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Abstract

Recently, zero-shot and few-shot learning via Contrastive
Vision-Language Pre-training (CLIP) have shown inspira-
tional performance on 2D visual recognition, which learns
to match images with their corresponding texts in open-
vocabulary settings. However, it remains under explored
that whether CLIP, pre-trained by large-scale image-text
pairs in 2D, can be generalized to 3D recognition. In this
paper, we identify such a setting is feasible by proposing
PointCLIP, which conducts alignment between CLIP-
encoded point clouds and 3D category texts. Specifically,
we encode a point cloud by projecting it onto multi-view
depth maps and aggregate the view-wise zero-shot pre-
diction in an end-to-end manner, which achieves efficient
knowledge transfer from 2D to 3D. We further design
an inter-view adapter to better extract the global feature
and adaptively fuse the 3D few-shot knowledge into CLIP
pre-trained in 2D. By just fine-tuning the adapter under
few-shot settings, the performance of PointCLIP could be
largely improved. In addition, we observe the knowledge
complementary property between PointCLIP and classical
3D-supervised networks. Via simple ensemble during
inference, PointCLIP contributes to favorable performance
enhancement over state-of-the-art 3D networks. Therefore,
PointCLIP is a promising alternative for effective 3D point
cloud understanding under low data regime with marginal
resource cost. We conduct thorough experiments on Model-
Net10, ModelNet40 and ScanObjectNN to demonstrate the
effectiveness of PointCLIP. Code is available at https:
//github.com/ZrrSkywalker/PointCLIP.

1. Introduction
Deep learning has dominated computer vision tasks of

both 2D and 3D domains in recent years, such as image
∗ Indicates equal contributions, † Indicates corresponding author
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Figure 1. Comparison of Training-testing Schemes between
PointCLIP and PointNet++. Different from classical 3D net-
works, our proposed PointCLIP is pre-trained by 2D image-
text pairs and directly conducts zero-shot classification on 3D
datasets without 3D training, which achieves efficient cross-
modality knowledge transfer.

classification [12,17,22,28,37,41], object detection [1,4,13,
29,47,67], semantic segmentation [3,25,35,36,64,68], point
cloud recognition and part segmentation [19,42,44,45,56].
With 3D sensing technology developing rapidly, the grow-
ing demand for processing 3D point cloud data has boosted
many advanced deep models with better local feature ag-
gregator [30, 32, 50], geometry modeling [20, 40, 60] and
projection-based processing [21, 34, 49]. Different from
grid-based 2D image data, 3D point clouds suffer from
space sparsity and irregular distribution, which hinder the
direct transfer of methods from 2D domain. More impor-
tantly, a large number of newly captured point clouds con-
tain objects of “unseen” categories to the deployed models.
In this scenario, even the best-performing classifier might
fail to recognize them and it is unaffordable to re-train the
models every time when “unseen” objects arise.

Similar issues have been dramatically mitigated in
2D vision by Contrastive Vision-Language Pre-training
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(CLIP) [46], which proposes to learn transferable visual
features with natural language supervisions. For zero-shot
classification of “unseen” categories, CLIP utilizes the pre-
trained correlation between vision and language to con-
duct open-vocabulary recognition and achieves promising
performance. To enhance the accuracy in few-shot set-
tings, CoOp [69] adopts learnable tokens to encode the tex-
tual inputs and avoids the tuning for hand-crafted prompt.
From another perspective, CLIP-Adapter [16] appends a
lightweight residual-style adapter with two linear layers for
better adapting image features and Tip-Adapter [66] further
boosts its performance while greatly reduces the training
time. Consequently, the problem of recognizing new unla-
beled objects has been well explored on 2D images, and the
proposed methods achieve significant improvements over
zero-shot CLIP. However, for the more challenging point
clouds, a question is naturally raised: Could such CLIP-
based models be transferred to 3D domain and realize zero-
shot classification for “unseen” 3D objects?

To address this issue, we propose PointCLIP, which
transfers CLIP’s 2D pre-trained knowledge to 3D point
cloud understanding. The first concern is to bridge the
modal gap between unordered point clouds and the grid-
based images that CLIP can process. Considering the real-
time need for some applications, such as autonomous driv-
ing [4, 13, 29, 43] and indoor navigation [71], we propose
to adopt online perspective projection [19] without any post
rendering [49], i.e., simply projecting raw points onto pre-
defined image planes to generate scatter depth maps. The
cost of this projection process is marginal in both time and
computation, but reserves the original property of the point
cloud from multiple views. On top of that, we apply CLIP’s
pre-trained visual encoder to extract multi-view features of
the point cloud and then obtain each view’s zero-shot pre-
diction by the text-generated classifier. Therein, we place
3D category names into a hand-crafted template and pro-
duce the zero-shot classifier by CLIP’s pre-trained textual
encoder. As different views contribute differently to the
understanding, we obtain the final prediction for the point
cloud by weighted aggregation between views.

Although PointCLIP achieves cross-modality zero-shot
classification without any 3D training, its performance still
falls behind classical point cloud networks well-trained on
full datasets. To eliminate this gap, we introduce a learn-
able inter-view adapter with bottleneck linear layers to bet-
ter extract features from multiple views in few-shot settings.
Specifically, we concatenate all views’ features and summa-
rize the compact global feature of the point cloud by cross-
view interaction and fusion. Based on the global represen-
tation, the adapted feature of each view is generated and
added to their original CLIP-encoded features via a resid-
ual connection. In this way, each view is aware of global
information and also combines new knowledge from the

3D few-shot dataset with the 2D knowledge of pre-trained
CLIP. During training, we only fine-tune this adapter and
freeze both CLIP’s visual and textual encoders to avoid
over-fitting, since only a few samples per class are insuffi-
cient for training CLIP. By few-shot fine-tuning, PointCLIP
with an inter-view adapter largely improves the zero-shot
performance and exerts a good trade-off between perfor-
mance and cost.

Additionally, we observe that CLIP’s 2D knowledge, su-
pervised by contrastive image-text pairs, is complementary
to 3D close-set supervisions. PointCLIP with the inter-view
adapter can be utilized to improve the performance of clas-
sical fully-trained 3D networks. For PointNet++ [45] with
an accuracy of 89.71%, we adopt PointCLIP of 87.20%
fine-tuned by 16-shot ModelNet40 [58] and directly en-
semble their predicted classification logits during inference.
The performance is enhanced by +2.32%, from 89.71% to
92.03%. Also for CurveNet [60], the state-of-the-art 3D
recognition network, the knowledge ensemble contributes
to performance boost from 93.84% to 94.08%. In con-
trast, simply ensemble between two models fully trained
on ModelNet40 without PointCLIP cannot lead to perfor-
mance improvement. Therefore, PointCLIP could be re-
garded as a drop-in multi-knowledge ensemble module,
which promotes 3D networks via 2D contrastive knowledge
with marginal few-shot training.

The contributions of our paper are as follows:

• We propose PointCLIP to extend CLIP for handling
3D point cloud data, which achieves cross-modality
zero-shot recognition by transferring 2D pre-trained
knowledge into 3D.

• An inter-view adapter is introduced upon PointCLIP
via feature interaction among multiple views and
largely improves the performance by few-shot fine-
tuning.

• PointCLIP can be utilized as a multi-knowledge en-
semble module to enhance the performance of existing
fully-trained 3D networks.

• Comprehensive experiments are conducted on widely
adapted ModelNet10, ModelNet40 and the challeng-
ing ScanObjectNN, which indicate PointCLIP’s poten-
tial for effective 3D understanding.

2. Related Work
Zero-shot Learning in 3D. The objective of zero-shot
learning is to enable the recognition of “unseen” objects,
which are not adopted as training samples. Although zero-
shot learning has drawn much attention on 2D classifica-
tion [27, 46, 59], only a few works explore how to conduct
it in 3D domain. As the first attempt on point clouds, [7]

8553



divides the 3D dataset into two parts consisting of “seen”
and “unseen” samples, respectively. By leaning a projec-
tion function from point cloud feature space to the cate-
gory semantic space, [7] trains PointNet [44] by the for-
mer and tests it on the latter. Based on this prior work, [5]
further mitigates the hubness problem [65] resulted from
low-quality 3D features and [6] introduces a triplet loss
for better performance in transductive settings, which al-
lows to utilize unlabeled “unseen” data for training. Dif-
ferent from all above settings, which train the network by
part of 3D samples and predict on the others, PointCLIP
only pre-trains from 2D data and achieves direct zero-shot
recognition on “unseen” 3D samples without any 3D train-
ing. Thus, our setting is more challenging considering the
domain gap from 2D to 3D and is more urgent for practical
problems.

Transfer Learning. Transfer learning [9, 63] aims to uti-
lize the knowledge from data-abundant domains to help
with the learning on data-scarce domains. For general vi-
sion, ImageNet [9] pre-training can greatly benefit vari-
ous downstream tasks, such as object detection [1, 18, 47]
and semantic segmentation [35]. Also in natural language
processing, representations pre-trained on web-crawled cor-
pus via Mask Language Model [10] achieve leading per-
formance on machine translation [39] and natural language
inference [8]. Without any fine-tuning, the recently intro-
duced CLIP [46] shows superior image understanding abil-
ity for “unseen” datasets. CoOp [69], CLIP-Adapter [16],
Tip-Adapter [66] and so on [54, 57, 70] further indicate that
the performance of CLIP can be largely improved by infus-
ing domain-specific supervisions. Although the successes
stories are encouraging, besides Image2Point [61], most
of the existing methods conduct knowledge transfer within
the same modality, namely, image to image [9], video to
video [2] or language to language [10]. Different from
them, our PointCLIP is able to efficiently transfer represen-
tations learned from 2D images to the disparate 3D point
clouds, which motivates future research on transfer learn-
ing across different modalities.

Deep Neural Networks for Point Clouds. Existing
deep neural networks for point clouds can be categorized
into point-based and projection-based methods. Point-
based models process on raw points without any pre-
transformation. PointNet [44] and PointNet++ [45] firstly
encode each point with a Multi-layer Perceptron (MLP)
and utilize max pooling operation to ensure the permu-
tation invariance. Recent point-based methods have pro-
posed more advanced architecture designs along with ge-
ometry extractors [30, 50, 60] for better point cloud pars-
ing. Other than raw points, projection-based methods un-
derstand point clouds by transferring them into volumet-
ric [38] or multi-view [49] data forms. Therein, multi-

view methods project point clouds onto images of multi-
ple views and process them with 2D Convolution Neural
Networks (CNN) [22] pre-trained on ImageNet [28], such
as MVCNN [49] and others [14, 15, 21, 26, 62]. Normally,
such view-projection methods operate on offline-generated
images projected from 3D meshes [55] or require post-
rendering [48] for shades and textures, which are costly
and impractical to be adopted for real-time applications. On
the contrary, we follow SimpleView [19] to naively project
raw points onto image planes without processing and set
their pixel values by the vertical distances. Such depth-map
projection results in marginal time and computation costs,
which meets the demand for efficient end-to-end zero-shot
recognition.

3. Method
In Section 3.1, we first revisit Contrastive Vision-

Language Pre-training (CLIP) for 2D zero-shot classifica-
tion. Then in Section 3.2, we introduce our PointCLIP,
which transfers 2D pre-trained knowledge into 3D point
clouds. In Section 3.3, we provide an inter-view adapter
for better few-shot performance. In Section 3.4, we pro-
pose to ensemble PointCLIP with fully-trained classical 3D
networks for multi-knowledge complementation.

3.1. A Revisit of CLIP

CLIP is pre-trained to match images with their corre-
sponding natural language descriptions. There are two in-
dependent encoders in CLIP for visual and textual features
encoding, respectively. During training, given a batch of
images and texts, CLIP extracts their features and learns
to align them in the embedding space with a contrastive
loss. To ensure comprehensive learning, 400 million train-
ing image-text pairs are collected from the internet, which
enables CLIP to align images with any semantic concepts
in an open vocabulary for zero-shot classification.

Specifically, for an “unseen” dataset of K classes, CLIP
constructs the textual inputs by placing all category names
into a pre-defined template, known as the prompt. Then, the
zero-shot classifier is obtained by the C-dimensional textual
features of category texts, the weights of which we denote
as Wt ∈ RK×C . Each of the K row vectors in Wt encodes
the pre-trained category knowledge. Meanwhile, the fea-
ture of the test image is encoded by CLIP’s visual encoder
as fv ∈ R1×C and the classification logits ∈ R1×K are
computed as,

logits = fvW
T
t ; p = SoftMax(logits), (1)

where SoftMax(·) and p denote the softmax function and
the predicted probabilities for K categories. The whole pro-
cess does not require any new training images and achieves
promising zero-shot classification performance by the pre-
trained encoders.
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Figure 2. The Pipeline of PointCLIP. To bridge the modal gap, PointCLIP projects the point cloud onto multi-view depth maps and
conducts 3D recognition via CLIP pre-trained in 2D. The switch provides alternatives for direct zero-shot classification and few-shot
classification with the inter-view adapter, respectively in solid and dotted lines.

3.2. Point Cloud Understanding by CLIP

A variety of large-scale datesets [28, 31] in 2D provide
abundant samples to pre-train models [11,22] for extracting
high-quality and robust 2D features. In contrast, the widely-
adopted 3D datasets are comparatively much smaller and in-
clude limited object categories, e.g., ModelNet40 [58] with
9,843 samples and 40 classes v.s. ImageNet [28] with 1 mil-
lion samples and 1,000 classes. Thus, it is very difficult to
obtain well-performed pre-trained 3D networks for transfer
learning. To alleviate this problem and explore the cross-
modality power of CLIP, we propose PointCLIP to conduct
zero-shot learning on point clouds based on the pre-trained
CLIP.

Bridging the Modal Gap. Point cloud data is a set of un-
ordered points scattering around the 3D space, whose spar-
sity and distribution greatly differ from grid-based 2D im-
ages. To convert point clouds into CLIP-accessible repre-
sentations, we generate point-projected images from multi-
ple views to eliminate the modal gap between 3D and 2D.
In detail, if the coordinate of a point is denoted as (x, y, z),
taking the bottom view as an example, its projected loca-
tion on the image plane is (⌈x/z⌉, ⌈y/z⌉) following [19].
In this way, the projected point cloud is a foreshortened fig-
ure, namely, small in the distance but big on the contrary,
which is more similar to that in real photos. Other than
[19] applying one convolution layer to pre-process the one-
channel depth map into a three-channel feature map, we do
not adopt any pre-transformation and repeat the pixel val-
ues z for all three channels. Also, we apply no off-line pro-
cessing [49, 55] and acquire projected depth maps directly
from raw points without color information, which leads to

marginal time and computation cost. With this lightweight
cross-modality cohesion, CLIP’s pre-trained knowledge can
be then utilized for point cloud understanding.

Zero-shot Classification. Based on projected images
from M views, we use CLIP to extract their visual features
{fi}, for i = 1, . . . ,M by the visual encoder. For the tex-
tual branch, we place K category names into the class to-
ken position of a pre-defined template: “point cloud depth
map of a [CLASS].” and encode their textual features as the
zero-shot classifier Wt ∈ RK×C . On top of that, the clas-
sification logitsi of each view are separately calculated and
the final logits of point cloud are acquired by their weighted
summation,

logitsi = fiW
T
t , for i = 1, . . . ,M,

logits =
∑M

i=1
αilogitsi,

(2)

where αi is a hyper-parameter weighing the importance of
view i. Each view’s fi encodes a different perspective of the
point cloud and is capable of independent zero-shot clas-
sification. Their aggregation further complements the in-
formation from different perspectives to achieve an overall
understanding. The whole process of PointCLIP is non-
parametric for the “unseen” 3D dataset, which pairs each
point cloud with its category via CLIP’s pre-trained 2D
knowledge without any 3D training.

3.3. Inter-view Adapter for PointCLIP

Although PointCLIP achieves efficient zero-shot classi-
fication on point clouds, its performance is incomparable to
those fully-trained 3D neural networks [44, 45]. We then
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Figure 3. Detailed Structure of Inter-view Adapter. Given multi-view features of
a point cloud, the adapter extracts its global representation and generates view-wise
adapted features. Via a residual connection, the newly-learned 3D knowledge is fused
into the pre-trained CLIP.
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Figure 4. PointCLIP could provide Comple-
mentary 2D Knowledge to classical 3D net-
works and serve as a plug-and-play enhancement
module.

consider a more common scenario where a few objects of
each “unseen” category are contained in the newly col-
lected data, and networks are required to recognize them
under such few-shot settings. It is impractical to fine-tune
the entire CLIP, since the enormous parameters and insuf-
ficient training samples would easily lead to over-fitting.
Therefore, referring to [24] in Natural Language Process-
ing (NLP) and CLIP-Adapter [16] for fine-tuning CLIP
on downstream tasks, we append a three-layer Multi-layer
Perceptron (MLP) on top of PointCLIP, named inter-view
adapter, to further enhance its performance under few-shot
settings. During training, we freeze both CLIP’s visual and
textual encoders and only fine-tune the learnable adapter via
cross-entropy loss.

To be specific, given CLIP-encoded M -view features of
a point cloud, we concatenate them along the channel di-
mension as Concate(f1∼M ) ∈ R1×MC , and then obtain
the compact global representation via two linear layers of
the inter-view adapter as

fglobal = ReLU(Concate(f1∼M )WT
1 )WT

2 , (3)

where fglobal ∈ R1×C and W1, W2 stand for two-layer
weights in the adapter. By this inter-view aggregation, fea-
tures from multiple perspectives are fused into a summa-
tive vector. Based on that, the view-wise adapted feature is
generated from the global feature and added to its original
CLIP-encoded feature via a residual connection as

fa
i = fi +ReLU(fglobalW

T
3i), (4)

where W3i ∈ RC×C denotes the i-th part of W3 for view
i, and WT

3 = [WT
31;W

T
32; · · ·WT

3M ] ∈ RC×MC . The
inter-view adapter exhibits two benefits: for one, fa

i blends
global-guided adapted feature with fi for an overall un-
derstanding of the point cloud; for the other, the newly-
learned 3D few-shot knowledge is infused into 2D pre-
trained CLIP, which further promotes the cross-modality
performance with 3D-specific supervisions.

After the inter-view adapter, each view conducts classi-
fication with the adapted feature fa

i and the textual clas-
sifier Wt. Same as zero-shot classification, all M logits
from M views are summarized to construct the final pre-
diction. Surprisingly, just fine-tuning this additive adapter
with few-shot samples contributes to significant perfor-
mance improvement, e.g., from 20.18% to 87.20% on Mod-
elNet40 [58] with 16 samples per category, less than 1/10 of
the full data. This inspirational boost demonstrates the ef-
fectiveness and importance of feature adaption on 3D few-
shot data, which greatly facilitates the knowledge transfer
from 2D to 3D. Consequently, PointCLIP with inter-view
adapter provides a promising alternative solution for point
cloud understanding. Especially for some applications,
where there is no condition to train the entire model by
large-scale fully annotated data, just fine-tuning the three-
layer adapter of PointCLIP with few-shot data can achieve
competitive performance.

3.4. Multi-knowledge Ensemble

Classical point cloud networks, from the early Point-
Net [44] to the recent CurveNet [60], are trained from
scratch on 3D datasets by close-set supervisions, but Point-
CLIP mostly inherits the pre-trained priors from 2D vision-
language learning and contains a different aspect of knowl-
edge. We then investigate if the two forms of knowledge can
be ensembled together for better joint inference. In prac-
tice, we select two models: PointNet++ [45] and our Point-
CLIP under 16-shot fine-tuning, and directly ensemble their
predicted logits by simple addition as the final output. Be-
yond our expectation, aided by PointCLIP’s 87.20%, Point-
Net++ of 89.71% is enhanced to 92.03% with a significant
improvement of +2.32%. In other words, the ensemble of
two low-score models can produce a much stronger one,
which fully demonstrates the complementary interaction of
two kinds of knowledge. In contrast, ensemble between a
pair of classical full-trained models would not bring perfor-
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Zero-shot Performance of PointCLIP

Datesets Accuracy Proj. Settings View Weights

ModelNet10 [58] 30.23% 1.7, 100 2,5,7,10,5,6
ModelNet40 [58] 20.18% 1.6, 121 3,9,5,4,5,4
ScanObjectNN [52] 15.38% 1.8, 196 3,10,7,4,1,0

Table 1. Zero-shot Performance of PointCLIP on ModelNet10,
ModelNet40 and ScanObjectNN with the best-performing set-
tings. Proj. Settings include projection distances and the side
length of depth maps.

View Numbers of Projection

Numbers 1 4 6 8 10 12

Zero-shot 14.95 18.68 20.18 16.98 14.91 13.65
16-shot 75.53 82.17 84.24 85.48 87.20 86.35

Importance of Each View

View Front Right Back Left Top Down

Zero-shot 18.64 19.57 18.92 19.12 17.46 17.63
16-shot 84.91 85.69 85.03 85.76 84.44 84.35

Table 2. Ablation studies (%) of projection view numbers and
importance for zero-shot and 16-shot PointCLIP on ModelNet40.

mance boost, indicating the importance of complementar-
ity. We further ensemble PointCLIP with other state-of-the-
art 3D networks and observe similar performance boosts.
Therefore, PointCLIP can be utilized as a plug-and-play
enhancement module to achieve more robust point cloud
recognition.

4. Experiments

4.1. Zero-shot Classification

Settings. We evaluate the zero-shot classification perfor-
mance of PointCLIP on three well-known datasets: Mod-
elNet10 [58], ModelNet40 [58] and ScanObjectNN [52].
For each dataset, we require no training data and adopt
the full test set for evaluation. For the pre-trained CLIP
model, we adopt ResNet-50 [22] as the visual encoder and
the transformer [53] as the textual encoder by default. We
then project the point cloud from 6 orthogonal views: front,
right, back, left, top and bottom, and each view has a rela-
tive weight value ranging from 1 to 10, shown in the fourth
column of Table 1. As the point coordinates are normal-
ized from -1 to 1, we set the 6 image planes at a fixed dis-
tance away from the coordinate center (0, 0). This distance
is shown as the first value of Proj. Settings in Table 1, where
the larger distance leads to the denser points distribution on
the image. The side length of projected square depth maps
varies to different datasets, which is presented as the second
value in Proj. Settings, and the larger side length results in
a smaller projected object size. We then upsample all im-

Prompts Zero-shot 16-shot

“a photo of a [CLASS].” 17.02% 85.98%
“a point cloud photo of a [CLASS].” 16.41% 86.02%
“point cloud of a [CLASS].” 18.68% 86.06%
“point cloud of a big [CLASS].” 19.21% 87.20%
“point cloud depth map of a [CLASS].” 20.18% 85.82%
“[Learnable Tokens] + [CLASS]” - 73.63%

Table 3. Performance of PointCLIP with different prompt designs
on ModelNet40. [CLASS] denotes the class token, and [Learnable
Tokens] denotes learnable prompts with fixed length.

Different Visual Encoders

Models RN50 RN101 ViT/32 ViT/16 RN.×4 RN.×16

Zero-shot 20.18 17.02 16.94 21.31 17.02 23.78
16-shot 85.09 87.20 83.83 85.37 85.58 85.90

Table 4. Performance (%) of PointCLIP with different visual en-
coders on ModelNet40. RN50 and ViT-B/32 denote ResNet-50
and vision transformer with 32 × 32 patch embeddings. RN.×16
denotes ResNet-50 with 16 times more computations from [46].

ages to (224, 224) for alignment with CLIP’s settings. For
the zero-shot classifier from the textual encoder, we set the
textual template as “point cloud depth map of a [CLASS].”
to cater to the visual features of point clouds.

Performance. In Table 1, we present the performance
of zero-shot PointCLIP on three datasets with their best-
performing settings. Without any 3D training, PointCLIP is
able to achieve a promising 30.23% on ModelNet10, which
demonstrates our effective knowledge transfer from 2D to
3D. For ModelNet40 of 4 times the number of categories
and ScanObjectNN with noisy real-world scenes, Point-
CLIP achieves slightly worse performance: 20.18% and
15.38%, respectively, due to the lack of 3D-specific down-
stream adaptions. As for the projection distances and image
resolutions of Proj. Settings, their variances accord with the
properties of different datasets. Compared to indoor Model-
Net10, PointCLIP on ModelNet40 requires more details to
recognize complex outdoor objects, such as airplanes and
plants, and thus performs better with more scattered points
and larger object size, namely, larger perspective projection
distance and resolutions. In contrast, for ScanObjectNN,
denser points and larger resolutions are required for filter-
ing out the noise and reserving complex real-scene infor-
mation. With respect to view weights, ModelNet10 and
ModelNet40 of synthetic objects require all 6 views’ contri-
butions to the final classification with different importance,
but for ScanObjectNN which contains noisy points of floors
and ceilings, the top and bottom views could hardly provide
any information.

Ablations. In Table 2, We conduct ablation studies of
zero-shot PointCLIP concerning projection view numbers
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Figure 5. Few-shot performance comparison between PointCLIP and other classical 3D networks on ModelNet10, ModelNet40 and
ScanObjectNN. Our PointCLIP shows consistent superiority to other models under 1, 2, 4, 8 and 16-shot settings.

and the importance of each view on ModelNet40. For the
number of views, we try 1, 4, 6, 8, 10 and 12 views, for
increasingly capturing the multi-view information of point
clouds, but more than 6 views would bring redundancy and
lead to performance decay. To explore how different views
impact the performance, we unify all relative weights to
3 and respectively increase each view’s weight to 9. As
is shown in the table, projection from the right achieves
the highest performance, which indicates its leading role,
and both top and down views contribute relatively less to
the classification. In Table 4, we implement different vi-
sual backbones including ResNet [22] and vision trans-
former [11], where RN50×16 [46] achieves the best per-
formance of 23.78%.

Prompt Design. We present five prompt designs for zero-
shot PointCLIP in Table 3. We observe that the naive “a
photo of a [CLASS].” achieves 17.02% on ModelNet40
and simply inserting the word “point cloud” into it would
hurt the performance. We then remove “a photo” and di-
rectly utilize “point cloud” as the subject, which benefits
the accuracy by +1.66%. As the projected point cloud nor-
mally covers most of the image area, appending an adjective
“big” could bring further performance improvement. Also,
we add the “depth map” to describe the projected images
more relevantly, which contributes to the best-performing
20.18%, demonstrating the importance of prompt choices.

4.2. Few-shot Classification

Settings. We experiment PointCLIP with the inter-view
adapter under 1, 2, 4, 8, 16 shots also on ModelNet10 [58],
ModelNet40 [58] and ScanObjectNN [52]. For N -shot set-
tings, we randomly sample N point clouds from each cat-
egory of the training set. Considering both efficiency and
performance, we adopt ResNet-101 [22] as CLIP’s pre-
trained visual encoder for stronger feature extraction and
increase the projected view numbers to 10, adding the views
of upper/bottom-front/back-left corners, since the left view

is proven to be the most informative for few-shot recogni-
tion in Table 2. In addition, we modify the prompt to “point
cloud of a big [CLASS].”, which performs better in the few-
shot experiments. For the inter-view adapter, we construct
a residual-style Multi-layer Perceptron (MLP) consisting of
three linear layers, as described in Section 3.3.

Performance. In Figure 5, we present the few-shot per-
formance of PointCLIP and compare it with 4 representa-
tive 3D networks: PointNet [44], PointNet++ [45], Simple-
View [19] and the state-of-the-art CurveNet [60]. As we
can see, PointCLIP with inter-view adapter surpasses all
other methods for the few-shot classification. When there
are only a small number of samples per category, PointCLIP
has distinct advantages, exceeding PointNet by 25.49% and
CurveNet by 12.29% on ModelNet40 with 1 shot. When
given more training samples, PointCLIP still leads the per-
formance, but the gap becomes smaller due to the frozen
encoders and limited fitting capacity of the only three-layer
adapter.

Ablations. In Table 2, we show the 16-shot PointCLIP
under different projection views and explore how each view
contributes to ModelNet40. Differing from the zero-shot
version, 10 views of 16-shot PointCLIP performs better
than 6 views, probably because the newly-added adapter is
able to better utilize the information from more views and
adaptively aggregate them. For the importance of views,
we follow the configurations of our zero-shot experiments
but observe the reversed conclusion: the left view is the
most informative one. For different visual encoders in Ta-
ble 4, ResNet-101 achieves the highest accuracy with less
parameters than vision transformer or ResNet-50×16. Ta-
ble 3 lists the performance influences caused by prompt de-
signs. The learnable prompt following CoOp [69] performs
worse than hand-crafted designs and the “point cloud of a
big [CLASS].” performs the best.
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Models Before En. After En. Gain Ratio

PointNet [44] 88.78 90.76 +1.98 0.60
PointNet++ [45] 89.71 92.10 +2.39 0.70
RSCNN [33] 92.22 92.59 +0.37 0.70
DGCNN [56] 92.63 92.83 +0.20 0.70
SimpleView [19] 93.23 93.87 +0.64 0.60
CurveNet [60] 93.84 94.08 +0.24 0.15

Table 5. The enhancement (%) of multi-knowledge ensemble by
16-shot PointCLIP, which achieves 87.20% on ModelNet40. Be-
fore and After En. denote models with and without PointCLIP’s
ensemble.

4.3. Multi-knowledge Ensemble

Settings. To verify the complementarity of blending pre-
trained 2D priors with 3D knowledge, we aggregate the
fine-tuned 16-shot PointCLIP of 87.20% on ModelNet40
with the fully-trained PointNet [44], PointNet++ [45],
DGCNN [56], SimpleView [19] and CurveNet [60], respec-
tively. All checkpoints of other models are obtained from
[23, 51] without any voting. We manually modulate the fu-
sion ratio between PointCLIP and each model, and report
the performance with the best Ratio in Table 5, which rep-
resents PointCLIP’s relative weight to the whole.

Performance. As shown in Table 5, the ensemble with
PointCLIP improves the performance of all classical fully-
trained 3D networks. The results fully demonstrate the
complementarity of PointCLIP to existing 3D models. It
is worth noting that the performance gain is not simply
achieved by the ensemble between two models, because the
accuracy of 16-shot PointCLIP is lower than other fully-
trained models, but could still benefit their already-high per-
formance to be higher. Therein, the largest accuracy im-
provement is on PointNet++ from 89.71% to 92.10%, and
combining PointCLIP with the state-of-the-art CurveNet
achieves the best 94.08%. Also, we observe that, for mod-
els with lower baseline performance, PointCLIP’s logits
need to account for a larger proportion, but for the well-
performing ones, such as CurveNet, their knowledge is sup-
posed to play a dominant role in the ensemble.

Ablations. We conduct ablation studies of the ensemble
of two models fully trained on ModelNet40 without Point-
CLIP, and fuse their logits with the same ratio for simplicity.
As is presented in Table 6, aggregating PointNet++ low-
ers the performance of RSCNN and CurveNet, and the en-
semble between the highest two models, SimpleView and
CurveNet, could not achieve better performance. Also, the
paired ensemble of PointCLIP would hurt the original per-
formance. Hence, simple ensemble of two models with
the same training schemes normally leads to performance
degradation, which demonstrates the significance of multi-

En. Model 1 En. Model 2 After En.

PointNet++ [45], 89.71 + RSCNN [33], 92.22 92.14
PointNet++, 89.71 + CurveNet [60], 93.84 91.61
SimpleView [19], 93.23 + CurveNet, 93.84 93.68
PointCLIP, 87.20 + PointCLIP, 87.14 87.06

Table 6. Ablation studies (%) of ensemble between models with
the same training schemes.

Ensemble with CurveNet [60]

Shots 0 8 16 32 64 128

PointCLIP 20.18 81.96 87.20 87.83 88.95 90.02
After En. 93.88 93.89 94.08 94.00 93.92 93.88

Table 7. Enhancement performance (%) of PointCLIP under dif-
ferent few-shot settings for CurveNet on ModelNet40.

knowledge interaction. In Table 7, we fuse PointCLIP fine-
tuned by zero-shot, 8, 16, 32, 64 and 128 shots, respectively
with CurveNet to explore their enhancement abilities. As
reported, zero-shot PointCLIP with only 20.18% could pro-
mote CurveNet by +0.04%. However, too much training on
3D datasets would adversely influence the ensemble accu-
racy. This is possibly caused by the over-much knowledge
similarity between two models, which cannot provide com-
plementary information as expected.

5. Conclusion
We propose PointCLIP, which conducts cross-modality

zero-shot recognition on point clouds without any 3D train-
ing. Via multi-view projection, PointCLIP efficiently trans-
fers CLIP’s pre-trained 2D knowledge into the 3D domain.
Furthermore, we design an inter-view adapter to aggregate
multi-view features and fuse the 3D learned knowledge into
pre-trained CLIP under few-shot settings. By fine-tuning
the adapter and freezing all other modules, the performance
of PointCLIP is largely improved. In addition, PointCLIP
could serve as a plug-and-play module to provide comple-
mentary knowledge for the classical 3D networks, which
leads to favorable performance boost. Besides recognition,
our future work will focus on generalizing CLIP for wider
3D applications.
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