipped version

L(Î′, I, σ′) is also calculated. We train the 3D networks

Φd,Φω,Φl following Unsup3D and LAP, then use them to

provide 3D proxy as the physical guidance for neural ren-

dering. The details are introduced in the following.

4. Methodology
In this section, we introduce the proposed Physically-

guided Disentangled Implicit Rendering (PhyDIR) method.

Our aim is to disentangle the neural rendering process via

physical guidance, making 3D face modeling benefit from

both explicit/implicit strategies. The overview is shown in

Fig. 2, where PhyDIR contains compositions of Implicit

Texture Modeling (Sec. 4.1), 3D Physical Guidance (Sec.

4.2) and Constrained Image Rendering (Sec. 4.3) to accom-

plish photo-realistic texture modeling. After the learning of

texture reconstruction, we then introduce how to use Phy-

DIR for fine-detailed geometry modeling (Sec. 4.4).
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Figure 2. Overview of the proposed method. The 3D controls are explicitly disentangled from neural reasoning, making neural networks

avoid tackling 3D processing and focus on 2D texture generation. For a photo collection {I}Ni=1 with a same identity, we first use texture

modeling network Φb to get target/combined implicit texture {bi}Ni=1, b
c. Then, we apply explicit 3D physical processing including multi-

image shading and rasterization modules to warp {bi}Ni=1, b
c via graphics pipelines. Finally, the warped texture {ḃi}Ni=1, {ḃci}Ni=1 are fed

into the neural appearance renderer Φn to recover {Î}Ni=1, constrained by different losses.

4.1. Implicit Texture Modeling

Illustrated in Fig. 2, we first model implicit texture from

input images. Instead of learning RGB texture or albedo

reflectance, our implicit texture modeling has advantages

on: (1) Requiring no ill-posed factorization, (2) more abun-

dant clues, and (3) fitness to neural rendering. Similar to

neural texture [7, 58], for a photo collection {Ii}Ni=1 with

a same identity, our texture modeling network Φb predicts

implicit texture {bi}Ni=1 ∈ [h, w, c] (c > 3) in the canonical

space. Note that, the implicit texture modeling is different

from [7, 58]: First, we efficiently predict bi from Ii with-

out per-image optimization. Then, our Φb can model multi-

image consistent clues, which is introduced in Sec. 4.2. In

contrast to the consistent face learning [75], our implicit

texture models multi-image clues with less RGB conflict-

s.

4.2. 3D Physical Guidance

We employ explicit 3D guidance to warp the implicit tex-

ture for image formation. As discussed in Sec. 1, existing

methods that embed 3DMM parameters [12,43,55] or style

vector [2,44] confront an entangled image formation proce-

dure, losing robustness or fine-grained 3D controls. Further,

without explicit 3D pipelines, these methods also struggle

to reasonably recover 3D facial shapes, poses or lights from

real images. Hence, we propose 3D physical modules to

guide the neural renderer. Our 3D physical guidance con-

tains multi-image shading and rasterization module.

Multi-image Shading Module: As discussed in Table 1,

most neural rendering methods cannot tackle light clues.

Actually, light is crucial for recovering facial details due to

the shape-from-shading effects [65,72]. Hence, we propose

a novel algorithm to employ explicit shading operations on

high-level neural features and in an unsupervised manner.

The multi-image shading module contains target and

joint shading. For each target image Ii, the 3D proxy net-

works provide canonical depth di and light li. Then we get

the shading map Si by Lambertian function flam(di, li).
In the target shading, we directly apply shading clues by

Si � bi, which simulates the shadow condition on Ii. How-

ever, only using the target shading cannot achieve suitable

light controls. One reason is that the implicit texture can-

not directly reveal the RGB lighting effects; another rea-

son is that the neural renderer tends to overfit on Ii, strug-

gling to perceive lighting variations from single bi with-

out seeing different lighting clues. As a result, we pro-

pose a joint shading module to compensate for the single-

image limitation. We first adaptively combine {bi}Ni=1 by

bc = fconv([b1, b2, ..., bN ]) (fconv is a conv-layer), then ap-

ply each li to bc. The total shading module is:

b̂i = Si � bi, b̂ci = Si � bc, (3)

where b̂i, b̂
c
i are the shaded target/combined implicit tex-

tures for Ii. Shaded by various lights in the photo collec-

tion, bc acts as ‘roughness’ and provides guidance on how to

suitably effect the appearance, shadows and light intensities

with different light conditions. Further, bc also enhances the

texture consistency produced by a common facial shape.

Rasterization Module: We then use rasterization mod-
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Figure 3. The proposed consistency losses to constrain the render-

er’s robustness on pose variations.

ule to warp and project the shaded canonical implicit texture

b̂i, b̂
c
i to the 2D space. With the di, ωi provided by 3D prox-

y networks, we leverage rasterization function fR (achieved

by mesh-renderer [29]) to get warped depth by fR(di, ωi).
Note that, although fR is approximated, the abundant clues

of bi, b
c
i and neural reasoning well compensate it. fR pro-

vides a 3D grid transformation to sample b̂i, b̂
c
i as follows:

ḃi = fsam(b̂i; di, ωi), ḃci = fsam(b̂ci ; di, ωi), (4)

where fsam is the sampling function. In this way, the trans-

formed ḃi and ḃci are 2D-spatially aligned to Ii. Then, we

apply a fusion module to combine ḃi with ḃci for enhancing

multi-image clues by b̃i = fconv([ḃi, ḃ
c
i ]). fconv is a conv-

layer, and b̃i is the final fused implicit texture.

4.3. Constrained Image Rendering

To reconstruct Ii from the wrapped implicit texture b̃i,
we propose a neural appearance renderer Φn with various

regularizations. Compared with the neural rendering meth-

ods, our input of the image formation network has been ex-

plicitly transformed into 2D space. Hence, Φn only needs to

perform spatially-aligned texture recovering without guess-

ing 3D operations. Defining the recovered image as Îi,
we use Lre = L(Îi, Ii, σi) in Eqn. 2 as the reconstruction

loss. To improve the reality, we also leverage an adversar-

ial loss [4] Ladv = min
G

max
D

E[log(D(Ii)] + E[log(1 −
D(G(Îi))], where G is Φn,Φb and D is the discriminator.

Further, under different poses, the Φn should robustly re-

cover images with a consistent shape, texture and light.

Defining Îω
′

i as the rendered image with randomly sampled

pose ω′, we leverage a series of consistency losses to con-

strain the robustness, illustrated in Fig. 3.

The rotated rendered image Îω
′

i should contain a same

facial shape as Ii. To encourage this, we propose a shape-

consistency loss using 3D proxy, which is formulated as:

Lshape =
1

Ω
|(Φd(Îω

′
i )− Φd(Ii))|. (5)

Φd is the 3D proxy network to predict canonical facial

depth. In this way, we constrain the renderer to keep the

shape consistency. Similarly, we encourage Îω
′

i to contain a

same texture and light as Ii, and the loss is formulated as:

Ltex =
1

Ω
|(Φb(Îω

′
i )−Φb(Ii))|, Ll =

1

Ω
|(Φl(Îω

′
i )−Φl(Ii))|.

(6)

Φb and Φl are our texture modeling network and light proxy

network, respectively. Finally, the total loss is:

Ltotal = Lre+u1Ladv +u2Lshape+u3Ltex+u4Ll, (7)

where u1−4 are the weighted constants. We optimize∑N
i Ltotal for a collection {Ii}Ni=1 in practice. In this way,

we constrain the robustness of the renderer under pose vari-

ations, and suppress the overfitting on the target image.

4.4. Geometry Learning

Once PhyDIR is trained, we can use it as a differentiable

renderer for geometry modeling. In contrast to implicit

methods [7,12,42,43,55], PhyDIR disentangles the 3D op-

erations from the neural reasoning procedure. In this way,

the lighting, shape and viewpoint clues, which are crucial

for geometry learning, can be explicitly back-propagated to

Φl,Φd,Φω . To learn geometry, we use a new Φd with sev-

eral upsampling-conv layers and a 256 × 256 output size

to tack place the proxy. We first freeze the neural reason-

ing networks Φb,Φn, and only optimize the 3D networks

Φl,Φd,Φω . This procedure can be conducted from scratch

or started from the 3D proxy. In practice, we find only

tiny difference between this two settings. Then, we joint-

ly fine-tune Φb,Φn with the geometry networks using E-

qn. 7. Compared with the 3D proxy and other methods, our

approach benefits from neural texture modeling and multi-

image consistency. These advantages lead to high-fidelity

facial shape modeling performance.

5. Experiment
5.1. Setup

Dataset: We train our method mainly on CelebA [35]

and CASIA-WebFace [68], then fine-tune it on a high-

resolution dataset CelebAMask-HQ [31]. Following [75],

we organize CelebA and CASIA-WebFace using ID-labels

and keep each identity with at least 6 photos. This pro-

vides 600K images with 16K identities. We select im-

ages of 12K/2K/2K identities as train/val/test set. For

CelebAMask-HQ, we organize it into 24K different iden-

tities using ground truth ID-labels, and randomly selec-

t 20K/1K/3K identities as train/val/test set. For evaluation

on facial geometry, following [3,65,75], we perform testing

on 3DFAW [21, 25, 73, 74], BFM [41] and Photoface [70]

dataset. 3DFAW contains 23K images with 66 3D keypoint

annotations, and we use the same protocol as [65] to perfor-

m testing. For BFM dataset, we use the same generated data

released by [65] to evaluate depth maps. Photoface dataset

contains 12K images of 453 people with face/normal image

pairs, and we follow the protocol of [3, 50] for testing.

Implementation Details: We keep the 3D networks

Φd,Φω,Φl with the same architectures as Unsup3D [65]

and LAP [75]. For neural reasoning networks Φb,Φn, we
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No. method SIDE (×10−2) ↓ MAD (deg.) ↓ SSIM ↑
(1) Ours-LAP 0.683±0.102 15.01±1.06 87.95
(2) Ours-Unsup3D 0.695±0.110 15.12±1.14 86.89

(3) Implicit texture (c=3) as RGB 0.724±0.141 15.37±1.54 77.67

(4) w/o shading 0.793±0.202 16.03±1.74 78.38

(5) Target shading only 0.719±0.183 15.24±1.72 80.56

(6) Joint shading only 0.725±0.118 15.40±1.31 79.92

(7) w/o Lshape 0.728±0.115 15.81±1.88 83.25

(8) w/o Ltex 0.715±0.109 15.46±1.50 80.28

(9) w/o Ll 0.701±0.112 15.23±1.26 85.41

(10) w/o joint learning 0.708±0.121 15.21±1.38 82.26

(11) LAP [75] (proxy) 0.703±0.137 15.30±1.26 62.30

Table 2. Comparison with Different Baselines and Settings.

use U-net [49] with a size of 256×256. This leads to

256×256 bi, b
c
i , di and Îi. Theoretically, larger modeling

sizes are feasible, but we use a similar setting as [7, 51, 75]

due to the time and memory cost. We upsample the depth

proxy to 256 × 256 to match our prediction for rasteriza-

tion. A same discriminator as StyleGAN2 [28] is leveraged

with the objective of [22]. For implicit texture bi, b
c
i , we

set their channel size c = 32. We further set u1 = 0.5,

u2,3,4 = 0.3 in Eqn. 7. During training, the size N of

photo collection {I}Ni=1 is randomly selected for the ro-

bustness. We train Φb,Φn for 40 epochs on CelebA and

CASIA-WebFace, then freeze them to train Φd,Φω,Φl for

20 epochs. Finally, we jointly fine-tune all the networks on

CelebAMask-HQ for 60 epochs. Φσ keeps updating at each

stage. We use Adam [30] as the optimizer, and set the learn-

ing rate as 0.0001 with a batch size of 8 on a V-100 GPU.

Evaluation Protocol: Without special statements, we

use single-image results to fairly compare with other meth-

ods. Following [3, 65], we use Scale-Invariant Depth Er-

ror (SIDE) and Mean Angle Deviation (MAD) to evalu-

ate depth and normal. For evaluating the modeled tex-

ture, we calculate Structural Similarity Index (SSIM) [63]

and cosine-similarity of encoded representation of Arc-

face [11] between the original high-quality images and ren-

dered ones, denoted as Cosine-O. Further, we relight/rotate

the images with different lights/poses, and compare them

with original images using cosine-similarity, denoted as

Cosine-L and Cosine-P, respectively. This paradigm can

analyse if the image formation method robustly keeps the

identity under different light/pose conditions. Please see ap-

pendix for more details.

5.2. Ablation Study

Comparison with Baselines: We first analyse different

settings of PhyDIR in Table 2. To analyse the geometry and

texture, we fine-tune and test our model on BFM dataset

and our CelebAMask-HQ dataset, respectively. Note that,

as BFM dataset has no identity labels, we only use single

input for fine-tuning. In rows (1) and (2), we observe that

PhyDIR has a robust performance between LAP [75] and

Unsup3D [65] as proxies. In row (3), we set the channel

number of implicit texture bi and bci as 3, which makes it

degrade to the RGB space. This significantly reduces the

texture modeling performance, as the representation ability

With Shading

W/o Shading

(a)

(b)

Implicit Texture Results

Target-shading-only Joint-shading-onlyOur full method

Figure 4. Analysis on the multi-image shading module. (a) How

the light modeling improves the details. (b) How the two kinds of

shading modules influence the results.

is limited. In rows (4-6), we analyse the effect of shading

operations. First, we find that removing shading operation

provides an obvious reduction on geometry accuracy. Then,

only using target shading or joint shading module cannot

obtain satisfactory results. In rows (7-9), we compare the

effects of different regularizations. According to the re-

sults, we find that Lshape contributes more to geometry re-

construction, while Ltex guarantees the texture modeling

performance. Ll also constrains the rendering stability. In

rows (10-11), we find that without joint learning, the geom-

etry modeling performance cannot significantly outperform

the proxy. This reveals that joint learning indeed makes the

shape modeling benefit from neural rendering.

Analysis on the Shading Module: We analyse how our

shading modules influence the reconstruction performance.

In Fig. 4-(a), we compare the model with or without shad-

ing modules, and highlight the differences between this two

settings. We observe that shading procedure enhances the

‘wrinkle’ effect on implicit texture maps. In the final recon-

struction results, the model with shading modules success-

fully recovers the wrinkles, while the one without shading

fails on predicting such details. Intuitively, as the details are

usually produced from the lighting effect of geometry, our

shading module is able to mutually improve the joint learn-

ing of facial shape and texture. In Fig. 4-(b), we compare

the different shading operations. In this comparison, we set

the photo collection with 4 images. We observe that only

using one of the shading modules produces similar recon-

struction results but different relighting effects. The target-

shading-only model cannot perceive suitable light intensity,

showing heavy overexposure. In contrast, the joint-shading-

only model predicts suitable relit effects. This phenomenon

indicates that the target-shading-only model tends to overfit

on the input image, thus it cannot simulate the effect with

unseen lights. On the contrary, as shaded with different

lights, the joint-shading-only model adapts to unseen condi-

tions. However, joint shading mixes the implicit texture of

photo collection thus losses the specific feature of the target
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Figure 5. The influence of different sizes N of photo collection

and channel numbers c of implicit texture. (a), (b): Quantitative

results. (c), (d): Qualitative analyses.

Our full method

w/o Texture Consistency Loss 

w/o Shape Consistency Loss 

w/o Light Consistency Loss 

Figure 6. Analysis on the consistency losses. Without the losses,

the model produces artifacts and abrupt changes during rotating.

image. Our full method successfully integrates the advan-

tages of both shading modules, providing consistent results.

Analysis on Multi-image Consistency: In Fig. 5, we

analyse the influence of photo collection {I}Ni=1 and im-

plicit texture bi, b
c. The quantitative results are obtained

from our CelebAMask-HQ test set to evaluate the quality

of modeled texture. Fig. 5-(a) reveals that the accuracy of

reconstruction increases with more input images. The accu-

racy gets an obvious improvement from N = 1 to N = 4,

while performs stable after that. In Fig. 5-(c), the input pho-

to collection contains a common feature of mustache. With

the increasing of N , the mustache of modeled texture get-

s clearer and more significant. For the channel number of

implicit texture, Fig. 5-(b) indicates that larger c produces

superior texture quality, which is also approved with the in-

creasing clarity of the modeled texture in Fig. 5-(d). These

analyses well demonstrate that PhyDIR addresses multi-

image consistency to improve the performance.

Analysis on the Losses: In Fig. 6, we illustrate the re-

sults with different consistency losses. In summary, lacking

each of the loss leads to artifacts and inconsistent rendering

performance. We observe that without the shape consisten-

cy loss, the shape of mouth cannot be maintained during

rotating. Without texture consistency loss, the results con-

tains obvious texture corruption and artifacts. The model

without light consistency loss cannot predict details such as

wrinkles or nostrils that are highly related to lighting effec-

t. In contrast, our full method predicts stable result on the

consistency of rendering.

Method Depth Corr. ↑ Time (ms)

Ground Truth 66 -

AIGN [62] (supervised) 50.81 -

DepthNetGAN [38] (supervised) 58.68 -

MOFA [57] (3DMM based) 15.97 -

DepthNet [38] 35.77 -

D3DFR [13] 50.14 -

DECA [17] 52.23 -

Unsup3D [65] 54.64 0.6

LAP [75] 57.92 2.0

Ours (Unsup3d-proxy) 58.26 1.7

Ours (LAP-proxy) 59.03 2.8

Table 3. 3DFAW keypoint depth evaluation of different methods.
MAD ↓ < 20◦ ↑ < 25◦ ↑ < 30◦ ↑

Extreme [61] 27.0±6.4 37.8% 51.9% 47.6%

SfSNet [50] 25.5±9.3 43.6% 57.5% 68.7%

PRN [18] 24.8±6.8 43.1% 62.9% 74.1%

DF2Net [71] (GT) 24.3±5.7 42.2% 62.7% 74.5%

D3DFR [13] 23.5±6.1 46.1% 61.8% 73.3%

Cross-Modal [3] (GT) 22.8±6.5 49.0% 62.9% 74.1%

DECA [17] 22.5±5.3 48.7% 62.3% 73.7%

LAP [75] 23.0±5.1 48.2% 63.1% 74.9%

Ours 22.7±4.3 49.2% 63.4% 75.3%

SfSNet-ft [50] 12.8±5.4 83.7% 90.8% 94.5%

Cross-Modal-ft [3] (GT) 12.0±5.3 85.2% 92.0% 95.6%

LAP-ft 12.3±4.5 84.9% 92.4% 96.3%

Ours-ft 12.0±4.9 85.3% 92.7% 96.9%

Table 4. Facial normal evaluation on Photoface dataset.

Input Ours Unsup3D LAP DECA D3DFR

Figure 7. Quantitative comparison on geometry against Un-

sup3D [65], LAP [75], DECA [17] and D3DFR [13].

5.3. Comparison with State-of-the-Art Methods

Evaluation on Geometry: We first evaluate the mod-

eled geometry of our method on 3DFAW dataset. Follow-

ing [65, 75], we use the 2D keypoint locations to sample

our predicted depth and calculate the depth correlation s-

core [38] on frontal faces. For a fair comparison, we use

our CelebA-pretrained model which is aligned to the set-

ting of Unsup3D, LAP, D3DFR [13] and DECA [17]. We

illustrate the results in Table 3, where our method obvious-

ly outperforms AIGN, DepthNet, MOFA and 3DMM-based

methods. For the proxy methods Unsup3D and LAP, our

method successfully outperforms them. Although the infer-

ence times are slightly longer, the significant improvement

of accuracy brings a satisfactory trade-off.

We then evaluate predicted facial geometry on Photoface
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Ours DFG PIRender VariTex

Ours

LAP

DFG

Figure 8. Qualitative comparison with LAP [75], DFG [12], PIRender [43] and VariTex [7] on the robustness of rotation and Relighting.

Method Cosine-O ↑ Cosine-L ↑ Cosine-P ↑ SSIM ↑
Unsup3D [65] 0.622 0.593 0.568 0.514

D3DFR [13] 0.398 0.384 0.380 0.335

LAP [75] 0.692 0.670 0.631 0.623

DFG [12] 0.730 0.359 0.623 0.751

PIRender [43] 0.702 0.417 - 0.733

Ours (Unsup3D-proxy) 0.776 0.768 0.742 0.869

Ours (LAP-proxy) 0.785 0.773 0.750 0.880

Table 5. Quality of rendered image on CelebAMask-HQ.

dataset. Following [3], we transform our predicted facial

depth to normal map in order to compute MAD with ground

truth. Results are illustrated in Table 4, where ‘-ft’ means

fine-tuning on Photoface. We observe that our method ob-

tains competitive results to DECA in the ‘no-fine-tuning’

condition. Note that, DECA utilizes 3DMM as reliable

shape assumption, while our method needs no such prior.

For the fine-tuned condition, our method obtains the best

performance. Compared with Cross-Modal [3] approach,

our method obtains slightly better accuracy but without us-

ing ground truth in the training stage. Finally, we perform

qualitative evaluation in Fig. 7, where our method produces

detailed and realistic facial shapes.

Evaluation on Texture: We perform quantitative evalu-

ation in Table 5 on our CelebAMask-HQ test set. As intro-

duced in the evaluation protocol, the Cosine-O is the cosine

similarity between the rendered image and the target one

on the original pose. The Cosine-L means we add differ-

ent lights to relight the rendered images, while the Cosine-

P means we rotate the rendered images with different yaw

and pitch angles. To make DFG [12] address real images,

we use a StyleGAN inversion algorithm [1] to optimize the

corresponding latent codes. We observe that our method ob-

tains the best performance. While DFG and PIRender [43]

produce satisfactory reconstructed results, they suffer from

obvious accuracy reduction with rotation and relighting. In

contrast, our method is robust to these 3D operations. Then

we illustrate qualitative results in Fig. 8. For the neural-

rendering-based methods DFG [12] and PIRender [43], we

observe that they cannot guarantee precise viewpoint con-

trols or appearance reality during rotating. Although the

3D-aware generative method [7] produces better 3D oper-

ations, it cannot well tackle the texture consistency of re-

al images. The graphics-renderer-based method LAP [75]

produces unreal relighting performances, while DFG can-

not correctly control the lighting effect. Our method shows

significantly superior performance and reality on 3D con-

sistency. Besides, we also show more results and make

discussions on potential limitation in the appendix.

6. Conclusion

In this paper, we propose a novel Physically-guided Dis-

entangled Implicit Rendering (PhyDIR) framework for 3D

face reconstruction. PhyDIR leverages the effectiveness of

neural image formation, and disentangles explicit 3D phys-

ical operations from this process. To avoid the ill-posed in-

trinsic factorization, PhyDIR learns implicit texture which

helps to integrate photo-collection facial clues. To trans-

form the implicit texture into 2D space, PhyDIR then em-

ploys physical graphics pipelines on neural features with

explicit controls. A novel multi-image shading module is

also proposed to make lighting effect perceivable against

single-image limitation. PhyDIR outperforms SOTA ren-

dering methods on texture modeling, and also achieves the

best accuracy on 3D facial shape prediction.

Broader Impact: The statistics of the training data may

bring biases with negative societal impacts. Besides, while

the model keeps the input identity, it may generate inexis-

tent contents. These issues warrant further research when

building upon this work to model 3D faces.

20360



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan++: How to edit the embedded images? In

CVPR, pages 8296–8305, 2020. 8

[2] Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Won-

ka. Styleflow: Attribute-conditioned exploration of stylegan-

generated images using conditional continuous normalizing

flows. ACM Transactions on Graphics (TOG), 40(3):1–21,

2021. 3, 4

[3] Victoria Fernández Abrevaya, Adnane Boukhayma,

Philip HS Torr, and Edmond Boyer. Cross-modal deep face

normals with deactivable skip connections. In CVPR, pages

4979–4989, 2020. 3, 5, 6, 7, 8

[4] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.

arXiv preprint arXiv: 1701.07875, 2017. 5

[5] Ziqian Bai, Zhaopeng Cui, Jamal Ahmed Rahim, Xiaoming

Liu, and Ping Tan. Deep facial non-rigid multi-view stereo.

In CVPR, pages 5850–5860, 2020. 1, 3

[6] Volker Blanz and Thomas Vetter. A morphable model for

the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 187–194, 1999. 1, 2

[7] Marcel C Bühler, Abhimitra Meka, Gengyan Li, Thabo Beel-

er, and Otmar Hilliges. Varitex: Variational neural face tex-

tures. arXiv preprint arXiv:2104.05988, 2021. 1, 2, 3, 4, 5,

6, 8

[8] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

and Gordon Wetzstein. pi-gan: Periodic implicit genera-

tive adversarial networks for 3d-aware image synthesis. In

CVPR, pages 5799–5809, 2021. 2, 3

[9] Bindita Chaudhuri, Noranart Vesdapunt, Linda Shapiro, and

Baoyuan Wang. Personalized face modeling for improved

face reconstruction and motion retargeting. In ECCV, 2020.

1, 3

[10] Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic,

and Zhoutong Zhang. Differentiable surface rendering vi-

a non-differentiable sampling. In ICCV, pages 6088–6097,

2021. 3

[11] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiri-

ou. Arcface: Additive angular margin loss for deep face

recognition. In CVPR, pages 4690–4699, 2019. 6

[12] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin

Tong. Disentangled and controllable face image generation

via 3d imitative-contrastive learning. In CVPR, pages 5154–

5163, 2020. 1, 2, 3, 4, 5, 8

[13] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde

Jia, and Xin Tong. Accurate 3d face reconstruction with

weakly-supervised learning: From single image to image set.

In CVPRW, 2019. 1, 2, 7, 8

[14] Abdallah Dib, Cedric Thebault, Junghyun Ahn, Philippe-

Henri Gosselin, Christian Theobalt, and Louis Chevallier.

Towards high fidelity monocular face reconstruction with

rich reflectance using self-supervised learning and ray trac-

ing. arXiv preprint arXiv:2103.15432, 2021. 3

[15] Pengfei Dou, Shishir K Shah, and Ioannis A Kakadiaris.

End-to-end 3d face reconstruction with deep neural network-

s. In CVPR, pages 5908–5917, 2017. 1, 3

[16] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie

Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard,

Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al. 3d

morphable face modelspast, present, and future. ACM Trans-
actions on Graphics (TOG), 39(5):1–38, 2020. 2

[17] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolka-

rt. Learning an animatable detailed 3d face model from in-

the-wild images. ACM Transactions on Graphics (TOG),
40(4):1–13, 2021. 1, 2, 3, 7

[18] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi

Zhou. Joint 3d face reconstruction and dense alignment with

position map regression network. In ECCV, pages 534–551,

2018. 1, 3, 7

[19] Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos

Zafeiriou. Ganfit: Generative adversarial network fitting for

high fidelity 3d face reconstruction. In CVPR, pages 1155–

1164, 2019. 1, 3

[20] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sar-

na, Daniel Vlasic, and William T Freeman. Unsupervised

training for 3d morphable model regression. In CVPR, pages

8377–8386, 2018. 3

[21] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade,

and Simon Baker. Multi-pie. Image and Vision Computing,

28(5):807–813, 2010. 5

[22] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincen-

t Dumoulin, and Aaron Courville. Improved training of

wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

6

[23] Homan Igehy. Tracing ray differentials. In Proceedings of
the 26th annual conference on Computer graphics and inter-
active techniques, pages 179–186, 1999. 3

[24] Aaron S Jackson, Adrian Bulat, Vasileios Argyriou, and

Georgios Tzimiropoulos. Large pose 3d face reconstruction

from a single image via direct volumetric cnn regression. In

ICCV, pages 1031–1039, 2017. 3
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