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Abstract

Typical vision backbones manipulate structured fea-
tures. As a compromise, semantic segmentation has long
been modeled as per-point prediction on dense regular
grids. In this work, we present a novel and efficient model-
ing that starts from interpreting the image as a tessellation
of learnable regions, each of which has flexible geometrics
and carries homogeneous semantics. To model region-wise
context, we exploit Transformer to encode regions in a
sequence-to-sequence manner by applying multi-layer
self-attention on the region embeddings, which serve as
proxies of specific regions. Semantic segmentation is now
carried out as per-region prediction on top of the encoded
region embeddings using a single linear classifier, where
a decoder is no longer needed. The proposed RegProxy
model discards the common Cartesian feature layout and
operates purely at region level. Hence, it exhibits the most
competitive performance-efficiency trade-off compared
with the conventional dense prediction methods. For
example, on ADE20K, the small-sized RegProxy-S/16 out-
performs the best CNN model using 25% parameters and
4% computation, while the largest RegProxy-L/16 achieves
52.9 mIoU which outperforms the state-of-the-art by 2.1%
with fewer resources. Codes and models are available at
https://github.com/YiF-Zhang/RegionProxy.

1. Introduction
Semantic segmentation is one of the fundamental tasks in

computer vision, and has been carried out using CNNs since
the beginning of the deep learning era [10,17,21,27]. How-
ever, CNN is not the out-of-the-box solution for semantic
segmentation considering two of its natures: 1) Limited con-
text. CNN lacks of abilities to capture long range dependen-
cies for context modeling, which is essential for semantic
segmentation. 2) Coarse prediction. Due to its hierarchi-
cal nature, CNN outputs coarse feature which is inadequate
for dense labeling. Fundamentally, the majority of semantic
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Figure 1. Illustration of two different schemes for semantic seg-
mentation. (Left) Conventional encoder-decoder models estab-
lish dense correspondence between input and output on structured
pixel-level grid, and segment image in a per-pixel prediction fash-
ion. (Right) We propose to interpret the image as a tessellation
of learnable regions and represent it by region-level embeddings
(i.e., proxies) at an early stage, and segment image by per-region
prediction using sequence-to-sequence Transformer [11, 41].

segmentation researches since FCN [27] have been centring
on resolving these two issues. A great number of works
have been proposed for better context modeling [19,50–52]
and fine-grained feature prediction [6,34,43], which signif-
icantly advance the semantic segmentation research.

Currently, the Transformer architecture [41] from natural
language processing is introduced to the the vision commu-
nity and has gained significant research interest. The Vi-
sion Transformer (ViT) [11] partitions image into square
patches and encodes their embeddings (i.e., tokens) in a
sequence-to-sequence manner using stacked self-attention
layers. Some of its variants [26, 44] adopt a hierarchical
structure and restrict self-attention in local area for bet-
ter scalability. Recently, several semantic segmentation
works [38, 48, 53] adopt vision Transformers as backbone
and achieve impressive performances. They learn better
context with the help of the inherent advantages of vision
Transformers, namely the attention mechanism. However,
in these models, the vision Transformer serves transparently
as feature extractor which extracts 2D coarse features ex-
actly as its convolutional counterpart does, while its main
character, a sequence-to-sequence encoder, is not touched.

We revisit the aforementioned two issues: limited con-
text and coarse prediction. While the former is a corollary
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of the local receptive field which can be alleviated by adopt-
ing Transformer architecture or previous CNN-based con-
text modules, the latter is substantially induced by the in-
flexible regular (Cartesian) layout of network features, as
it does not follow the structure of real world semantics:
with the large strides of typical vision backbones, it car-
ries jumbly semantics in grid cells and brings difficulties for
dense labeling. Hence, a “decoder” is required to produce
fine-grained features. These facts imply that regular grids
may not be the optimal feature arrangement for semantic
segmentation.

In this work, we explore a novel modeling of semantic
segmentation which we believe to be closer to its essence:
we attempt to interpret image as a set of interrelated regions,
where the region indicates a group of adjacent pixels with
homogeneous semantics. As illustrated in Figure 1, we pro-
pose a simple RegProxy approach which learns regions at
an early stage, explicitly models inter-region relations us-
ing Transformer [41], and encodes regions in a sequence-
to-sequence fashion. We design a novel mechanism to de-
scribe region geometrics and ensure the tessellation of the
entire region set, which enables us to conduct semantic seg-
mentation by per-region prediction. The entire process is
fully parameterized and differentiable which can be trained
end-to-end efficiently. Here we present the major novelties
and contributions of this work: 1) Instead of manipulating
features on regular grids, we operate on a set of region em-
beddings throughout the entire network. Each of the region
embeddings serves as the feature representation of a spe-
cific learnable region, namely the region proxy. 2) Instead
of using Transformer to extract structured feature, we dive
into its essence as a sequence-to-sequence encoder, and use
it to explicitly model inter-region relations. 3) Instead of
modeling semantic segmentation as per-pixel prediction us-
ing decoder, we segment images by directly predicting on
the region embeddings using a linear classifier.

We build our model on bare ViTs [11] for image classi-
fication by adding negligible overhead (~0.5% parameters
and GFLOPs), and consistently achieves the state-of-the-art
performances throughout different model sizes. Extensive
experiments show the competitive performance-efficiency
trade-off of RegProxy under various model capacities on
multiple datasets. One may peek the results in Figure 2.

2. Related Work
Vision Transformer Transformer [41] was firstly intro-
duced in machine translation and is currently the de-facto
standard of most natural language processing (NLP) tasks.
The proposed attention mechanism has also inspired a num-
ber of works in computer vision [18, 45, 46]. Notably,
the attention works particularly well in semantic segmenta-
tion [13,19,22,55] where contextual information is crucial.

Recently, Dosovitskiy et al. [11] proposes the Vi-
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Figure 2. Performance vs. GFLOPs on ADE20K val split.
We report results without multi-scale inference. RegProxy shows
a highly competitive performance-efficiency trade-off among the
state-of-the-art methods. Best viewed in color.

sion Transformer (ViT) which directly inherits the Trans-
former [41] architecture from NLP and works as a stan-
dalone model. ViT is gaining significant research inter-
est and a number of improved models have been proposed.
Generally, the architecture of vision Transformers can be
sequential or hierarchical. Sequential models (including the
original ViT [11]) partition image into patches and encode
inputs in a sequence-to-sequence fashion by computing the
global self-attention. DeiT [39] successfully trains ViTs on
ImageNet-1k [10] with the help of strong data augmenta-
tions and knowledge distillation. CaiT [40] proposes Layer-
Scale technique and later class tokens for effective training
of vision Transformers at depth. XCiT [12] proposes cross-
covariance attention that operates on feature dimension to
build more scalable vision Transformers. Hierarchical mod-
els [26, 44] borrow some of the image-specific inductive
bias from CNNs, such as translation equivariance and 2D
neighborhood structure on regular grid. They compute at-
tentions within local windows and produce hierarchical 2D
features. Swin Transformer [26] is one of the most suc-
cessful hierarchical vision Transformers. With the shifted
window design, it brings better efficiency while allowing
cross-window connections for better feature extraction.

Semantic Segmentation Semantic segmentation has
been modeled as dense prediction since the emergence of
fully conventional architectures. FCN [27] lays the founda-
tion of modern semantic segmentation models, which is the
first to adopt fully convolutional neural networks to segment
images with arbitrary scales in an end-to-end manner. The
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backbone method #params. FLOPs ADE20K Cityscapes

ViT-Ti/16 Baseline 5.7M 3.8G 39.0 / 37.8 72.3 / 68.1

Ours - - 40.9 (+1.9) 74.1 (+1.8)

ViT-S/16 Baseline 22.0M 14.9G 45.4 / 44.2 76.1 / 71.8

Ours - - 46.0 (+0.6) 75.9 (−0.2)

ViT-B/16 Baseline 86.6M 58.8G 47.1 / 45.6 78.5 / 75.1

Ours - - 47.3 (+0.2) 77.3 (−1.2)

Table 1. Pilot experiment results. We report baseline results
with/without the bilinear upsampling of the final logits map. The
baseline uses the original patch embedding [11] and works as a
typical segmentation model with stride 16, while our prototype
model embeds non-parametric regions (i.e., superpixels).

following works inherit the fully convolutional design and
focus on better context modeling. The efforts have been put
on one or more aspects that significantly improve semantic
segmentation performance: 1) Enlarge receptive field using
larger kernels or dilated convolution [3, 4, 31, 49]; 2) Inte-
grate multi-scale features [5,6,20,52]; 3) Refine contextual
information [24,50,51]; 4) Utilize attention [13,19,22,55];
5) Search or design designated backbones [23, 30, 32, 43].

Recently, several works exploit Transformer to conduct
semantic segmentation. SETR [53] is the first to introduce
vision Transformer backbones into semantic segmentation.
Segmenter [38] exploits Transformer to predict per-class
masks. SegFormer [48] and DPT [32] propose hierarchi-
cal vision Transformer backbones specifically designed for
dense prediction tasks. MaskFormer [7] uses the Trans-
former Decoder [41] to query classes with their masks from
a conventional encoder-decoder model. We emphasize that
our work has significant difference with these approaches:
we use bare Transformer to model inter-region relations in-
stead of using it as replaceable or extra modules of existing
dense-prediction architectures.

3. Pilot Study of Region Proxy
Before introducing our main model, we first present a

naive instantiation of region proxy for a proof of concept.
We revisit the classical superpixel segmentation [33]. Su-
perpixels are an over-segmentation of images that is formed
by grouping perceptually similar pixels together based on
low-level information (e.g., colors). It provides a low/mid-
level image representation for high-level vision tasks in-
cluding semantic segmentation [14, 15, 36]. In our pilot
study, we adopt widely used SLIC [1] method to generate
non-parametric regions to validate our region proxy notion.

Regions as Superpixels Essentially, we attempt to batch
the pixel labeling by classifying superpixels. This implies
that nearby pixels with similar low-level properties should
be semantically homogeneous. This assumption will finally
be analyzed in Section 5.3 along with our main model intro-
duced in Section 4. At the moment, we build our prototype
model under this premise.

We modify the vanilla ViT [11] which encodes patches,
making it feasible to encode superpixels: N superpixels
{si} are generated from input image I ∈ RH×W×3. The
irregular superpixels are cropped by their enclosing bound-
ing boxes and resized to fixed size patches {xi} where
xi ∈ RP×P×3, which is implemented using ROIAlign [16].
We embed xi using the exact linear patch embedding in the
vanilla ViT, producing N tokens with dimension D, which
are then encoded in a sequence-to-sequence manner. In-
stead of per-pixel prediction, We directly classify regions
by applying a linear classifier on every tokens. For supervi-
sion, a soft label ŷi is applied on the i-th token. We have

ŷi[c] =
|{p ∈ si | ŷ(p) = c}|

|si|
, c ∈ {0, 1, . . . ,K − 1} (1)

where ŷ(p) is the label of the pixel p, and K is the number
of classes. Namely, ŷi is the category histogram of pixels
inside superpixel si.
Experiment To set up the baseline, we apply the same
linear classifier to the output tokens of the vanilla ViT.
Hence the only difference between the baseline and our pro-
totype model is the computation primitive: whether to be
a square patch or a region. The training protocol is iden-
tical to our main experiments which is described in Sec-
tion 5. In Table 1, We report results of three model variants
ViT-{Ti/16, S/16, B/16} on ADE20K and Cityscapes. We
observe evidential performance gains on smaller models,
which vanish as the model getting larger. We hypothesize
that the introduced low-level priori benefits small models,
however, its intrinsic noise (i.e., inaccurate superpixels) be-
comes the bottleneck for larger models. We also notice the
importance of the final bilinear interpolation as a standard
practice: without it, the baseline model conducts patch clas-
sification which is a degeneration of the superpixel model,
and yields worse performance.

4. Method
The aforementioned pilot experiments motivate us to ex-

plore for better instantiation of the region proxy modeling.
In this section, we introduce the RegProxy model which
computes on region embeddings (as tokens) that serve as
computational proxies of specific learnable regions, and ex-
ploit Transformer [11, 41] to model region-wise context.

We first provide basic information about the Transformer
for region context modeling in Section 4.1. We introduce
the learning of region geometrics and the embedding of re-
gion features in Section 4.2. Finally, we review RegProxy
model from the system perspective and describe the train-
ing/inference as per-region prediction in Section 4.3.

4.1. Transformer as Region Encoder

Transformer is a type of sequence-to-sequence model,
which applies multi-layer self-attention on its computation
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Figure 3. Overview of our RegProxy approach. The sequence-to-sequence Transformer encoder computes on region embeddings in the
form of tokens, which serve as proxies of specific regions whose geometrics are described by the class-agnostic pixel-token association.
Notably, we model global context completely at region-level without any typical “feature map”. The region embedding and its geometrical
description are jointly learned using the proxy head. A single linear classifier is adopted for per-region prediction. The region class logits
are simply “painted” to the output plane according the corresponding region geometrics to yield final segmentation result.
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Figure 4. More details of the RegProxy model. (a) Illustration
of the proxy head, where + stands for element-wise addition and
ρ stands for reshape and rearrange of dimensions. (b) Describing
region geometrics by local pixel-region association.

primitives, i.e. tokens. In this work, we take full advantage
of the Transformer architecture to learn global context for
image by directly modeling inter-region relations using self-
attention. While the region learning and embedding will be
discussed in Section 4.2, in this section, we briefly introduce
the principle of the Transformer encoder.

Supposing N region embeddings has been produced, we
write the Transformer input as a sequence of tokens:

X0 =
[
x0
cls,x

0
0,x

0
1, . . . ,x

0
N−1

]> ∈ R(N+1)×D, (2)

where D is the embedding dimension and the class to-
ken xcls serves as a whole-image representation in image
recognition tasks. A Transformer encoder is composed of L
stacked layers, each of which consists of a multi-head self-
attention (MSA) block followed by a multi-layer perceptron
(MLP) block with two linear projection layers. Layer nor-
malization [2] and residual connections are applied for both
MSA and MLP blocks. Mathematically, we can write the
computation of layer l as

Al = MSA(LN (Xl−1)) +Xl−1,

Zl = MLP (LN (Al−1)) +Al−1,
(3)

where the output Zl is used as input of the next layer.
The Vision Transformer (ViT) inherits the exact architec-

ture from the Transformer in NLP [41], accompanied with
a stem module designed for vision tasks. In this work, we
follow the standard definition of the ViT models in [11,39].
Our RegProxy-{Ti/16, S/16, B/16, L/16} models are based
on vanilla ViTs which use patch embedding stems, while
our RegProxy-{R26+S/32, R50+L/32} models are based on
hybrid ViTs which use CNN stems. These ViTs vary from
total strides and numbers of layers, embed dimensions and
attention heads. The detailed specifications can be found in
Table 2 and are described in Section 5.

4.2. Learning Region Proxy

As depicted in Figure 3, our region proxy method comes
with two important components: the region feature and its
geometrics. In this section, we introduce the region feature
embedding and its geometrical description.

Describing Region Geometrics Learning and describing
region geometrics is not quite straightforward due to the
irregular shape and various scales. An intuitive idea is to
predict a binary mask for each region, either to be image-
sized or within a local area. However, we find neither of the
approaches practical for our sequence-to-sequence model-
ing. Predicting a full-sized mask for each token will be
computationally expensive, while predicting small sized lo-
cal masks cannot ensure the tessellation of regions, conse-
quently causing overlapping and non-predicted areas.

To this end, we propose a novel mechanism to describe
region geometrics by pixel-to-token association. We start
from an initial H × W grid where H × W = N . Each
token lays on a single cell which serves as a “seed” of its
corresponding region s. Note the cell itself is merely a to-
ken location indicator and has nothing to do with the actual
region geometrics. We build the pixel-to-token association
by assigning each pixel p = (u, v) to region s with a proba-
bility qs(p). It is unnecessary to apply this association glob-
ally. Instead, we associate pixel p only with tokens that lays
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in its neighborhood Np which satisfies∑
s∈Np

qs(p) = 1 (4)

This is illustrated in Figure 4b, as the pixel p is being
assigned to one of the 9 region seeds (marked with red
box) with in its surrounding neighborhood (in green box).
Mathematically, we can write the association as a class-
agnostic affinity map Q ∈ R(Hh)×(Ww)×|Np| at pixel-level
which describe the actual geometrics of all regions, where
(Hh) × (Ww) matches the size of the output segmenta-
tion map and (h,w) is the relative stride of the initial token
grid. Empirically, we set the neighborhood size to 3×3 and
|Np| = 9, which works well through-out all model sizes.

For an intuitive interpretation, the region is represented
by a “core” (i.e., token’s location on the initial H ×W cell)
and pixels surround it by probabilities. With the constraint
of Eq. 4, the entire set of probabilistic regions forms a tes-
sellation that covers the image plane with no overlaps and
no gaps. Meanwhile, the regions learn to be highly seman-
tically homogeneous even without explicit regularization,
which will be discussed in Section 5.3. These facts enable
us to segment image in a per-region prediction fashion.

Embedding Regions We jointly embed region features
and learn their geometrical description Q using the proxy
head depicted in Figure 4a. To embed region features into
tokens, we use a small part of the ViT backbone as token
head. We take the exact stem module in [11] along with
learnable position embeddings, which produces N tokens
of dimension D where N = H × W . The stem module
can be linear patch projection for vanilla ViT models, or
CNNs for hybrid models (see Section 5). For our vanilla
ViT models, we further apply the first M Transformer lay-
ers for better feature extraction.

To predict region geometrical description Q, we design
a lightweight affinity head that is highly integrated with
the ViT backbone, bringing negligible extra parameters and
computations. As illustrated in Figure 4a, we predict the
affinity map Q directly using features from the token head.
Specifically, the token feature T ∈ RN×D is reshaped to
T′ ∈ RH×W×D according to its initial layout, and then fed
into a convolution module. The convolution module fuses
local region-wise information and produces H×W×(9hw)
feature map, as we predict affinity vectors for all hw pixels
inside each cell in batches. The compact map is then “un-
packed” to the pixel-level format, which finally yields the
affinity map Q ∈ R(Hh)×(Ww)×9.

In details, the convolution module consists of one 3 × 3
depth-wise conv layer, followed by a 1× 1 conv layer. The
affinity map is activated by a Softmax to produce normal-
ized probabilities. Notably, we discover some interesting
facts about choices of the number of early layers M for
affinity prediction, which will be discussed in Section 5.3.

4.3. Segmentation by Per-Region Prediction

By our assumption, region embedding carries homoge-
neous semantics throughout the Transformer network. This
enables us to directly predict on regions instead of pixels as
opposed to conventional FCN-style models [6, 26, 27, 48],
hence significantly reduces the number of predictions. As
depicted in Figure 3, we apply a linear classifier on the last
layer output XL of the Transformer backbone, which we
find sufficient to yield strong performance. The linear clas-
sifier produces class logits for all tokens except xcls:

Y =
[
y0,y1, . . . ,yN−1

]> ∈ RN×K , (5)

where K is number of classes.
We can easily attain the pixel-level segmentation result

using the region geometrical description Q introduced in
Section 4.2. We simply “paint” the token logits to the cor-
responding regions as illustrated in Figure 3. In practice,
we paint in a per-pixel manner for efficient implementation.
For pixel p = (u, v), its class logits is calculated by

Y′[u, v] =
∑
s∈Np

y(s) · qs(p), (6)

where Y′ ∈ R(Hh)×(Ww)×K is the output logits map, y(s)
is the class logits of the token corresponding to region s. In
practice, we set (h,w) = (4, 4), yielding ×4 stride logits
map for RegProxy-x/16 models, and ×8 stride logits map
for RegProxy-x/32 models. Our model is trained end-to-
end using cross-entropy loss without class balance or hard
example mining. The output logits map is upsampled to
ground-truth/input size for supervision during training and
prediction during inference following the standard practice.

5. Experiments
Datasets and Metrics We study RegProxy on three pub-
lic datasets: ADE20K [54], Cityscapes [9] and Pascal Con-
text [29]. ADE20K is a challenging scene parsing dataset
with 150 classes, which contains 20 210 images for train-
ing and 2000 images for validation. Cityscapes is a high-
resolution street scene dataset with 19 classes. We train on
the 5000 fine annotated training images and test on 500 val-
idation images. Pascal Context contains 4996 training im-
ages and 5104 validation images with 60 classes (including
one background class). We report Intersection over Union
averaged over all classes (mIoU).

ViT Backbones We build our model on the original ViTs
as defined in [11,37]. We conduct extensive experiments on
six variants: vanilla ViTs with four specs (tiny, small, base
and large) and hybrid ViTs with two specs (small, large).
Vanilla ViTs use patch embedding as stem which partitions
an image into P × P patches, while each patch is flattened
and linearly projected to an embedding with D dimension.
For hybrid ViTs, the projection is applied to the features ex-
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backbone stride stem #layers dim #heads #params

Ti/16 16 patch embed. 12 192 3 6M
S/16 16 patch embed. 12 384 6 22M
B/16 16 patch embed. 12 768 12 86M
L/16 16 patch embed. 24 1024 16 307M

R26+S/32 32 ResNet[2, 2, 2, 2] 12 384 6 37M
R50+L/32 32 ResNet[3, 4, 6, 3] 24 1024 16 330M

Table 2. Configurations of ViT variants. (Top) Vanilla ViTs use
patch embedding. (Bottom) Hybrid ViTs use ResNet [17] stem.

tracted by a residual convolutional network [17], hence the
patch size is equivalent to CNN’s stride S. We set P = 16
for vanilla ViTs and S = 32 for hybrid ones. Namely, the
initial H×W token grid is of strides 16 and 32 respectively.
Larger stride generally impairs performance while requir-
ing less computation. The detailed configurations can be
found in Table 2. We use weights pre-trained on ImageNet-
21k [37] following recent works [26, 38, 53].

Implementation Details We implement our method us-
ing the public codebase mmsegmentation [8]. We in-
troduce minimum changes to its default settings that are
widely used by the community. For training, we use input
sizes of 512× 512, 768× 768 and 480× 480 for ADE20K,
Cityscapes and Pascal Context, respectively. We train our
“Large” model on ADE20K using a 640 × 640 crop fol-
lowing [26, 38, 48]. We use AdamW [28] optimizer with an
initial learning rate of 6 × 10−5, a weight decay of 10−2

and a “poly” learning rate scheduler [4] with power = 1.0
following [12, 26, 48]. We use a batch size of 16 and train
for 160k, 80k, 40k iterations on ADE20K, Cityscapes and
Pascal Context, respectively. We keep data augmentations
and all other training settings identical to default settings
in [8]. Training tricks such as hard example mining, auxil-
iary losses or class balance loss are not included.

For testing, we use the sliding window mode with win-
dow sizes matching the crop sizes for training. We use de-
fault window strides in [8]. We report both single scale re-
sults and multi-scale + flipping results with scaling factors
of {0.5, 0.75, 1.0, 1.25, 1.5, 1.75}.

5.1. Main Results

Baselines To setup the baseline, we simply append a lin-
ear classifier to the bare ViTs to produce per-patch predic-
tion Y ∈ RN×K . Then the patch-wise logits are reshaped
to their original 2D layout Y′ ∈ RH×W×K and upsampled
to image size for training and inference following the stan-
dard segmentation pipeline. It can be interpreted as a typical
segmentation model of stride 16. This setting is identical to
the “Linear” baseline in [38], and we produce similar re-
sults by our implementation. Since they have no structural
difference with the vanilla ViTs [11] for image classifica-
tion, we simply refer to the baseline models as ViT-x/16
where x ∈{Ti, S, M, L}.

method FLOPs #params. ADE20K (SS/MS) Cityscapes (SS/MS)

ViT-Ti/16 3.8G 5.7M 39.0 39.8 72.3 74.1
+Mask.T +1.0G +1.0M 38.1 (−0.9) 38.8 (−1.0) - -
+Ours +0.1G +0.1M 42.1 (+3.1) 43.1 (+3.3) 76.5 (+4.2) 77.7 (+3.6)

ViT-S/16 14.9G 22.0M 45.4 45.9 76.1 78.0
+Mask.T +4.2G +4.1M 45.3 (−0.1) 46.9 (+1.0) - -
+Ours +0.2G +0.2M 47.6 (+2.2) 48.4 (+2.5) 79.8 (+3.7) 81.5 (+3.5)

ViT-B/16 58.8G 86.6M 47.1 48.1 78.5 80.5
+UperNet +336G +57.6M 47.9 (+0.8) 49.5 (+1.4) 79.6 (+1.1) 80.9 (+0.4)

+Mask.T +17.1G +16.0M 48.7 (+1.6) 50.1 (+2.0) - 80.6 (+0.1)

+Ours +0.7G +0.7M 49.8 (+2.7) 50.5 (+2.4) 80.9 (+2.4) 82.2 (+1.7)

ViT-L/16 325.0G 304.3M 50.7 51.8 78.4 80.7
+Mask.T +44.5G +28.5M 51.8 (+1.1) 53.6 (+1.8) - 81.3 (+0.6)

+Ours +0.9G +1.8M 52.9 (+2.2) 53.4 (+1.6) 81.4 (+3.0) 82.7 (+2.0)

SETR [53] 325.1G 305.6M 48.1 48.8 77.9 -
+MLA +8.7G +4.0M 48.6 (+0.5) 50.3 (+1.5) 77.2 (−0.7) -
+PUP +97.5G +11.7M 48.6 (+0.5) 50.1 (+1.3) 79.3 (+1.4) -

* In green are the gaps of at least +2.0 mIoU.

Table 3. Compare different integrations of vision Transformer.
We report the results of the baseline, the state-of-the-art Mask
Transformer from Segmenter [38], UperNet [47] and our Reg-
Proxy. We also report numbers from SETR [53] for reference.

Results We compare different integrations of vision
Transformer for semantic segmentation. Table 3 summa-
rizes the results. Our RegProxy approach brings consis-
tent performance gains throughout all model sizes with
an evidential gap (2~3 mIoU on ADE20K and 2~4 mIoU
on Cityscapes), while costing negligible overhead (less
than 2 M parameters and 1 GFLOPs computation for the
largest model). It also significantly outperforms the Seg-
menter [38] which carries a heavy decoder. Moreover,
we notice the performance degeneration of Segmenter on
smaller models, which is not observed on our approach.
As a reference, we also report results from SETR [53]
which appends different convolutional decoders to the ViT-
L/16 backbone and the UperNet [47] results ran by us. By
these results, we may suggest that our region proxy mod-
eling is a more effective and efficient way to exploit vision
Transformers in semantic segmentation compared with the
encoder-decoder scheme.

5.2. Comparison across Architectures

ADE20K We conduct comprehensive comparisons with
the state-of-the-art methods on ADE20K. Results in Fig-
ure 2 show that the RegProxy is among the most compet-
itive models in terms of performance-efficiency trade-off.
RegProxy consistently outperforms the state-of-the-art Seg-
menter [38] by a large margin, which uses the same ViT
backbones and pre-training as ours. It also shows significant
superiority compared with recent SegFormer [38], Swin-
Transformer [26] and SETR [53]. Table 4 gives a more
detailed comparison with respect to parameters, GFLOPs,
inference speed and performance. The smallest RegProxy-
Ti/16 achieves 42.1 mIoU with only 5.8 M parameters and
3.9 GFLOPs, and runs at a speed of 38.9 FPS, which out-
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Figure 5. Qualitative comparison on ADE20K and Cityscapes. Our model produces much more accurate contour (in white box)
compared to Segmenter [38] and captures more consistent context (in yellow box) compared to DeepLabV3+ [6]. Best viewed zoom in.

method backbone FLOPs #params. mIoU FPS

FCN [27] MobileNetV2 39.6G 9.8M 19.7 / - 64.4
D.LabV3+ [6] MobileNetV2 69.4G 15.4M 34.0 / - 43.1
SegFormer [48] MiT-B0 8.4G 3.8M 37.4 / 38.0 50.5
Segmenter [38] ViT-Ti/16 4.9G 6.7M 38.1 / 38.8 -
RegProxy ViT-Ti/16 3.9G 5.8M 42.1 / 43.1 38.9

OCRNet [50] HRNet-W18 55G 12M 39.3 / 40.8 18.9
SegFormer [48] MiT-B1 16G 14M 42.2 / 43.1 47.7
Segmenter [38] ViT-S/16 19G 26M 45.3 / 46.9 29.8
MaskFormer [7] Swin-T 55G 42M 46.7 / 48.8 22.1
RegProxy ViT-S/16 15G 22M 47.6 / 48.5 32.1
RegProxy R26+ViT-S/32 16G 36M 47.8 / 49.1 28.5

OCRNet [50] HRNet-W48 165G 71M 43.2 / 44.9 17.0
D.LabV3+ [6] ResNet-101 255G 63M 45.5 / 46.4 14.1
D.LabV3+ [6] ResNeSt-200 345G 88M - / 48.4 -
Segmenter [38] ViT-B/16 76G 103M 48.7 / 50.1 14.6
RegProxy ViT-B/16 59G 87M 49.8 / 50.5 20.1

DPT [32] DPT-Hybrid - 123M - 49.0 -
SETR [53] ViT-L/16 422G 318M 48.6 / 50.1 4.5
SegFormer [48] MiT-B5 183G 85M 51.0 / 51.8 9.8
Segmenter [38] ViT-L/16 370G 333M 51.8 / 53.6 -
RegProxy R50+ViT-L/32 82G 323M 51.0 / 51.7 12.7
RegProxy ViT-L/16 326G 306M 52.9 / 53.4 6.6

* All models in the last group except DPT use a larger 640× 640 crop.

Table 4. Comparison to state-of-the-art methods on ADE20K
val split. We report both single/multi-scale results. We group the
methods based on model capacities and computational costs for
fine-grained comparison. Cross group comparison is welcomed.

performs the best efficient models by large margins (greater
than 4.0 mIoU). Our small model RegProxy-S/16 has sur-
passed the heaviest CNN model (DeepLabV3+ w/ ResNeSt-
200) using only 25% parameters and 4% computation. The
medium sized RegProxy-B/16 significantly outperforms all
CNN models with much less computation. The largest
RegProxy-L/16 achieves 52.9 mIoU without multi-scale in-
ference, outperforms Segmenter [38] by 1.1 mIoU. The
hybrid models also achieve notable results even with a
large-stride backbone. The RegProxy-[R26+S/32] achieves
47.8/49.1 mIoU, and the RegProxy-[R50+L/32] achieves
a comparable 51.0/51.7 mIoU among jumbo Transformer-
based models using only 1/4 computations. And gener-

method backbone crop FLOPs #params. mIoU

D.LabV3+ [6] ResNet-18 7692 992G 12M 76.3 / 77.9
OCRNet [50] HRNet-W18 full 424G 12M 78.6 / 80.5
SegFormer [48] MiT-B0 7682 52G 4M 75.3 / -
SegFormer [48] MiT-B1 10242 244G 14M 78.5 / 80.0
RegProxy ViT-Ti/16 7682 69G 6M 76.5 / 77.7
RegProxy ViT-S/16 7682 270G 23M 79.8 / 81.5

OCRNet [50] HRNet-W48 full 1297G 70M 80.7 / 81.9
Auto-D.Lab [25] NAS-F48 7692 - 44M - / 80.4
Axial-D.Lab [42] Axial-D.Lab-XL - 2447G 173M - / 81.1
D.LabV3+ [6] ResNeSt-200 full - 88M - / 82.7
SETR [53] ViT-B/16 7682 - 98M 79.5 / -
SETR [53] ViT-L/16 7682 - 318M 79.3 / 82.2
Segmenter [38] ViT-B/16 7682 1344G 103M - / 80.6
Segmenter [38] ViT-L/16 7682 - 337M 79.1 / 81.3
RegProxy ViT-B/16 7682 1064G 88M 81.0 / 82.2
RegProxy ViT-L/16 7682 - 307M 81.4 / 82.7

Table 5. Comparison to state-of-the-art methods on Cityscapes
val split. The “full” crop indicates the whole image inference,
while others indicate the sliding window protocol.

ously, our RegProxy runs at a significantly higher frame rate
among different sized models thanks to the concise design.

Cityscapes and Pascal Context In Table 5 we compare
the state-of-the-art methods on Cityscapes. We observe
similar results as on ADE20K. Our RegProxy-{Ti/16, S/16}
outperform their counterparts with a ~1.2 mIoU margin.
Our RegProxy-{B/16, L/16} also achieve state-of-the-art
performances compared to larger models. Notably, they
outperform SETR [53] and Segmenter [38] by ~2 mIoU us-
ing identical backbones. We notice that on Cityscapes, the
performance gained from model capacities tends to saturate
on larger models. RegProxy-L/16 is only 0.4 mIoU higher
than RegProxy-B/16 (the gap on ADE20K is 2.2 mIoU us-
ing both 512 × 512 crops). This is also observed on
SETR [53] and Segmenter [38]. We hypothesize that this
is due to the simpler context of Cityscapes. We report re-
sults on Pascal Context in Table 6. RegProxy-L/16 achieves
58.4 mIoU and significantly outperforms the state-of-the-art
CNN models, and achieves comparable performance with
Segmenter [38] using less resources. We present qualitative
comparison in Figure 5 and supplemental material.
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method backbone FLOPs #params. mIoU

DeepLabV3+ [6] ResNet-101 224G 63M 47.2 / 48.3
OCRNet [50] HRNet-W48 144G 71M - / 56.2
SETR [53] ViT-L/16 238G 318M 54.9 / 55.8
Segmenter [38] ViT-B/16 67G 102M - / 55.0
Segmenter [38] ViT-L/16 210G 333M 58.1 / 59.0
RegProxy ViT-B/16 52G 87M 55.2 / 55.4
RegProxy ViT-L/16 183G 305M 58.4 / 58.8

Table 6. Comparison to state-of-the-art methods on Pascal
Context val split.

5.3. Analysis and Ablation Study

In this section, we present the most significant analysis
and ablation studies. Due to limited space, we present more
of them in the supplemental material.
Region Semantics We analyze the semantical homogene-
ity of regions, which is described using “region entropy”:
we calculate the per-pixel category histogram within every
regions using Eq. 1 and compute their entropies [35]. We
analyze the distribution of region entropies on the entire
ADE20K val split, with regard to three sources: regular
cell used by conventional segmentation model such as [38],
superpixels used in our pilot study, and learned regions from
our RegProxy approach. The results are shown in Figure 6.
Although we do not apply any explicit regularization, the
learned regions still exhibit highly compact semantics com-
pared to regular cells and superpixels. In the right part of
Figure 6, we visualize the leaned probabilistic regions of a
number of tokens on tiny crops of Cityscapes validation im-
ages. Note the regions are class-agnostic (as association of
pixels and nearby tokens) and leaned from shallow features.
However, they still capture fine-grained boundaries of high
level classes. This suggest that the computation primitives
in our model (i.e., tokens) carries more uniformed seman-
tics compared to CNNs or other vision Transformer models
that compute on structured features, which probably leads
to easier optimization hence the better performances.
Per-Class Performance In Figure 7, we analyze per-class
performance on Cityscapes. Compared to Transformer-
based Segmenter [38], DeepLabV3+ [6] is good at handling
small/thin classes (e.g., traffic sign, pole) thanks to its small
stride, yet fails more on confusing classes (e.g., bus, wall)
which require wider context. Our region proxy modeling
possesses both of their merits and consistently outperforms
or being comparable to both of the methods on all classes.

RegProxy-L/16
RegProxy-L/16

regular grid

superpixel

Figure 6. (Left) Distribution of region entropies estimated by
kernel density estimation (KDE). Regions with entropy of 0 are
ignored. (Right) Geometrics of the class-agnostic regions and
its corresponding tokens (marked using white cell).
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Figure 7. Per-class performance on Cityscapes. We report rel-
ative mIoU of DeepLabV3+ and our RegProxy-L/16 model com-
pared with Segmenter-L/16 [38].

This is credited to the early region design that captures fine
regions in advance and models region-wise relations after-
wards, hence learns global context without loss of details.
Depth of Token Head As illustrated in Figure 4a, we use
the first M Transformer layers in the token head. M is set
to 0 for our hybrid models since the convolutional stem is
strong enough for region learning and embedding. Here we
investigate the M setting for vanilla ViT based models. The
results are displayed in Table 7. We find that using early
layers (e.g., 3~5 layers) generously works well, while set-
ting M to 0 (a too shallow token head) will harm the per-
formance. Interestingly and importantly, we also find that
a too deep token head will cause a significant performance
drop. To the extreme, setting M = 12 (uses all Transformer
layers, the proxy head degenerates to a typical decoder) will
yield a performance no better than the baseline’s. This in-
dicates the importance of the Transformer layers after the
proxy head, which model context for learned regions.

depth M 0 3 4 5 6 9 12 baseline

ADE20K 46.3 47.1 47.0 47.2 46.8 46.6 45.7 45.0
Cityscapes 76.8 79.0 78.8 78.2 77.7 76.1 75.2 75.4

Table 7. Ablation on depth of token features used for region
learning. We report single scale mIoU results of RegProxy-S/16
on ADE20K and Cityscapes using half of the training schedule.

6. Conclusion
In this paper, we present region proxy, a novel and effi-

cient modeling of semantic segmentation. It interprets the
image as a tessellation of learnable regions, each of which
has flexible geometrics and carries homogeneous semantics.
We conduct semantic segmentation by per-region predic-
tion on top of region embeddings, which are encoded us-
ing Transformer in a sequence-to-sequence fashion. With-
out a decoder, the RegProxy segmentation models still ex-
hibit the most competitive performance-efficiently trade-off
among its dense prediction counterparts. We hope our re-
gion proxy modeling provide an inspiring perspective of ef-
ficient image representation for semantic segmentation and
other vision tasks.
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