
Representation Compensation Networks for Continual Semantic Segmentation

Chang-Bin Zhang 1∗ Jia-Wen Xiao 1* Xialei Liu 1† Ying-Cong Chen 2,3 Ming-Ming Cheng 1

1 TMCC, CS, Nankai University 2 The Hong Kong University of Science and Technology (Guangzhou)
3 The Hong Kong University of Science and Technology

Abstract

In this work, we study the continual semantic segmenta-
tion problem, where the deep neural networks are required to
incorporate new classes continually without catastrophic for-
getting. We propose to use a structural re-parameterization
mechanism, named representation compensation (RC) mod-
ule, to decouple the representation learning of both old and
new knowledge. The RC module consists of two dynami-
cally evolved branches with one frozen and one trainable.
Besides, we design a pooled cube knowledge distillation
strategy on both spatial and channel dimensions to further
enhance the plasticity and stability of the model. We conduct
experiments on two challenging continual semantic segmen-
tation scenarios, continual class segmentation and contin-
ual domain segmentation. Without any extra computational
overhead and parameters during inference, our method out-
performs state-of-the-art performance. The code is available
at https://github.com/zhangchbin/RCIL.

1. Introduction
Data-driven deep neural networks [64, 72, 96, 108] have

made many milestones in semantic segmentation. However,
these fully-supervised models [16, 23, 93] can only handle
a fixed number of classes. In real-world applications, it is
preferable that a model can be dynamically extended to iden-
tify new classes. A straightforward solution is to rebuild
the training set and retrain the model with all data available,
known as Joint Training. However, considering the cost of re-
training models, sustainable development of algorithms and
privacy issues, it is particularly crucial to update the model
with only current data to achieve the goal of recognizing
both new and old classes. Nevertheless, naively fine-tuning
a trained model with new data can result in catastrophic
forgetting [48]. Therefore, in this paper, we seek continual
learning, which can potentially enable a model to recognize
new categories without catastrophic forgetting.

In the scenario of continual semantic segmentation [8, 27,
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Figure 1. Illustration of our proposed training framework for con-
tinual semantic segmentation to avoid catastrophic forgetting. We
design two mechanisms in our method, representation compensa-
tion (RC) module and pooled cube distillation (PCD).

62, 63], given the previously trained model and the training
data of the new classes, the model is supposed to distinguish
all seen classes, including previous classes (old classes) and
new classes. However, to save the labeling cost, the new
training data often only has labels for the new classes, treat-
ing old classes as background. Learning with the new data
directly without any additional designs is very challenging,
which can easily lead to catastrophic forgetting [48].

As indicated in [28, 48, 51], fine-tuning the model on
new data may lead to catastrophic forgetting, i.e., the model
quickly fits the data distribution of the new classes, while
losing the discrimination for the old classes. Some meth-
ods [43,48,56,66,67,80,95] play regularization on model pa-
rameters to improve its stability. However, all parameters are
updated on the training data of the new classes. This is how-
ever challenging, as new and old knowledge are entangled
together in model parameters, making it extremely difficult
to keep the fragile balance of learning new knowledge and
keeping old ones. Some other methods [45,57,75,76,82,91]
increase the capacity of the model to have a better trade-
off of stability and plasticity, but with the cost of growing
memory of the network.

In this work, we propose an easy-to-use representation
compensation module, aiming at remembering the old knowl-
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edge while allowing extra capacity for new knowledge. In-
spired by structural re-parameterization [24, 25], we replace
the convolution layers in the network with two parallel
branches during training, which is named as representation
compensation module. As shown in Fig. 1, during train-
ing, the output of two parallel convolutions is fused before
the non-linear activation layer. At the beginning of each
continual learning step, we equivalently merge the param-
eters of the two parallel convolutions into one convolution,
which will be frozen to retain the old knowledge. Another
branch is trainable and it inherits the parameters from the
corresponding branch in the previous step. The represen-
tation compensation strategy is supposed to remember the
old knowledge using the frozen branch while allowing ex-
tra capacity for new knowledge using the trainable branch.
Importantly, this module brings no extra parameters and
computation cost during inference.

To further alleviate catastrophic forgetting [48], we in-
troduce a knowledge distillation mechanism [70] between
intermediate layers (shown in Fig. 1), named Pooled Cube
Distillation. It can suppress the negative impact of errors
and noises in local feature maps. The main contributions of
this paper are:

• We propose a representation compensation module with
two branches during training, one for retaining the old
knowledge and one for adapting to new data. It always
keeps the same computation and memory cost during
inference as the number of tasks grows.

• We conduct experiments on continual class segmenta-
tion and continual domain segmentation, respectively.
Experimental results demonstrate that our method out-
performs the state-of-the-art performance on three dif-
ferent datasets.

2. Related Work
Semantic Segmentation. Early methods focused on mod-
eling contextual relationships [2,49,103]. Currently methods
pay more attention to multi-scale feature aggregation [3, 34,
52,53,59,65,68,81]. Some methods [14,22,32,37,38,50,55]
is inspired by Non-local [85], utilizing attention mechanisms
to establish connections between image contexts. Another
line of research [15, 61, 94] aimed at fusing features from
different receptive fields. Recently, transformer architec-
tures [7, 26, 86, 97, 104, 109] shine in semantic segmentation,
focusing on multi-scale feature fusion [12, 84, 89, 101] and
contextual feature aggregation [58, 79].

Continual Learning. Continual learning focuses on alle-
viating catastrophic forgetting while being discriminative for
newly learned classes. To solve this problem, many work [4,
5,11,47,77] propose to review knowledge by rehearsal-based
mechanism. The knowledge can be stored by multiple types,

like examples [4, 6, 9, 11, 73, 83], prototypes [35, 106, 107],
generative networks [60], etc. Although these rehearsal-
based methods usually achieve high performance, they need
storage and authority for storing. In the more challenging
scenario without any replay, many methods explore regu-
larization to maintain old knowledge, including knowledge
distillation [10, 18, 21, 28, 51, 69, 74, 100], adversarial train-
ing [29,88], vanilla regularization [43,48,56,66,67,80,95,98]
and so on. Others focus on the capacity of the neural net-
work. One of the research line [45, 57, 75, 76, 82, 91] is to
expand the network architecture while learning new knowl-
edge. Another research line [1, 44] explores the sparsity
regularization for network parameters, which aims at activat-
ing as few neurons as possible for each task. This sparsity
regularization reduces the redundancy in the network, while
limiting the learning capacity for each task. Some work
propose to learn better representations by combining self-
supervised learning for feature extractor [9, 87] and solving
class imbalance [39, 46, 54, 99, 102].

Continual Semantic Segmentation. Continual semantic
segmentation is still an urgent problem to solve, mainly
focusing on catastrophic forgetting [48] in semantic seg-
mentation. In this field, continual class segmentation is a
classic setting, with great progress made by several previous
work: [41,92] explore rehearsal-based methods to review old
knowledge; MiB [8] models the potential classes to solve the
ambiguous of background class; PLOP [27] applies knowl-
edge distillation strategy to intermediate layers; SDR [63]
takes advantage of prototype matching to perform consis-
tency constraints in the latent space representation. While
others [31, 78, 95] utilize high-dimensional information,
self-training and model adaptation to overcome this problem.
Moreover, continual domain segmentation is a novel setting
proposed by PLOP [27], aiming at integrating new domain
rather than new classes. Different from previous methods,
we focus on expanding the network dynamically, decoupling
the representation learning of old classes and new classes.

3. Method
3.1. Preliminaries

Let D = {xi, yi} denotes the training set, where xi de-
notes the input image and yi is the corresponding segmen-
tation ground-truth. In the challenging continual learning
scenario, we call each training on the newly added dataset Dt

as a step. At step t, given a model ft−1 with parameter θt−1

trained on {D0,D1...Dt−1} with {C0, C1...Ct−1} classes
continually, the model is supposed to learn the discrimina-
tion for

∑t
n=0 Cn classes when it encounters a newly added

dataset Dt with extra Ct new classes. When training on Dt,
the training data of old classes are not accessible. Besides,
to save the training cost, the ground-truth in Dt only con-
tains the Ct new classes, while the old classes are labeled as
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Figure 2. Illustration of our representation compensation mechanism. We modify the 3× 3 convolution as two parallel convolutions. The
features from the two branches are aggregated before the activation layer. At the beginning of step t, thus, the two parallel branches trained at
step t− 1 can be merged into an equivalent convolution layer, which will be frozen and is regarded as one branch of step t. Another branch
in step t is initialized from the corresponding branch from step t− 1. We demonstrate the merge operation in the right part of the figure.

background. Thus, there is an urgent problem, catastrophic
forgetting. To verify the effectiveness of different methods, it
is often necessary to perform the continual learning multiple
times e.g., N steps.

3.2. Representation Compensation Networks

To decouple the retaining of old knowledge and learn-
ing of new knowledge, as shown in Fig. 2, we introduce
our representation compensation mechanism. In most of
the deep neural networks, a 3× 3 convolution followed by
normalization and non-linear activation layer is a common
component. We modify this architecture by adding a par-
allel 3 × 3 convolution followed by a normalization layer
for each component. The output of two parallel convolution-
normalization layers is fused, then is rectified by a non-
linear activation layer. Formally, this architecture contains
two parallel convolution layers with weight {W 0,W 1} and
bias {b0, b1}, followed by two independent normalization
layers, respectively. Let Norm0 = {µ0, σ0, γ0, β0} and
Norm1 = {µ1, σ1, γ1, β1} denote the mean, variance,
weight and bias of two normalization layers Norm0 and
Norm1. Thus, the calculation of input x before non-linear
activation function can be denoted as

x̂ =

1∑
i=0

Normi(Wix+ bi)

=

1∑
i=0

(γi
Wix+ bi − µi

σi
+ βi)

= (

1∑
i=0

γiWi

σi
)x+

1∑
i=0

(
γibi − γiµi

σi
+ βi)

= Ŵx+ b̂.

(1)

This equation demonstrates that two parallel branches can be
equivalently represented as one with weight Ŵ and bias b̂.
We also display the transformation in the right part of Fig. 2.
Therefore, for this modified architecture, we can equivalently
merge the parameters of two branches into one convolution.

More precisely, in step 0, all parameters are trainable
to train a model that can discriminate C0 classes. For the
subsequent learning steps, the model is supposed to segment
newly added classes. In these continual learning steps, the
network will be initialized with the parameters trained in the
previous step, which is beneficial to transfer knowledge [8].
At the beginning of step t, since the model is supposed
to avoid forgetting old knowledge, we merge the parallel
branches trained in step t− 1 to one convolution layer. The
parameters in this merged branch are frozen to memorize
the old knowledge, as shown in Fig. 2. Another branch is
trainable to learn new knowledge, which is initialized with
the corresponding branch in the previous step. Besides, we
design a drop-path strategy, which is applied on aggregating
the output, x1 and x2 from two branches. During training,
the output before the non-linear activation is denoted as

x̂ = η · x1 + (1− η) · x2, (2)

where η is the random channel-wise weighted vector and
sampling from the set {0, 0.5, 1} uniformly. During infer-
ence, the element of vector η is set as 0.5. Experimental
results demonstrate that this strategy brings slight improve-
ment.

Analysis on RC-Module’s Effectiveness. As shown
in Fig. 3, the parallel convolution structure can be regarded
as an implicit ensemble [36, 40] of numerous sub-networks.
The parameters of some layers in these sub-networks are in-
herited from the the merged teacher model (trained at previ-
ous step) and are frozen. During training, similar to [33, 90],
these frozen teacher layers will impose regularization to
trainable parameters, encouraging trainable layers to behave
like the teacher model. In a special case where only one
layer in the sub-network is trainable, as shown in Fig. 3(a),
during training, this layer will take into account both adapt-
ing for the representation of frozen layers and learning for
new knowledge. Therefore, this mechanism will alleviate
catastrophic forgetting of the trainable layer. We further
promote this effect to general sub-networks like Fig. 3(b),
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Figure 3. Illustration of our proposed Representation Compensa-
tion Network. Our architecture (c) can be regarded as an implicit
ensemble of numerous sub-networks (a), (b), etc. The blue de-
notes the frozen layers inherited from the merged teacher model.
The green denotes the trainable layers. The gray denotes the
layers that are ignored in the sub-network.

which will also encourage the trainable layers to adapt to
the representation of the frozen layers. Furthermore, all
sub-networks are ensembled, integrating knowledge from
different sub-networks to one network, like Fig. 3(c).

3.3. Pooled Cube Knowledge Distillation

In order to further alleviate the forgetting of old knowl-
edge, following PLOP [27], we also explore feature distil-
lation. As shown in Fig. 4(a), PLOP [27] introduces strip
pooling [38] to integrate features. Pooling operation plays a
key role in transferring knowledge. In our method, we design
the average pooling-based knowledge distillation along the
spatial dimension. Additionally, we use the average pooling
in the channel dimension at each position as well to main-
tain their individual activation intensity. Overall, as shown
in Fig. 4(b), we use the average pooling on both spatial and
channel dimensions.

Formally, we select feature maps {X1, X2, ..., XL} be-
fore the last non-linear activation layer for all L stages, in-
cluding decoder and all stages in the backbone. For the
features from the teacher model and the student model, we
firstly calculate the square of value at each pixel to retain the
negative information. Then, we perform multi-scale average
pooling on spatial and channel dimensions, respectively. The
features X̂ l

T , X̂
l
S of the teacher model and the student model

can be calculated by the average pooling operation ⊙:

X̂ l,m
T = M ⊙ [(X l

T,ij)
2]

X̂ l,m
S = M ⊙ [(X l

S,ij)
2],

(3)

where M denotes the mth average pooling kernel, and l
denotes the lth stage. For the average pooling on the spatial
dimension, we use the multi-scale windows to model the
relationships between pixels in the local region. The size
of kernel M belongs to M = {4, 8, 12, 16, 20, 24} and the

c
c

c

cc

strip pooling avg. pooling avg. pooling

row

column
spatial KD Channel-wise KD

(a) PLOP [27] (b) Ours
Figure 4. Comparison between PLOP [27] and our proposed Pooled
Cube Knowledge Distillation mechanism.

step size is set to 1. And we simply set the window size
as 3 for the average pooling on channel dimension. Then,
the spatial knowledge distillation loss function Lskd for the
intermediate layers can be denoted as

Lskd =
1

L

1

|M|

L∑
l=1

|M|∑
m=1

√√√√ H∑
i=1

W∑
j=1

D∑
d=1

[(X̂ l,m
T,ijd − X̂ l,m

S,ijd)
2],

(4)
where H,W,D denote the height, width and the number
of channels. The same equation can be applied on chan-
nel dimension with M = {3} to form Lckd. Overall, the
distillation objective can be denoted as:

L = Lskd + Lckd. (5)

Average pooling vs. Strip pooling. Benefiting from
its strong ability to aggregate features and model long-range
dependency, strip pooling shines in many fully-supervised
semantic segmentation models [38, 42]. The performance
of continual segmentation is still much worse than that of
fully-supervised segmentation. In the scenario of continual
segmentation, there are often more noise or errors in the
prediction results than fully-supervised segmentation. Thus,
in the distillation process, when using strip pooling to ag-
gregate features, this long-range dependency will introduce
some uncorrelated noise to the cross point, causing noise
diffusion. This will lead to further deterioration of the pre-
diction results of the student model. In our method, we use
average pooling in the local region to suppress the negative
impact of noise. Specifically, because the semantics of local
regions are often similar, the current key point can find more
neighbors to support its decision by aggregating features in
the local region. Thus, the current key point is less negatively
affected by the noise in the local region.

As an example shown in Fig. 5(b) top, the strip pooling
introduces noise or errors to the cross point for the teacher
model. During the distillation process, the noise is further
propagated to the student model, making the noise diffusion.
For the average pooling in Fig. 5 bottom, the key point will
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(a) Image (b) step 2 (c) step 3 (d) GT
Figure 5. The impact of the strip pooling (top row) used in
PLOP [27] and the average pooling (bottom row) in our method.

consider many nearby neighbors, resulting in an aggregated
feature that is more robust to noise.

4. Experiments
In this section, we first demonstrate the details of our

experimental setups, e.g., datasets, protocols and training
details. Then we illustrate the effectiveness of our method
from quantitative and qualitative experiments.

4.1. Experimental setups

4.1.1 Datasets

PASCAL VOC 2012 [30] is a commonly used dataset,
which contains 10,582 training images and 1449 validation
images with 20 object classes and the background class.
ADE20K [105] is a dataset for semantic segmentation cover-
ing daily life scenes. It contains 20,210 training images and
2,000 validation images with 150 classes. Cityscapes [19]
contains 2,975 training images, 500 validation images and
1,525 test images. There are 19 classes from 21 cities.

4.1.2 Protocols

Continual Class Segmentation. In continual class seg-
mentation, the model is trained to recognize different classes
sequentially in multiple steps. Each step the model learns
one or several classes. Following [8, 27, 63], we assume
training data of previous steps are not available, i.e., the
model can only access data of the current step. Besides,
only classes to be learned in the current step are labeled.
All other classes are treated as background. There are two
commonly used settings proposed by [8] for continual class
segmentation, disjoint and overlapped. In the disjoint setting,
assuming we know all classes in the future, the images in the
current training step do not contain any classes in the future.
The overlapped setting is more realistic. It allows potential
classes in the future to appear in the current training images.

We conduct continual class segmentation experiments on
the PASCAL VOC 2012 [30] and ADE20K [105]. Follow-
ing [8,27,63], as defined in Sec. 3.1, we call each training on

the newly added dataset as a step. Formally, X-Y denotes
the continual setting in our experiments, where X denotes
the number of classes that we need to train in the first step.
In each subsequent learning step, the newly added dataset
contains Y classes. On PASCAL VOC 2012 [30], we con-
duct experiments on three settings, 15-5 (2 steps), 15-1 (6
steps) and 10-1 (11 steps). For example, 15-1 denotes that
we train the model on the initial 15 object classes in the first
step. In the subsequent five steps, the model is expected to
be trained on new datasets, where each dataset contains one
new added class. Thus, the model can discriminate 20 object
classes in the last step. On ADE20K [105], we apply four
settings, 100-50 (2 steps), 50-50 (3 steps), 100-10 (6 steps),
and 100-5 (11 steps) .

Continual Domain Segmentation. It is proposed by [27].
Different from continual class segmentation, this setting
is to deal with the domain shift phenomenon rather than
integrating new classes. In the real-world scene, domain
shift can also occur frequently. We assume the classes in
different domains are the same. The training data of the old
domain is not accessible when training on new domain data.
We conduct continual domain segmentation experiments
on Cityscapes [19]. Following PLOP [27], we regard the
training data in each city as a domain. We also apply three
settings, 11-5 (3 steps), 11-1 (11 steps) and 1-1 (21 steps).
In these experimental settings, we use the same recording
as the continual class segmentation, but each step adds new
domains (cities) instead of classes.

4.1.3 Implementation Details

Following [8, 27, 63], we use the Deeplab-v3 [13] architec-
ture with ResNet-101 [36] as backbone. The output stride of
Deeplab-v3 is set to 16. We also apply the in-place activated
batch normalization [71] in the backbone pre-trained on the
ImageNet [20], as the above methods. We utilized the loss
function proposed by MiB [8] to assist our training process.
And we apply the same training strategy as [8,27,63]. Specif-
ically, we apply the same data augmentation, e.g., horizontal
flip and random crop. The batch size is set to 24 for all
experiments. We set the initial learning rate as 0.02 for the
first training step and 0.001 for the next continual learning
steps. The learning rate is adjusted by the poly schedule.
We train the model using SGD optimizer for each step with
30 (PASCAL VOC 2012 [30]), 50 (Cityscapes [19]), and
60 epochs (ADE20K [105]), respectively. We also use 20%
of the training set as validation following [8, 27, 63]. We
report the mean Intersect over Union (mIoU) on the original
validation set.

4.2. Continual Class Segmentation
PASCAL VOC 2012. Applying the same experimental
settings as [8,27,63], we performed experiments on different
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15-5 (2 steps) 15-1 (6 steps) 10-1 (11 steps)
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all 0-15 16-20 all 0-10 11-20 all 0-10 11-20 all
Fine-tuning 5.7 33.6 12.3 6.6 33.1 12.9 4.6 1.8 3.8 4.6 1.8 3.9 6.3 1.1 3.8 6.4 1.2 3.9
Joint 79.8 72.6 78.2 79.8 72.6 78.2 79.8 72.6 78.2 79.8 72.6 78.2 78.2 78.0 78.2 78.2 78.0 78.2

LwF [51] 60.4 37.4 54.9 60.8 36.6 55.0 5.8 3.6 5.3 6.0 3.9 5.5 7.2 1.2 4.3 8.0 2.0 4.8
ILT [62] 64.9 39.5 58.9 67.8 40.6 61.3 8.6 5.7 7.9 9.6 7.8 9.2 7.3 3.2 5.4 7.2 3.7 5.5
MiB [8] 73.0 43.3 65.9 76.4 49.4 70.0 48.4 12.9 39.9 38.0 13.5 32.2 9.5 4.1 6.9 20.0 20.1 20.1
SDR [63] 74.6 44.1 67.3 76.3 50.2 70.1 59.4 14.3 48.7 47.3 14.7 39.5 17.3 11.0 14.3 32.4 17.1 25.1
PLOP [27] 71.0 42.8 64.3 75.7 51.7 70.1 57.9 13.7 46.5 65.1 21.1 54.6 9.7 7.0 8.4 44.0 15.5 30.5
Ours 75.0 42.8 67.3 78.8 52.0 72.4 66.1 18.2 54.7 70.6 23.7 59.4 30.6 4.7 18.2 55.4 15.1 34.3

Table 1. The mIoU(%) of the last step on the Pascal VOC 2012 dataset for different continual class segmentation scenarios. The red denotes
the highest results and the blue denotes the second highest results.
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Figure 6. The mIoU (%) at each step in three experimental settings. (a)(b) are settings of continual class segmentation. (c) is the setting of
continual domain segmentation.

continual learning settings, 15-5, 15-1 and 10-1. As shown
in Tab. 1, we report the experimental results of the last step.
The vanilla fine-tuning method suffers from the catastrophic
forgetting phenomena. The model quickly forgets the old
knowledge and is unable to learn the new knowledge well.
Experimental results demonstrate that our method signifi-
cantly improves the segmentation performance both on the
overlapped and disjoint settings. Especially in the challeng-
ing 15-1 settings, our method outperforms the state-of-the-art
by 6.0% (disjoint) and 4.8% (overlapped) in terms of mIoU,
respectively. We also display the performance of each step
for different methods as shown in Fig. 6a and Fig. 6b. This
demonstrates that our method can reduce the forgetting of
old knowledge in the continual learning process. In Tab. 1,
we also report the performance over the old classes and new
classes, respectively. For all settings, the performance of the
old classes is greatly improved. This is benefited from the
representation compensation module and distillation mech-
anism, which can effectively retain the old knowledge. On
the other hand, our proposed representation module and dis-
tillation mechanism allow room for learning new knowledge.
In Sec. 4.4, we will further analyze the effectiveness of these
two mechanisms. We further show the qualitative results of

different methods in the 15-1 overlapped setting in Fig. 7.

ADE20K. To verify the effectiveness of our method, we
conduct experiments on a challenging semantic segmentation
dataset, ADE20K [105]. Experimental results are shown
in Tab. 2 and Tab. 3. On different continual learning tasks,
100-50, 100-10 and 50-50, our method achieves an average
improvement of 1.4% over the state-of-the-art. To further
verify our method, we also perform experiments on a more
challenging scenario, 100-5, which contains 11 steps. In
this scenario, our method also achieves the state-of-the-art,
outperforming the previous method by about 0.9% in terms
of mIoU, as shown in Tab. 3. The improvement is due to our
proposed representation compensation module and pooled
cube distillation mechanism.

4.3. Continual Domain Segmentation

In the context of continual semantic segmentation, in
addition to the need to segment new classes, it is also of
great significance to increase the processing capabilities of
new domains. Following [27], we conducted experiments of
continual domain semantic segmentation on Cityscapes [19].
Each city in Cityscapes [19] can be regarded as a domain,
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100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)
Method 1-100 101-150 all 1-100 101-110 111-120 121-130 131-140 141-150 all 1-50 51-100 101-150 all
ILT [62] 18.3 14.8 17.0 0.1 0.0 0.1 0.9 4.1 9.3 1.1 13.6 12.3 0.0 9.7
MiB [8] 40.7 17.7 32.8 38.3 12.6 10.6 8.7 9.5 15.1 29.2 45.3 26.1 17.1 29.3
PLOP [27] 41.9 14.9 32.9 40.6 15.2 16.9 18.7 11.9 7.9 31.6 48.6 30.0 13.1 30.4
Ours 42.3 18.8 34.5 39.3 14.6 26.3 23.2 12.1 11.8 32.1 48.3 31.3 18.7 32.5
Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 51.1 38.3 28.2 38.9

Table 2. The mIoU(%) of the last step on the ADE20K dataset for different overlapped continual learning scenarios. The red denotes the
highest results and the blue denotes the second highest results.

Method 1-100 101-150 all
ILT [62] 0.1 1.3 0.5
MiB [8] 36.0 5.6 25.9
PLOP [27] 39.1 7.8 28.7
Ours 38.5 11.5 29.6

Table 3. The final mIoU(%) of 100-5 overlapped on ADE20K.

Method 11-5 (3 steps) 11-1 (11 steps) 1-1 (21 steps)
Fine-tuning 61.7 60.4 42.9
LwF [51] 59.7 57.3 33.0
LwF-MC [69] 58.7 57.0 31.4
ILT [62] 59.1 57.8 30.1
MiB [8] 61.5 60.0 42.2
PLOP [27] 63.5 62.1 45.2
Ours 64.3 63.0 48.9

Table 4. The final mIoU(%) for continual domain semantic seg-
mentation on Cityscapes [19].

which is widely used by domain adaptive semantic segmen-
tation tasks [17]. In this scenario, we do not consider the
difference in classes between domains. As shown in Tab. 4,
experimental results demonstrate that our method achieves
higher mIoU than previous methods [8, 27, 62] in all three
settings. Our method outperforms the state-of-the-art by
3.7% on the challenging 1-1 setting with 21 learning steps.
For this setting, we display the performance of each step
in Fig. 6c. Since MiB [8] aims at solving the problem of
semantic shift which is not existing in continual domain seg-
mentation, MiB [8] performs slightly worse than Fine-tuning.
These experiments indicate that our method is also effective
for continual domain semantic segmentation, benefiting from
the ability to retain old knowledge while allowing to learn
new knowledge.

4.4. Ablation Study

In this section, we firstly analyze the effectiveness of
our proposed representation compensation and pooled cube
distillation mechanism. Then we discuss the robustness to
class orders in the continual learning scenario.

Representation Compensation. We conduct ablation

MiB‡ [8] RC Strip [38] S-KD C-KD 15-1
✓ 36.1
✓ ✓ 43.0
✓ ✓ ✓ 58.3
✓ ✓ ✓ 58.4
✓ ✓ ✓ 57.8
✓ ✓ ✓ 57.9
✓ ✓ ✓ ✓ 59.4

Table 5. The final mIoU(%) of ablation study about representation
compensation module (RC) and pooled cube distillation mechanism
on spatial (S-KD) and channel dimension (C-KD). Experiments are
conducted on 15-1 overlapped setting on PASCAL VOC 2012. †
denotes that the baseline is improved by an adaptive factor [27].

Parallel-Conv Merge Frozen Drop-path 15-1
✓ 40.1
✓ ✓ 42.0
✓ ✓ ✓ 42.8
✓ ✓ ✓ ✓ 43.0

Table 6. Ablation study of representation compensation module.
All experiments are conducted on PASCAL VOC 2012 without
pooled cube distillation.

experiments on PASCAL VOC 2012 [30].
As shown in Tab. 5, our proposed representation com-

pensation module achieves about 7% improvement than the
MiB [8] baseline. With this module, our method reaches
state-of-the-art performance. We argue this performance
benefits from the scheme of remembering old knowledge in
our method while allowing the learning for new knowledge.
In our method, the operations of merging and freezing pa-
rameters aim at alleviating the forgetting of old knowledge.
Thus, in Tab. 6, we further study the effectiveness of these
two operations. Specifically, based on the plain parallel con-
volution branches (Parallel-Conv), the operations of merging
(Merge) and freezing (Frozen) can bring 2.7% improvement.
Experimental results demonstrate that the model can benefit
from the frozen knowledge in previous steps.

Distillation Mechanism. In Tab. 5, we study the impor-
tance of knowledge distillation mechanism on spatial and
channel dimensions, respectively. The knowledge distillation
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Image MiB [8] SDR [63] PLOP [27] Ours GT

Figure 7. The qualitative comparison between different methods. All the prediction results are from the last step of 15-1 overlapped setting.

W/o Pooling GAP Max Pooling Strip Pooling Avg. Pooling
52.0 36.1 48.0 54.6 56.1

Table 7. Comparison between different pooling methods in distilla-
tion mechanism. All experiments are conducted on 15-1 overlapped
on PASCAL VOC 2012 using PLOP framework. GAP denotes the
global average pooling.

on spatial and channel dimensions achieves similar perfor-
mance, outperforming baseline by about 15.3% in terms of
mIoU. With the representation compensation module, the
combination of these two distillation schemes can reach
state-of-the-art performance. We further compare the effec-
tiveness of different pooling methods used in the knowledge
distillation mechanism, as shown in Tab. 7. Experimental
results demonstrate that average pooling outperforms strip
pooling by 1.5%.

Robustness to Class Orders. In the scenario of continual
semantic segmentation, the class orders in the pipeline is par-
ticularly important. To verify the robustness to class orders,
we perform experiments on five different class orders, in-
cluding four random orders and the original ascending order.
In Fig. 8, we display the average performance and standard
variance for different methods [8, 27, 62, 63]. Experimental
results demonstrate that our method is more robust against
different class orders than previous methods.

5. Conclusion and Limitation
In this work, aiming at remembering the knowledge for

old classes while allowing capacity for learning new classes,
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Figure 8. The average performance and standard variance under
different continual learning class orders.

we propose the representation compensation module, which
dynamically expands the network without any extra infer-
ence cost. Besides, to further alleviate the forgetting for old
knowledge, we propose Pooled Cube Distillation mechanism
on spatial and channel dimensions. We conduct experiments
on two commonly used benchmarks, continual class seg-
mentation and continual domain segmentation. Our method
outperforms state-of-the-art performance.

Although we have proposed two components, which out-
perform the state-of-the-art performance, we have a poor
performance in the continual learning process with many
steps, like 10-1 setting shown in Tab. 1. In these challenging
scenarios, how to improve the performance of the model still
has a long way to go. Besides, our method requires more
computation costs during training.
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