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Abstract

Neural Radiance Fields (NeRF) [22] have emerged as a

potent paradigm for representing scenes and synthesizing

photo-realistic images. A main limitation of conventional

NeRFs is that they often fail to produce high-quality render-

ings under novel viewpoints that are significantly different

from the training viewpoints. In this paper, instead of ex-

ploiting few-shot image synthesis, we study the novel view

extrapolation setting that (1) the training images can well

describe an object, and (2) there is a notable discrepancy

between the training and test viewpoints’ distributions. We

present RapNeRF (RAy Priors) as a solution. Our insight

is that the inherent appearances of a 3D surface’s arbitrary

visible projections should be consistent. We thus propose

a random ray casting policy that allows training unseen

views using seen views. Furthermore, we show that a ray

atlas pre-computed from the observed rays’ viewing direc-

tions could further enhance the rendering quality for ex-

trapolated views. A main limitation is that RapNeRF would

remove the strong view-dependent effects because it lever-

ages the multi-view consistency property.

1. Introduction

A primary target of the computer graphics community

is to enable photo-realistic rendering of virtual worlds effi-

ciently. Physics-inspired graphics techniques well approach

real-time rendering and photo-realistic imagery creation but

suffer from expensive manual content generations of ge-

ometries, materials, and other aspects of scenes. The past

several years have seen an explosion of interest in neu-

ral rendering [17, 18, 21, 38, 39, 47], which models phys-

ical knowledge in deep networks to address reconstruction

and rendering in a single formulation for controllable image
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generation.

Leveraging neural volume rendering, a recent advance

Neural Radiance Fields (NeRF [22]) learn to represent

3D scenes from images and impressively support photo-

realistic image synthesis. The visual quality of the gen-

erated images is even competitive with ones produced by

physically-based rendering pipelines. One of NeRF’s main

limitations is that it requires many images to reconstruct a

scene’s geometry and texture details. Thereby, several sub-

sequent works focus on investigating few-shot or unsuper-

vised radiance fields reconstruction [4,11,52]. These works

assume that we only observe several images of a scene. In

an extreme setting, some geometries and appearances of the

scene are never observed.

In this paper, we investigate NeRF from an object re-

construction perspective like [9, 33, 51], and restrict our

focus on solid and non-transparent objects. We find that,

even with enough images that can well describe an object,

conventional NeRFs often fail to produce high-quality ren-

derings for novel viewpoints that are significantly different

from the training viewpoints. This observation motivates us

to study the novel view extrapolation setting as explained in

Figure 1. We take inspiration from the insight that the inher-

ent appearances of a 3D surface’s arbitrary visible projec-

tions should be consistent. It has been well studied in unsu-

pervised 3D object reconstruction and texture optimization

works [10, 15, 41, 55]. We dig into the multi-view consis-

tency property on NeRF’s formulation and present RapN-

eRF as a solution.

In specific, we propose a random ray casting (RRC) pol-

icy that randomly generates rays within a cone for each

training ray in an online fashion. This training strategy is

simple yet effective in creating supervisions for potential

unseen views using seen views. RRC relies on the target ob-

jects’ rough 3D meshes (R3DMs), which can be extracted

from their pre-trained NeRFs. Furthermore, we prudently

rethink the tradeoff between strong view-dependent effects
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Figure 1. Observation & Setting. Left: We study the novel view extrapolation setting that (1) the training images can well describe the

objects, and (2) the test viewpoints are significantly different from the training viewpoints. We take a specific object as an example to

illustrate the training (Red) and test (Blue) viewpoints in MobileObject. The viewpoints labeled in ªGrayº are discarded. Right: For novel

view extrapolation, NeRF [22] produces images that usually contains artifacts, while RapNeRF can generate high-quality renderings.

and multi-view consistent renderings. We show that a ray

atlas (RA) computed from the training ray’s viewing direc-

tions could further improve the rendering quality of extrap-

olated views. RapNeRF is empowered by both RRC and

RA in a unified formulation.

To study the novel view exploration setting, we resplit

the synthetic training and test images of NeRF’s objects

to construct the Synthetic-NeRF∗ [22]. We also capture

eight scenes with real objects via a mobile phone to build

a MobileObject dataset. A sample is illustrated in Figure 1

(right). Experiments demonstrate the superiority of Rap-

NeRF in synthesizing promising novel views compared to

state-of-the-art approaches. We conduct various ablation

studies to discuss the core components of RapNeRF. Last

but not least, a major limitation of RapNeRF is that it trades

some view-dependent effects for better novel view explo-

ration performance. We provide it a remedy by studying the

deferred NeRF architecture in [9].

2. Related Work

Neural Rendering (NR) bypasses mesh reconstruction to

perform view synthesis of real scenes directly. It constructs

an implicit scene representation from a few input images

token in different viewpoints and lighting conditions [38].

This implicit scene representation can be utilized to syn-

thesize high-quality novel images when giving some guid-

ance. Among the NR literature, Neural Volume Render-

ing (NVR) supports producing photo-realistic renderings of

scenes [1±3, 6, 20, 22, 29, 31, 33, 34, 37, 45]. A good prac-

tice is from Neural Radiance Fields (NeRF) [22]. It pro-

poses to represent a continuous scene as the neural radi-

ance fields and leverages volume rendering to achieve high-

quality view synthesis.

Leveraging the success of NeRF, there are many subse-

quent works that have been presented for better and more

efficient view synthesis [8,13,16,17,19,23,27,36,42,51,53].

For example, Neural Sparse Voxel Fields (NSVF) [17] stud-

ies a progressive training strategy to exploit sparse voxel oc-

trees for local geometry properties modeling. The obtained

model largely improve NeRF in both rendering quality and

speed. Recently, PlenOctree [51] shows another milestone

which realizes real-time view synthesis with preserved vi-

sual quality. Unlike NeRF’s representation, PlenOctree in-

vestigates the spherical harmonic function for color com-

putation. Other routines include deformable or dynamic

scene synthesis [7, 28, 30, 32, 40], learnable camera poses

[14, 44, 50], and editable view synthesis [25, 46].

Several works learn few-shot view synthesis by condi-

tioning a NeRF on image inputs [52] and exploiting the

semantic consistency of multi-view features [11]. In the

few-shot setting, they only observe several images of a

scene. Some geometries and appearances are not covered

by these images. This makes the neural reconstruction pro-

cess particularly challenging. In contrast, we study a re-

laxed novel view extrapolation setting that the training im-

ages are enough to well describe an object. There is a great

concurrent work RegNeRF [24] regularizes the geometry

and appearance leverages the multi-view consistency prop-

erty to obtain 3D-consistent representations.

3. Methodology

Our main goal is to close the visual quality gap between

interpolated and extrapolated views synthesized by NeRF

[22] series. In this section, we begin with a brief review of

NeRF in Sec. 3.1. Then, we present the proposed random

ray casting (RRC) policy in Sec. 3.2 and explain the ray at-

las (RA) in Sec. 3.3. RRC and RA rely on objects’ rough 3D

meshes, which are extracted from the pre-trained NeRFs.

Finally, we present how we train RapNeRF in Sec. 3.4.

3.1. Preliminaries: NeRF

A volume scene representation can be seen as a radiance

field (or a 5D vector-valued function) that takes a 3D loca-

tion x = (x, y, z) and 2D viewing direction d = (θ,Φ) as

input, and output an emitted color (or radiance) c = (r, g, b)
and a volume density σ. NeRF [22] adopts a single MLP
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Figure 2. Random Ray Casting. Left: r1 lies in the training space, and r2 is distant from training rays. The radiance accumulation

operation along r2 is more likely to provide an adverse color estimation of v compared to Î(r1). Middle: A straightforward virtual view

reprojection idea, which is inconvenient. Right: For a specific training ray (casting from o and passing through v), the random ray casting

(RRC) policy randomly generate an unseen virtual ray (casting from o′ passing through v) within a cone, then assign it a pseudo label

based on the training ray in an online manner. RRC enables training unseen rays using seen rays. See Sec. 3.2 for detailed explanations.

network to approximate the 5D function as the neural radi-

ance fields:

σ, c = F (d, x). (1)

The formulation can be further decomposed as Fσ : x →
(σ, f) and Fc : (d, f) → c.

To render a pixel of image I , NeRF casts a ray r from the

camera’s center of projection o along the direction d passing

through the pixel. It samples N points along the ray and

approximate the pixel’s color Î(r) following:

Î(r) =

N∑

i=1

Ti(1− exp(−σiδi))ci,

Ti = exp(−
i−1∑

j=1

σjδj),

(2)

where δi = ti+1 − ti denotes the distance between two

consecutive samples, ci and σi are the radiance and volume

density of a sample point r(ti) = o + tid, and Ti represents

the accumulated transmittance from r(t1) to r(ti). In prac-

tice, ti are bounded by a predefined intervals [tn, tf ]. NeRF

minimizes the squared error between the rendered and true

pixel colors (Î(r) vs. I(r)) to learn its MLP.

3.2. Random Ray Casting

We start with a further discussion of the aforementioned

visual quality gap from the ray casting and neural mapping

perspectives. As shown in Figure 2 (left), r1 and r2 are two

rays that view a 3D point v in two directions, where the

former lies in the training space, and the latter (a test ray) is

distinct from the training rays. We may have a sense that the

radiance of some samples along r2 would be imprecise con-

sidering both the distribution shift and the mapping function

Fc : (r, f) → c. In further, the radiance accumulation op-

eration along r2 is more likely to provide an adverse color

estimation compared to Î(r1). We can see from the syn-

thesized small regions around Î(r2) and Î(r1), the former

contains more artifacts.

Our intuition is to create supervisions for potential un-

seen views by exploiting the multi-view consistency prop-

erty. The property has been well studied in reprojection-

based unsupervised 3D object reconstruction and texture

optimization approaches [10, 15, 41, 48, 55]. Here in the

NeRF formulation, we can naively follow the pipeline of

generating some virtual cameras and their views, comput-

ing the involved pixel-wise rays, finding the corresponding

rays for each virtual ray that hit the same 3D surface point

from the training ray pool. It likes a pseudo-label genera-

tion process for virtual rays through multi-view projection.

See Figure 2 (middle) for an illustration of this virtual view

reprojection solution. In practice, the offline workflow is

inconvenient.

Our random ray casting (RRC) policy allows pseudo-

label assignment for randomly generated virtual rays in an

online manner. Specifically, for an interested pixel in one

training image I , we are given its viewing direction d, cam-

era origin o, and depth value tz in the world coordinate

system, and ray r = o + td. Here, tz =
∑N

i=1 Ti(1 −
exp(−σiδi))ti is pre-computed and stored using the pre-

trained NeRF. Let v = o+ tzd denote the closest 3D surface

point hit by r. In the training phase, as shown in Figure 2

(right), we regard v as a new origin, and randomly cast a

ray from v within the cone whose central ray is the vector−→
vo = −tzd. This can be easily implemented by converting−→
vo to the spherical space, and introducing some randomness

∆ϕ and ∆θ to ϕ and θ. Here, ϕ and θ are the Azimuth and

Elevation of
−→
vo, respectively. ∆ϕ and ∆θ are uniformly

sampled from a pre-defined interval [−η, η]. With this op-

eration, we obtain θ′ = θ + ∆θ and ϕ′ = ϕ + ∆ϕ, thus

can generate a virtual ray r′ casting from a random origin o′
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Figure 3. Ray Atlas. An illustration of how we capture a ray atlas

from the training rays and use it to texture a chair’s rough 3D mesh

(R3DM). R(Ii) is the ray map of the training image Ii. Vuv(Ii) is

the 2D position of image Ii corresponding to vertex V . The global

ray direction d̄V of vertex V is computed following Eqn. 3.

that also passes through v. Thereby, we can treat the ground

truth color intensity I(r) as the pseudo label of Î(r′).

3.3. Ray Atlas

The vanilla NeRF utilizes ªdirection embeddingº to en-

code the lighting effects of a scene. We find the scene fitting

process makes the trained color prediction MLP rely heavily

on the viewing direction. It is not a problem for novel view

interpolation. Nevertheless, it might not be good for novel

view extrapolation as there are some discrepancies between

the training and test ray distributions. A naive idea is to di-

rectly remove the direction embedding (denoted as ªNeRF

w/o dirº). However, we find it often produces images with

artifacts such as unexpected ripple and non-smooth colors.

That means the rays’ viewing directions might also con-

tribute to surface smoothing. We compute a ray atlas and

show it can further enhance the rendering quality of extrap-

olated views while not involving more issues to interpolated

views. A ray atlas is like a texture atlas, but instead, it stores

a global ray direction for each 3D vertex.

In particular, for each image (e.g., image I), we cap-

ture its rays’ viewing directions for all spatial locations, re-

sulting in a ray map R(I). We extract a rough 3D mesh

(R3DM) from the pre-trained NeRF, and map the ray direc-

tions to the 3D vertexes. Taking a vertex V = (x, y, z) as

an example, its global ray direction d̄V should be expressed

as:

d̄V =
1

L

L∑

i=1

R(Ii)[Vuv(Ii)],

Vuv(Ii) =
1

z
KTw2c(Ii)V,

(3)

where K is the camera intrinsic parameter, Tw2c(Ii) is the

camera to world transformation matrix of image Ii, Vuv(Ii)
denotes the projected 2D location in image Ii of vertex V ,

and L represents the number of training images that con-

tributed to the reconstruction of vertex V . We normalize

d̄V before storing it. Then, for each pixel with an arbitrary

camera pose, we can capture a global ray prior d̄ by project-

ing the R3DM, which is textured by the ray maps, to 2D.

See Figure 3 for an illustration.

When training RapNeRF, we adopt d̄ of the interested

pixel I(r) to replace its d in Fc for its color prediction. This

alternative mechanism occurs with a probability of 0.5. In

our experiments, we sample points along the original ray r,

and use d̄ for ray embedding computation. We find sam-

pling points along the direction d̄ would sometimes make

the training unstable. In the test phase, the radiance c of a

sample x is approximated as:

c = Fc(d̄, Fσ(x)). (4)

3.4. Training RapNeRF

Our RapNeRF is trained in two stages. For an object to

be reconstructed, we first train a NeRF [22] in N1 iterations

to recovery the geometry. Then, we incorporate the pro-

posed random ray cast (RRC) policy and ray mapping (RA)

approach to fine-tune the pre-trained NeRF in another N2

iterations. For each iteration, RRC and RA occur with the

probabilities of 0.7 and 0.5, respectively. We set η in RRC

to 30◦. In both stages, we employ an additional opacity

constraint [26] to enforce the accumulated opacity (trans-

mittance) along a ray to be 1 if the ray trace through the

object regions, and 0 if the ray belongs to the backgrounds.

Let m(r) denote the mask label (1 or 0) of a pixel ray. The

opacity constraint can be expressed as:

Lo =
∑

r

|m(r) + TN (r)− 1|, (5)

where TN (r) can be seen as the ratio of light that can pass

through the object. Lo could reduce some noisy volume

densities around the objects’ surface regions. It is worth

mentioning that other NeRF works [9, 17, 46, 51] also in-

corporate opacity regularization techniques to remove back-

ground voxels for object reconstruction.

4. Experiments

In this section, we conduct experiments to investigate

the performance of our RapNeRF for novel view extrap-

olation. First, we briefly introduce the Synthetic-NeRF∗
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Synthetic-NeRF∗ [22] MobileObject

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [22] 25.73 0.906 0.090 24.05 0.948 0.089

NeRF w/o dir [22] 26.14 0.918 0.067 26.69 0.951 0.053

NSVF [17] 26.37 0.893 0.088 22.65 0.899 0.125

IDR [49] 20.45 0.909 0.113 23.43 0.947 0.074

IBRNet [42] 23.33 0.870 0.153 18.99 0.870 0.185

PlenOctree [51] 24.19 0.875 0.100 21.76 0.903 0.105

SNeRG† [9] 24.68 0.904 0.074 26.32 0.952 0.058

RapNeRF 27.63 0.929 0.046 28.90 0.963 0.045

RapNeRF† 26.40 0.912 0.069 28.65 0.961 0.047

Table 1. Benchmark Comparisons. RapNeRF† remedies the degenerated view-dependent effects of RapNeRF by incorporating RRC and

RA into a deferred NeRF variant (SNeRG† [9]). It further shows RRC and RA can be easily integrated into other NeRFs. Our approaches

obtain best performance on datasets of both synthetic and real images. IBRNet [42] and IDR [49] also exploit the multi-view consistency

property. See Sec. 5 for limitation discussions and Sec. 4.2 for experimental details. Per-object results are reported in the supplementary.

Components Metrics

NeRF [22] RRC RA PSNR ↑ SSIM ↑ LPIPS ↓
√

24.05 0.948 0.089√ √
27.55 0.963 0.045√ √
25.29 0.954 0.056√ √ √
28.90 0.963 0.045

Table 2. Ray Priors. We study the performance gains ordained

by the proposed random ray casting (RRC) and ray atlas (RA)

approaches on the MobileObject dataset. When computing Î(r),
RapNeRF adopts the direction embedding of d (if only use RRC)

or the direction embedding of d̄ from the ray atlas (if use RA).

[22] and MobileObject datasets towards our studied set-

ting in Sec. 4.1. Then, we make qualitative and quantita-

tive comparisons with recent representative NeRF variants

in Sec. 4.2. Finally, we perform various ablation studies

based on MobileObject to discuss our method in Sec. 4.3.

We refer to the supplemental materials for more experimen-

tal results.

4.1. Datasets

Synthetic-NeRF∗. The original Synthetic-NeRF [22]

dataset contains eight objects, where each object is ren-

dered in a resolution of 800 × 800, with 100 views for

training and 200 for testing. The viewpoints are sampled

on the upper hemisphere or a full sphere. The ground-truth

camera poses and object masks are provided. In this paper,

we simply sort the cameras’ locations along the z axis

in ascending order, and choose the first 100 images for

training, and the remained 200 images for testing.

MobileObject. We capture eight object-centric videos us-

ing a mobile device, where the viewpoints are on the upper

space. To allow better SFM, we put the target objects into

complexity scenes that are with rich textures before record-

ing the videos. The image size is 960×540 or 540×960. For

each object, we uniformly sample about 200∼300 images

from the video sequence and compute the camera poses

using COLMAP [35]. The blur images are pre-removed.

Then, we compute the average z value of the cameras’ po-

sitions, and choose its neighboured 100 images for training

based on the z value distance. To construct the test set, we

utilize the following metric to measure the distance between

a camera pose y ∈ SO(3) and the training poses X :

Dy = minx∈SO(3){∥log(x)− log(y)∥ | x ∈ X}, (6)

where SO(3) is the 3D rotation group. A large Dy repre-

sents a significant viewpoint discrepancy. We compute Dy

for each remained image, and choose the ones with larger

distance for testing. We select up to 60∼100 test images

for each object according to its video length. Other images

have been filtered out.

4.2. Benchmark Comparisons

We make comparisons with NeRF [22] and its recent rep-

resent variants, including NSVF [17], IBRNet [42], PlenOc-

tree [51], and SNeRG [9]. We perform per-object fine-

tuning for IBRNet using their released model pre-trained

on a large database. PlenOctree here means its NeRF-SH

version. We slightly reformulate the deferred NeRF archi-

tecture in SNeRG by predicting a specular color for each

sampled point along a ray from f and d. We have not used

its sparse radiance grid data structure as it imposes a quality

loss of about 2dB. We also examine IDR [49], an impressive

3D reconstruction work that exploits the multi-view con-

sistency property leveraging differentiable rendering. We
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Figure 4. Qualitative Comparisons. We compare RapNeRF with several recent impressive methods on Synthetic-NeRF∗ (Top) and

MobileObject (Bottom). RapNeRF better recover the fine details of these objects. The images synthesized by other methods often contains

artifacts. We refer to the supplemental materials for more qualitative comparisons. Zoom in for a better view.

optimize NeRF in N1 + N2 iterations for a fair compari-

son, since RapNeRF contains a pre-training stage. For other

methods, we train them longer to ensure their models are

converged.

We use PSNR, SSIM [43], and LPIPS [54] to measure

the rendering quality. As reported in Table 1, RapNeRF ob-

tains the best performance on all metrics for novel view ex-

trapolation. It is interesting to see the vanilla NeRF achieves

higher PSNR than NSVF on the real MobielObject dataset

and vice verve on Synthetic-NeRF⋆. As discussed in the

NSVF paper [17], it shows fewer tolerances to camera pose

errors than NeRF. IBRNet’s performance drops much on

real scenes (18.99 vs. 23.33 for synthetic scenes). The

main reason is that the pose distance between training and

test views of MobileObject’s scenes is large. IBRNet and a

similar work MVSNeRF [4] can only well reconstruct the

scene content that has been seen by the reference views (a

small scene frustum). IDR here yields a mean PSNR of

23.43 on real scenes. We notice that it performs similarly

on the DTU dataset [12] (23.20 as reported in its paper).

That means, though IDR is good at recovering surfaces, but

is not as great as NeRF for photo-realistic view synthesis.

We also show some qualitative results in Figure 4. Other

methods often produce renderings that contain artifacts and

distortions, while RapNeRF can generate images with great

visual quality.

4.3. Ablation Studies

Ray Priors. We study the effectiveness of the core com-

ponents in RapNeRF, i.e., random ray casting (RRC) and

ray atlas (RA), for novel view extrapolation. As depicted

in Table 2, while RA yields a PSNR improvement of 1.24

over the NeRF baseline, RRC outperforms NeRF (24.05)

by a remarkable margin (+3.5 on PSNR). Moreover, the

complete model obtains a further performance gain and

produces a significant PSNR of 28.90. Some qualitative
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Figure 5. PSNR vs. SO(3) Pose Distance. We draw the curves by

computing the PSNR score and SO(3) pose distance (Dy) for each

test image in the whole MobileObject dataset. RapNeRF yields

consistently superior PSNR while Dy becomes larger.

studies are presented in Figure 6. We find, in comparisons

with RA, RRC bakes more lighting effects, but it would

generate smoother renderings under extrapolated view-

points. RA would produce artifacts such as slight bump

surfaces and white noises. RRC can remedy issues caused

by RA.

Pose Distance. We study the robustness of our method to

pose distance. We first present the ªPSNR vs. SO(3) pose

distanceº curves obtained by different SOTA approaches

in Figure 5. Here, we draw the curves by computing the

PSNR score and SO(3) pose distance (Dy) for each test

image in the whole MobileObject dataset. We also make

a comparison with NeRF using different test splits in

Table 5. Specifically, for each object in MobileObject, we

combine its test and discarded images (labeled in ªBlueº

and ªGrayº in Figure 1). Then we calculate the distance

between these images and the training set based on Eqn. 6

and resplit them into three disjoint sets. From Figure 5

and Table 5, the performance of the compared approaches

decreases drastically as Dy becoming larger. It is worth

mentioning that, for the ªCloseº setting, there are still some

shifts between test viewpoints and training viewpoints

(like the ªGrayº and ªRedº examples). Thereby, it is

not surprising that NeRF can only reach 26.23 on PSNR.

Luckily, RapNeRF yields consistently promising PSNR

even for the ªFarº setting. RapNeRF could generate a

visually appealing rendering in these challenging cases, but

other methods produce severe artifacts.

η in RRC. Our random ray casting (RRC) policy allows

pseudo-label assigning for randomly generated virtual

rays during the training process. We introduce azimuth

randomness ∆ϕ and elevation randomness ∆θ to the ray

vectors in spherical space. Here, ∆ϕ and ∆θ are uniformly

sampled from a pre-defined interval [−η, η]. We show

quantitative results on Skull with different elevation thresh-

old η for ∆θ in Table 3. The selection η = 30◦ achieves

η 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

PSNR ↑ 26.89 27.32 27.86 26.72 27.38 27.29

SSIM ↑ 0.963 0.965 0.967 0.964 0.966 0.965

LPIPS↓ 0.036 0.032 0.029 0.030 0.029 0.029

Table 3. Quantitative results on Skull with threshold η in RRC.

Method PSNR ↑ SSIM ↑ LPIPS ↓

NeRF-TF [22] 31.01 0.947 0.081

NeRF-TF (w/o dir) 27.66 0.925 0.117

JaxNeRF [5] 31.65 0.952 0.051

RapNeRF-PL 30.08 0.949 0.067

SNeRG-Jax [9] 30.47 0.951 0.049

RapNeRF†-PL 31.29 0.951 0.055

Table 4. Novel View Interpolation. JaxNeRF is the Jax NeRF

implementation. NeRF-TF is the official tensorflow NeRF imple-

mentation. RapNeRF is implemented via Pytorch-Lightning.

the best performance. The image quality shows a slight

decrease when η is greater than 30◦. A possible reason

is that RRC does not consider the self-occlusions of objects.

5. Limitation

As our key insight is the multi-view consistency prop-

erty, RapNeRF would sacrifice view-dependent effects for

novel view interpolation to secure much better performance

for novel view extrapolation. We argue it is acceptable for

applications such as 6-DOF immersive viewing and next-

generation AR/VR systems. Specifically, when showcasing

an object, a person prefers not to capture it in very high-

frequency lighting conditions. Furthermore, studies like re-

lighting might take some inspiration from RapNeRF since

they need to decompose view-dependent effects from ob-

jects’ base colors.

For pure view synthesis, we provide a remedy to the

slightly degenerated view-dependent effects by exploiting

the deferred NeRF architecture in SNeRG [9]. In particular,

after the NeRF pre-training stage, we add a tiny MLP that

maps from a 3D point’s geometry feature f (as explained

in Sec. 3.1) and its corresponding direction embedding to

a specular color. We remove the direction embedding in

RRC and force RapNeRF only to learn the diffuse color.

The color (or radiance) for a 3D point is now computed

by the addition of its diffuse color and specular color. We

denote this variant as RapNeRF†. As reported in Table 1,

RapNeRF† imposes a quality loss of about 1dB in compar-

ison with RapNeRF, but still outperforms other methods by

a large margin on MobileObject (real scenes). Other re-
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Figure 6. We visualize the impacts of the proposed random ray casting (RRC) policy and ray atlas (RA). We can find that (1) fine-tuning

NeRF with either RRC or RA could well remedy the artifact issue; and (2) RA and RRC are compatible with each other.

Close Middle Far

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [22] 26.23 0.960 0.075 23.42 0.944 0.095 22.51 0.939 0.099

NeRF w/o dir [17] 27.46 0.958 0.047 26.91 0.955 0.050 25.71 0.938 0.603

RapNeRF† 30.24 0.968 0.041 28.31 0.958 0.049 27.42 0.955 0.052

RapNeRF 30.88 0.969 0.037 29.06 0.963 0.044 28.74 0.963 0.045

Table 5. Viewpoints Distance. We further split the test and discarded images (labeled in ªBlueº and ªGrayº) of each object into three

disjoint subsets based on Eqn. 6. The performance of NeRF [22] decreases drastically when the viewpoint distance between training and

test images becomes larger. RapNeRF yields consistently promising scores for each setting.

sults are presented in Table 5 and Figure 5. Furthermore,

RapNeRF† can be seen as training a deferred NeRF vari-

ant [9] with RRC and RA. It further shows RRC and RA

can be flexibly integrated into other NeRFs to improve their

novel view exploration ability.

In Table 4, we evaluate RapNeRF and RapNeRF† on

the standard NeRF blender dataset. RapNeRF imposes a

quality loss of 1.6dB compared to JaxNeRF. RapNeRF may

fake view-dependent effects by hiding some reflected con-

tent inside the objects’ surface as analyzed in [9]. Moreover,

RapNeRF† does not degrade the performance of SNeRG for

novel view interpolation.

6. Conclusion

In this paper, we study Neural Radiance Fields (NeRF)

for novel view extrapolation where the test viewpoints are

significantly different from the training viewpoints. We

find that NeRF [22] often produces low-quality renderings

with many artifacts under extrapolated viewpoints, even the

training images can well describe the scenes. We take in-

spiration from the insight that the inherent appearances of

a 3D surface’s arbitrary visible projections should be con-

sistent, and proposes RapNeRF as a solution. It is empow-

ered by random ray casting (RRC) and ray atlas (RA). The

former allows pseudo supervision for unseen views in an

online manner, and the latter prudently rethinks the tradeoff

between strong view-dependent effects and multi-view con-

sistent renderings. We reconstruct Synthetic-NeRF [22] for

our studied setting and build a MobileObject dataset that

contains eight objects with real images. The comparisons

with NeRF and its recent variants demonstrate the superior-

ity of RapNeRF for novel view extrapolation. In the future,

we would like to study neural radiance fields reconstruction

from sparse multi-view images.
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