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Abstract

Blind deblurring has attracted much interest with its
wide applications in reality. The blind deblurring problem
is usually solved by estimating the intermediate kernel and
the intermediate image alternatively, which will finally con-
verge to the blurring kernel of the observed image. Nu-
merous works have been proposed to obtain intermediate
images with fewer undesirable artifacts by designing deli-
cate regularization on the latent solution. However, these
methods still fail while dealing with images containing sat-
urations and large blurs. To address this problem, we pro-
pose an intermediate image correction method which uti-
lizes Bayes posterior estimation to screen through the in-
termediate image and exclude those unfavorable pixels to
reduce their influence for kernel estimation. Extensive ex-
periments have proved that the proposed method can ef-
fectively improve the accuracy of the final derived kernel
against the state-of-the-art methods on benchmark datasets
by both quantitative and qualitative comparisons.

1. Introduction

Blurry images can easily occur when the photography
equipment suffers from slight movement. As the target
scene is usually irreproducible, how to efficiently recover
the contents from the blurry images has attracted much at-
tention. Mathematically, the degradation of a blurry image
is usually modeled as a convolution of a latent sharp im-
age U with a spatial invariant kernel K which represents the
moving trajectory of the equipment. Hence, we have:

B = K ∗ U + ε, (1)

where B denotes the observed blurry image, ∗ denotes the
convolution operator and ε is additive white Gaussian noise
(AWGN) which frequently appears in the real world.
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(a) Blurry image (b) Liu et al. [17] (c) Pan et al. [21] (d) Ours

(e) Blurry image (f) Liu et al. [17] (g) Pan et al. [21] (h) Ours

Figure 1. The comparison of the estimated kernel and deblurred
results on two challenging cases. The first line shows the results of
an image blurred by a large kernel; the second line shows the re-
sults of an image captured in the real world with saturation points.
Note that the kernel in the bottom left of the blurry image is used
for synthetic while others are estimated. In these cases, our method
estimates the kernel accurately while other methods get noisy ker-
nels or fail to estimate any shape. (Zoom in for better viewing).

As both the blurring kernel K and the sharp image U
are unknown, a common strategy is to update them in an
alternative way. Starting from an initial guess K0, for any
iteration k, we can iterate as follows:

Uk+1 = argmin
U

{
∥B − Kk ∗ U∥22 + ρU (U)

}
,

Kk+1 = argmin
K

{
∥B − K ∗ Uk+1∥22 + ρK(K)

}
,

(2)

where ρU (U) and ρK(K) are regularizers designed by some
suitable priors on the latent desired image and kernel. The
procedure in Eq. (2), which is aimed to produce the final
estimated kernel, is referred to as blind deblurring [1, 9, 17,
22,24,37]. Following it, the final deblurred image is derived
using a non-blind deblurring model [5, 33], which takes the
kernel returned by the blind deblurring and the given kernel
K plays a great role on the final result. In this regard, our
goal is to improve the accuracy of the kernel derived by
the blind deblurring procedure Eq. (2) to enhance the final
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deblurred result.
Many excellent works have been investigated to design

the formulas of ρU (U) and ρK(K) in Eq. (2) to improve the
kernel estimation accuracy [4,11,17,24,32,34–36]. Among
them, significant efforts have been made to drive the inter-
mediate image closer to the sharp image with less artifacts,
so as to use it to get an ideal kernel. Specifically, Pan et
al. [24] proposed a generic regularization on the dark chan-
nel of the latent sharp image, and reached leading perfor-
mance. Furthermore, Liu et al. [17] proposed a surface-
aware function smoothing the artifacts presented in the in-
termediate images and produced a more exact kernel.

Despite their effectiveness in many cases, their perfor-
mance degrades inevitably while dealing with the blurry
images with large blurs or saturations. There are two major
problems that easily occur in these challenging cases. As
illustrated in Fig. 1 (a)-(c), while estimating the large ker-
nel from images, the methods [17,21] generate rather noisy
kernels, with which the final deblurred results contain seri-
ous ringing artifacts. In the other case illustrated in Fig. 1
(e)-(g), when the iteration Eq. (2) increases, the estimated
intermediate image remains as the blurry input and the es-
timated kernel remains as the nearly identity input, which
means they fall into the local minimizer of the non-convex
blind deblurring problem.

To solve these problems, we propose a pixel screening
method to further correct the intermediate image, believ-
ing that a good intermediate image facilitates to estimate a
better kernel. From our observation of the conventional de-
blurring iterations, whose details are illustrated in Fig. 2,
we find that there exists a certain number of pixels in the
intermediate images that does not satisfy the model Eq. (1)
with the given estimated kernel. Moreover, we can see from
Fig. 2 that these pixels are useless and even harmful for ker-
nel estimation. As these unnecessary structures have ad-
verse influence on kernel estimation in the next step, we are
motivated to utilize a random operator to distinguish them
from the normal pixels. Hence, we propose a pixel screen-
ing map which calculates the weight for each pixel to decide
whether it conforms Eq. (1). Those undesirable pixels will
then be removed from the intermediate image for the sub-
sequent kernel estimation step. In this way, we effectively
relieve the influence of those unfavorable structures and ob-
tain the more accurate blurring kernels.

The main contributions of this work are summarized
as follows: (1) we initially find that the linear degrada-
tion model helps in locating the unnecessary structures in
the intermediate images; (2) we propose a new and effec-
tive blind deblurring model by correcting the intermediate
image with the proposed pixel screening strategy, which
proves to prompt the kernel away from the initial loca-
tion and facilitate a more accurate kernel estimation; (3) we
demonstrate the superiority of our method on the common

benchmark datasets [12, 14, 16], and the specific challeng-
ing benchmarks with large blur kernels and saturation as
well as the real-world images by comparing with the state-
of-the-art both quantitatively and qualitatively.

2. Related Works
Significant advances have been made in blind deblurring

tasks in the last decades. For instance, Cho and Lee [4]
extracted edge information from the latent image and sup-
pressed the artifacts by removing the noise of intermediate
image to optimize the kernel estimation. Xu and Jia [34]
proposed a criterion to measure the usefulness of edges for
kernel estimation. Furthermore, Yang et al. [38] built an
adaptive edge selection algorithm based on the assumption
that a good intermediate image estimation is not necessarily
the one closest to the latent image.

While these works improve the accuracy of the kernel
estimation by selecting the salient information from the in-
termediate images, another branch of works resort to de-
sign a preciser prior to regularize the latent image to be a
sharper intermediate image with less artifacts. For exam-
ple, Xu et al. [35] considered the sparsity prior of the sharp
image gradients and proposed to minimize the approximat-
ing L0 norm of the gradient to enforce the sparsity on image
gradient. Pan et al. [22] further applied an extra L0-sparsity
on the image intensity to reduce the unnecessary structures.
Beyond the edge information, Pan et al. [24] proposed the
sparsity on the dark channel based on the observation that
sharp images are sparser in the dark channel than the blurry
images. To preserve more details in the intermediate im-
age, Liu et al. [18] presented a super-Gaussian field model
to capture more complicated structures in images. Chen et
al. [1] considered a local maximum gradient prior for min-
ing more information from blurry images and got interme-
diate images with more textures. Different from them, Liu
et al. [17] observed the intrinsic geometry structure of in-
termediate images and proposed a surface-aware prior with
the aim of inhibiting the undesirable artifacts of the inter-
mediate while reserving the sharp edges in the meanwhile.

Recently, deep learning (DL)-based methods have also
developed in blind deblurring [27,29,30,39]. Ren et al. [27]
utilized a fully connected neural network and a CNN to
approximate the blur kernel and latent image, respectively.
Tran et al. [29] trained a residual net to extract blurring ker-
nel and a U-net to simulate the blurring process. However,
these DL-based methods heavily rely on the training data
and easily fail to infer the kernels from the images with ker-
nels that are not included in the training process. For this
reason, in this paper we focus on improving the iterative
blind deblurring method, which is more stable and precise.

In this work, we will also propose a pixel screening
method to locate the disadvantageous pixels existing in the
intermediate images during the blind deblurring iterations
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Figure 2. Overview of the proposed method. The top block shows the intermediate results using the strategy of Liu et al. [17], the bottom
block shows intermediate results of our method. We can see that the corrected intermediate images in the first few steps are more sharp,
which prompts the kernel to leave the identity map. In the lateral steps, the correction strategy significantly suppresses the artifacts and
modifies the intermediate image closer to the latent image.

based on the confidence map introduced in [5]. To improve
the kernel accuracy, we apply it after each image estimation
step to exclude those undesirable pixels which may harm
the kernel estimation.

3. Proposed method
In this section, we will first introduce the proposed pixel

screening strategy, after which we will present the proposed
intermediate image correction model as well as the alternat-
ing numerical scheme to solve it.

3.1. Pixel screening method

Our key idea is that the recovered intermediate image U
and the estimated kernel K in the blind deblurring model
are not always conforming to the ideal condition in Eq. (1).
which may lead to the deviation of the intermediate ker-
nel and image in the iterative process. In order to prevent
these pixels from adversely affecting the blur kernel esti-
mation, we propose a pixel screening strategy to exclude
the disadvantageous pixels existing in the intermediate im-
ages during the blind deblurring iterations before estimating
the kernel. Applying the calculation of the confidence map
introduced in [5], we define the probability of each pixel
being a non-deviated point in the intermediate image given
the intermediate image and kernel as:

P k+1
ij = P(Zk+1

ij = 1|Bij ,Kk,Uk+1), (3)

where P k+1
ij is the posterior distribution under Uk+1 and

Kk. Here, we introduce a variable Zk+1 as the pixel indica-
tor to show whether the pixels in the (k+1)-th intermediate
image satisfy the ideal assumption Eq. (1). Denoting Ω as

the whole image space, Ic as the space where pixels are not
compatible to Eq. (1) and I = Ω/Ic as the pixels that satisfy
the Eq. (1), the variable Z is explicitly defined as:

Z(Uij) = 1I(Uij), (4)

where 1 is an indicator function in a discrete image for clas-
sification. The Bayes’ theorem can then transform Eq. (3)
into

P(Zk+1
ij = 1|Bij ,Kk,Uk+1)

=
P(Bij |Zk+1

ij = 1,Kk,Uk+1)P(Zk+1
ij = 1|Kk,Uk+1)

P(Bij |Kk,Uk+1)

=
P(Bij |Zk+1

ij = 1,Kk,Uk+1)P(Zk+1
ij = 1|Kk,Uk+1)∑1

Zij=0 P(Bij |Z
k+1
ij ,Kk,Uk+1)P(Zk+1

ij |Kk,Uk+1)
.

(5)
According to the assumption in Eq. (1) where ε ∼

N (0, σ2), we have the probability

P
(
Bij | Zk+1

ij = 1,Kk,Uk+1
)
= N

(
(Kk ∗ Uk+1)ij , σ

2
)
,

(6)
For the other case Zij = 0, which means the pixel is
regarded as a deviated points whose posterior distribu-
tion does not obey Gaussian distribution, we approximate
P
(
Bij | Zk+1

ij = 0,Kk,Uk+1
)

by a uniform distribution
defined as

P
(
Bij | Zk

ij = 0,Kk,Uk
)
= c, (7)

where c = 1
cmax−cmin

, cmax and cmin are for the range of
the image values.

For the probability of a pixel conforming to the Eq. (1)
given an intermediate kernel and an intermediate image, we
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define it as:{
P
(
Zk+1

ij = 1 | Kk,Uk+1
)
= 1− P0

P
(
Zk+1

ij = 0 | Kk,Uk+1
)
= P0

, (8)

whereP0 accounts for the percentage of the total image pix-
els deviating from the linear model. Emperically, we as-
sume that there are around zero to ten percent pixels being
deviated. Note that P0 is a parameter that can be tuned ac-
cording to the actual situation

With above definitions, the pixel screening map Pij can
be explicitly represented as follows:

P k+1
ij =

N
(
(Kk ∗ Uk+1)ij , σ

2
)
(1− P0)

N ((Kk ∗ Uk+1)ij , σ2) (1− P0) + cP0
. (9)

3.2. Intermediate image correction strategy

Based on the observation that the assumption Eq. (1)
may be deviated during the iterative process, we propose
a novel correction strategy for blind deblurring to achieve
more accurate estimation. The generic form of the blind
deblurring model we aim to solve is given as follows:

min
U,K
∥K ∗ U − B∥22 + µρU (U) + νρK(K), (10)

where µ and ν are two positive parameters. In this paper,
we apply the widely-used l2-norm as ρK(·) and select the
l0-norm for edge selection and surface-aware regularization
proposed in [17] as ρU (·) due to its superiority in suppress-
ing the unfavorable artifacts. The regularization on image
is given as:

ρU (U) = ∥∇U∥0 + γ

m∑
i=1

n∑
j=1

√
1 + |∇i,jU|2. (11)

To derive the kernel from (10), traditional blind deblur-
ring methods [6,17,21,24,32] will iteratively solve the fol-
lowing two subproblems directly:

argmin
U
∥Kk ∗ U − B∥22 + µρU (U), (12)

argmin
K
∥K ∗ ∇Uk+1 −∇B∥22 + ν∥K∥22, (13)

where Eq. (13) is transformed from Eq. (2) as the previous
work [15, 17, 24] suggest using the gradient information of
the latent image will generate a more accurate and stable
kernel.

For Eq. (12), the half-quadratic splitting technique [10,
31, 34] is usually applied to solve the following problem:

min
U,V,W

∥Kk ∗ U − B∥22 + α∥U − V∥2 + β∥∇U −W∥2

+ µγ

m∑
i=1

n∑
j=1

√
1 + |∇i,jV|2 + µ∥W∥0. (14)

Following [17], the solution to Eq. (12) can be ap-
proached by alternatively solving W,V,U subproblems in
Eq. (14) as α → ∞ and β → ∞. We refer the read-
ers to [17] for the detailed description to the solutions of
U ,V,W . As for Eq. (13), it can be solved efficiently using
a fast Fourier transform (FFT).

However, the intermediate image within the traditional
iterations will contain unfavorable pixels due to the error in
the given kernel and further mislead the kernel estimation,
albeit Eq. (11) is designed to smooth the undesirable struc-
tures. This phenomenon is presented in Fig. 2, where the
artifacts become more prominent as the iteration increases.
To solve this problem, we propose an image correction strat-
egy which removes the undesirable pixels in the interme-
diate image by the pixel screening map P introduced be-
fore. Specifically, after obtaining the intermediate image
from Eq. (12), the image will be corrected by the screening
map P for kernel estimation as following:

Kk+1 = argmin
K
∥K ∗∇(P k+1 ◦ Uk+1)−∇B∥22 + ν∥K∥22,

(15)
where ◦ is the pointwise multiplication operator. The
pipeline of the blind deblurring iteration using the proposed
intermediate image correction strategy is also summarized
in Fig. 2.

3.3. Numerical scheme

As the blind deblurring is a highly non-convex problem,
we apply the coarse-to-fine scheme proposed in [4] to es-
timate the kernels from the coarse to fine images as other
state-of-the-art methods. Specifically, we construct the im-
age pyramid B1,B2, · · · ,BL by downsampling the blurry
input B, where B1 equals to B and BL is the coarsest blurry
image downsampled by the largest factor. The computation
of kernel and intermediate image will start from the coarsest
level L. At each level l, Bl is regarded as the blurry input B
of Eq. (10) in the l-th iteration, K0

l will be the initialization
ofK for the iteration (12), which is upsampled fromKNmax

l−1

calculated in the last iteration of last level. The algorithm of
proposed blind deblurring iteration is summarized in Algo-
rithm 1.

Algorithm 1 blind deblurring using intermediate image cor-
rection

input: blurry image Bl, initial kernel K0
l , parameters

µ, γ, σ,P0.
for each i← 1, N max do

Estimate U i
l by minimizing Eq. (14),

Compute pixel screening map P by Eq. (9),
Compute kernel Ki

l by calculating Eq. (15).
end for
output: intermediate image Ul and blur kernel Kl.
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Figure 3. Quantitative performance comparison on Köhler dataset, the proposed method achieves the highest PSNR value on average.

(a) Subeesh et al. [28] (b) Dong et al. [6] (c) Pan-DCP [24] (d) Chen-oid [2] (e) Liu et al. [17] (f) Ours

Figure 4. An example of Köhler dataset to show the effectivity of our method, compared with state-of-the-art method, our method obtain
the most sharp image.

4. Experimental performance

In this section, we first evaluate the effectiveness of the
proposed method on common benchmarks [12,16] by com-
paring it with other state-of-the-art blind deblurring meth-
ods. Furthermore, we prove the superiority of the pro-
posed method on the challenging datasets [14] which con-
tain the large kernels and saturation. Finally, we evaluate
the method on the real-world blurry images.

The experiments are implemented on the MATLAB plat-
form on a PC with Intel Core i7-10700 CPU and 16.0 GB
RAM. For the parameters in this work, we fix µ = 0.004,
γ = 1 and σ = 5/255. For the selection of the parameter
P0, we empirically find that the algorithm performs stably
with P0 within [0.01, 0.12] and best at 0.1 in general. For
images with large saturations, a large value such as 0.12 will
be suggested. Throughout our experiments, we fixed P0 as
0.1 unless specified.

The compared methods throughout the experiments in-
clude [4, 6, 17, 19, 22–24, 34, 35]. For a fair comparison,
we give priority to present the deblurred results which are
also published by the compared works. For those not pub-
lished, we produced them by running their published codes
and tried our best to reach the numerical results as reported
in their paper. Moreover, we perform the non-blind deblur-
ring [5] for synthetic datasets and [33] for real-world satu-
rated images to get the final deblurred results unless spec-
ified. For more comparison results, we refer the readers to

the supplementary material.

4.1. Köhler et al. dataset

We use the Köhler dataset [12] which contains 4 images
and 12 kernels to compare our method with several state-of-
the-art blind deblurring methods, including [23], [6], [24],
[28], [17], [2] and [3]. We selected Peak signal-to-noise
ratio (PSNR) and the Structural Similarity Index (SSIM) as
the metrics, where higher PSNR, SSIM values indicate the
better deblurred results.

As shown in Fig. 3, our method achieves the highest
PSNR consistently on the whole datasets. The average
SSIM in Tab. 1 also show that our method achieves best
numerical results on Köhler dataset. Additionally, the vi-
sual comparisons are conducted to prove the performance
of our method. From the example illustrated in Fig. 4, one
can see that other methods either fall into the initialization
kernel which derives a blurry image or get an inexact kernel
which derived a deblurred image with many ringing arti-
facts. Differently, our method gets the most accurate and
sharp kernel in both cases, with which the deblurred image
recovers most textures with least ringing artifacts.

4.2. Levin et al. dataset

We further evaluate our method on Levin et al. dataset
[16] which contains 4 images and 8 kernels. We compare
the proposed strategy with state-of-the-art algorithms, in-
cluding [2, 4, 13, 15, 23–25, 27, 34], where [27] is a DL-
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Table 1. Comparison of averaged SSIM on the Köhler dataset

Pan et al. [23] Dong et al. [6] Pan-DCP [24] Subeesh et al. [28] Liu et al. [17] Chen-oid [2] Chen-sat [3] Ours
SSIM 0.8757 0.8646 0.8853 0.8798 0.8786 0.8677 0.8667 0.8867

Table 2. Comparison of averaged SSIM on Levin dataset

Krishnan et al. [13] Cho&Lee [4] Xu&Jia [34] Levin et al. [15] Pan et al. [23] Pan-DCP [24] Chen-oid [2] Self-deblur [27] Ours
SSIM 0.8667 0.8966 0.9174 0.9148 0.9291 0.9284 0.9146 0.9313 0.9368

(a) Error ratios on dataset [16] (b) PSNR on dataset [16]

Figure 5. Quantitative evaluation on Levin’s dataset [16]. (a) is
the comparison of error ratios, (b) is comparison of PSNR values.

based method which behaves relatively well among the DL-
based methods. As the Error Ratio and PSNR depicted in
Fig. 5 (a) and (b), our method has competitive performance
against state-of-the-art methods, including deep learning
method. A visual performance is presented in Fig. 6, our
method obtains the kernel closest to the groundtruth kernel
and reaches the highest PSNR compared with others. The
PSNR values of the whole dataset depicted in Fig. 5 (b) with
the average SSIM listed in Tab. 2 also prove the consistent
superiority of our method.

4.3. Challenging cases

To prove the superiority of our method on challeng-
ing images, we evaluate the method on the dataset con-
structed by Lai [14], which contains 100 images synthe-
sized from four large kernels and 25 images. We com-
pare our method to the state-of-the-art methods including
[2, 3, 17, 19, 20, 24, 26, 27, 35]. From the comparisons in
Fig. 7 and Tab. 3, we can see that our method surpasses
other methods by a large margin in the averaged numerical
results. We also illustrate one example in Fig. 8 to show the
visual comparison where the deblurred saturated image by
our method has less ringing artifacts and higher visualiza-
tion quality. More visual comparisons can be found in Sec.
2 of the supplementary materials.

4.4. Real-world images

We further evaluate our method on images obtained from
real-world scenes. Fig. 9 shows two challenging cases. As
one can see, for low-light images, our method derives the

(a) Blurry image (b) Cho&Lee [4]
PSNR=28.18

(c) Xu&Jia [34]
PSNR=33.54

(d) Levin et al. [15]
PSNR=32.72

(e) Pan et al. [23]
PSNR=30.60

(f) Pan-DCP [24]
PSNR=33.79

(g) Chen-oid [2]
PSNR=32.60

(h) Self-deblur [27]
PSNR=32.40

(i) Ours
PSNR=35.30

Figure 6. An example of Levin et al. dataset.

Figure 7. PSNR comparison on Lai et al.’s dataset.
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Table 3. Comparisons of averaged SSIM on Lai et al.’s dataset

Perrone et al. [26] Pan et al. [21] Pan-DCP [24] Liu et al. [17] Chen-oid [2] Chen-sat [3] Self-deblur [27] Ours
SSIM 0.6988 0.7194 0.7462 0.7979 0.7392 0.6839 0.7525 0.8404

(a) Blurry image (b) Perrone et al. [26] (c) Michaeli et al. [19]

(d) Pan et al. [21] (e) Liu et al. [17] (f) Chen-oid [2]

(g) Chen-sat [3] (h) Self-deblur [27] (i) Ours

Figure 8. A saturated example of Lai et al. dataset.

kernels most successfully. For the face image which con-
tains fewer edges, our method can recover most textures.
More examples can be found in supplementary materials.

5. Analysis and discussion
In this section, we first analyse the effectiveness of our

method in locating the deviated pixels and correcting the in-
termediate images. Furthermore, we analyse the differences
between the existing methods and ours and further apply the
intermediate correction method to these methods to demon-
strate its effectiveness.

5.1. Effectiveness of the proposed strategy

To verify the effectiveness of the proposed image cor-
rection step, we compare the proposed method with the one
disabling the correction step, which reduces to [17]. As
seen from Fig. 10, the corrected intermediate images reg-
ularized by the surface-aware regularizations [17] are not
able to recover a satisfactory blur kernel, as the estimated
blur kernel stays at the identity map with the step increas-
ing. Using this kernel for non-blind deconvolution, the final
result in Fig. 10 (b) is as the input blurry image. Contrarily,

the intermediate images of the proposed method in Fig. 10
(f) prompt the kernel away from the identity position by
removing the disadvantageous structures as labeled by red
pixels in (f) and derive a sharp images finally. More specif-
ically, we illustrate the pixel screening map P calculated
from the images containing the outliers and ringing arti-
facts in Fig. 11. We could see the proposed method help lo-
cate and exclude outliers and artifacts for images and hence
prompt the kernel away from the identity position.

5.2. Comparison to other methods

We compare the proposed method to the existing blind
deblurring works, which are divided into three categories.
Prior based methods. Compared to most blind deblur-
ring methods which proposed delicate priors to retrieve a
more favorable intermediate images with useful informa-
tion [1,17,22,24], our key idea is to remove the undesirable
structures from the latent image.
Edge selection based methods. For more accurate ker-
nel estimation, some methods proposed to retrieve the most
useful edge information [7, 23, 38]. [7] and [38] introduced
a variable as the salient edge selection mask in their energy
functions and optimize it iteratively. [23] applied the shock
filters to the intermediate image and derived the salient
edges through the energy function. These methods how-
ever may lead to the feailure of kernel estimation as a result
of insufficient details in the images where edge information
is little, as shown in Fig. 3, 11 in supplementary materials.
Outlier processing methods. Many efforts have been put
into dealing with the outliers in images [2, 3, 6, 8]. [6] pro-
posed a sophisticated fidelity term to reduce the influence
of the outliers to the function, however making it less sen-
sitive to the inexact kernels. Both [2] and [8] adopt a con-
fidence map to remove the outliers from the calculation of
fidelity term and derive this map based on different spar-
sity priors. Hence, the performance of these methods rely
heavily on the conformation of the image to the designed
priors. [3] proposed a more simple and efficient way to di-
rectly shrinkage the outlier by multiplying with its inverse
value. However this method overlooks the influence from
the deviations below the linear model. Also, they all use the
map as a weight for calculating the fidelity term, while ours
uses the map to remove the any undesirable pixels innclud-
ing the outliers before kernel estimation.
Relation to [5]. Adopting the posterior for the possibil-
ity of outliers introduced in [5] as our confidence map, we
locate the deviated pixels given the intermediate K and U .
Different from [5], we use this map to remove the deviated
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(a) Pan-DCP [24] (b) Pan et al. [23] (c) Liu et al. [17] (d) Chen-sat [3] (e) Dong et al. [6] (f) Ours

(g) Pan-DCP [24] (h) Pan et al. [23] (i) Liu et al. [17] (j) Chen-sat [3] (k) Dong et al. [6] (l) Ours

Figure 9. Two examples of real-world dataset. Our method recovers the most clear result compared with state-of-the-art methods.

(a) Blurry image (b) Liu et al. [17] (c) Ours (d) Ground-truth

(e) Intermediate results without correction step [17]

(f) Intermediate results using proposed correction strategy (Ours)

Figure 10. Comparison of deblurring iterations of the proposed
model with and without the intermediate correction.

(a) (b) (c) (d) (e) (f)

Figure 11. (a, d): the blurry images, (b, e): pixel screening masks,
(c, f): corrected intermediate images.

pixels after deriving the intermediate image while [5] uses
it as a weight in the fidelity term for estimating better in-
termediate images. Our method proves to be an effective
post-processing method for blind deblurring.

5.3. Extension to other methods

As a post-processing method, it can be flexibly applied
to improve different blind deblurring schemes. We have ap-

plied them on the above mentioned works [1–3, 6, 23, 24]
using the same settings as given in their papars. Please refer
to Sec. 5 of supplementary materials for the comparisons
with and without the proposed intermediate image correc-
tion strategy. The methods adopting our method prove to
reach the most stable and promising performance in the im-
ages with or without the outliers.

6. Conclusion
This paper proposes a post-processing method to correct

the intermediate images for better kernel estimation, consid-
ering the importance of intermediate images for kernel esti-
mation. By calculating the pixel screening map, our method
is able to get rid of the unnecessary pixels and prompts
the estimated kernel to get away from the identity position.
Extensive experiments show that our method is stable, ef-
fective and reaches state-of-the-art performance combining
with different deblurring schemes.
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