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Figure 1. Image samples generated by our StyleSwin on FFHQ 1024× 1024 and LSUN Church 256× 256 respectively.

Abstract

Despite the tantalizing success in a broad of vision tasks,
transformers have not yet demonstrated on-par ability as
ConvNets in high-resolution image generative modeling. In
this paper, we seek to explore using pure transformers to
build a generative adversarial network for high-resolution
image synthesis. To this end, we believe that local atten-
tion is crucial to strike the balance between computational
efficiency and modeling capacity. Hence, the proposed gen-
erator adopts Swin transformer in a style-based architec-
ture. To achieve a larger receptive field, we propose double
attention which simultaneously leverages the context of the
local and the shifted windows, leading to improved gener-
ation quality. Moreover, we show that offering the knowl-
edge of the absolute position that has been lost in window-
based transformers greatly benefits the generation quality.
The proposed StyleSwin is scalable to high resolutions, with
both the coarse geometry and fine structures benefit from
the strong expressivity of transformers. However, block-
ing artifacts occur during high-resolution synthesis because
performing the local attention in a block-wise manner may
break the spatial coherency. To solve this, we empirically
investigate various solutions, among which we find that em-
ploying a wavelet discriminator to examine the spectral
discrepancy effectively suppresses the artifacts. Extensive
experiments show the superiority over prior transformer-
based GANs, especially on high resolutions, e.g., 1024 ×

*Author did this work during his internship at Microsoft Research Asia.
†Corresponding author.

1024. The StyleSwin, without complex training strategies,
excels over StyleGAN on CelebA-HQ 1024, and achieves
on-par performance on FFHQ-1024, proving the promise
of using transformers for high-resolution image genera-
tion. The code and pretrained models are available at
https://github.com/microsoft/StyleSwin.

1. Introduction
The state of image generative modeling has seen dra-

matic advancement in recent years, among which genera-
tive adversarial networks [14, 41] (GANs) offer arguably
the most compelling quality on synthesizing high-resolution
images. While early attempts focus on stabilizing the train-
ing dynamics via proper regularization [15,16,36,46,47] or
adversarial loss designs [2, 25, 39, 45], remarkable perfor-
mance leaps in recent prominent works mainly attribute to
the architectural modifications that aim for stronger mod-
eling capacity, such as adopting self-attention [66], aggres-
sive model scaling [4], or style-based generators [29, 30].
Recently, drawn by the broad success of transformers in dis-
criminative models [11, 32, 43], a few works [24, 37, 62, 67]
attempt to use pure transformers to build generative net-
works in the hope that the increased expressivity and the
ability to model long-range dependencies can benefit the
generation of complex images, yet high-quality image gen-
eration, especially on high resolutions, remains challenging.

This paper aims to explore key ingredients when us-
ing transformers to constitute a competitive GAN for high-
resolution image generation. The first obstacle is to tame
the quadratic computational cost so that the network is scal-
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able to high resolutions, e.g., 1024 × 1024. We propose to
leverage Swin transformers [43] as the basic building block
since the window-based local attention strikes a balance be-
tween computational efficiency and modeling capacity. As
such, we could take advantage of the increased expressivity
to characterize all the image scales, as opposed to reduc-
ing to point-wise multi-layer perceptrons (MLP) for higher
scales [67], and the synthesis is scalable to high resolution,
e.g., 1024×1024, with delicate details. Besides, the local at-
tention introduces locality inductive bias so there is no need
for the generator to relearn the regularity of images from
scratch. These merits make a simple transformer network
substantially outperform the convolutional baseline.

In order to compete with the state of the arts, we further
propose three instrumental architectural adaptations. First,
we strengthen the generative model capacity by employing
the local attention in a style-based architecture [29], dur-
ing which we empirically compare various style injection
approaches for our transformer GAN. Second, we propose
double attention in order to enlarge the limited receptive
field brought by the local attention, where each layer attends
to both the local and the shifted windows, effectively im-
proving the generator capacity without much computational
overhead. Moreover, we notice that Conv-based GANs im-
plicitly utilize zero padding to infer the absolute positions, a
crucial clue for generation, yet such feature is missing in the
window-based transformers. We propose to fix this by in-
troducing sinusoidal positional encoding [52] to each layer
such that absolute positions can be leveraged for image syn-
thesis. Equipped with the above techniques, the proposed
network, dubbed as StyleSwin, starts to show advantageous
generation quality on 256× 256 resolution.

Nonetheless, we observe blocking artifacts when syn-
thesizing high-resolution images. We conjecture that these
disturbing artifacts arise because computing the attention
independently in a block-wise manner breaks the spatial
coherency. That is, while proven successful in discrimina-
tive tasks [43, 56], the block-wise attention requires special
treatment when applied in synthesis networks. To tackle
these blocking artifacts, we empirically investigate various
solutions, among which we find that a wavelet discrimina-
tor [13] examining the artifacts in spectral domain could
effectively suppress the artifacts, making our transformer-
based GAN yield visually pleasing outputs.

The proposed StyleSwin, achieves state-of-the-art quality
on multiple established benchmarks, e.g., FFHQ, CelebA-
HQ, and LSUN Church. In particular, our approach shows
compelling quality on high-resolution image synthesis (Fig-
ure 1), achieving competitive quantitative performance rel-
ative to the leading ConvNet-based methods without com-
plex training strategies. On CelebA-HQ 1024, our approach
achieves an FID of 4.43, outperforming all the prior works
including StyleGAN [29]; whereas on FFHQ-1024, we ob-

tain an FID of 5.07, approaching the performance of Style-
GAN2 [30].

2. Related Work
High-resolution image generation. Image generative
modeling has improved rapidly in the past decade [14, 19,
34, 35, 41, 55]. Among various solutions, generative adver-
sarial networks (GANs) offer competitive generation qual-
ity. While early methods [2, 47, 49] focus on stabilizing the
adversarial training, recent prominent works [4,28–30] rely
on designing architectures with enhanced capacity, which
considerably improves generation quality. However, con-
temporary GAN-based methods adopt convolutional back-
bones which are now deemed to be inferior to transformers
in terms of modeling capacity. In this paper, we are inter-
ested in applying the emerging vision transformers to GANs
for high-resolution image generation.
Vision transformers. Recent success of transformers [5,
57] in NLP tasks inspires the research of vision transforms.
The seminal work ViT [11] proposes a pure transformer-
based architecture for image classification and demonstrates
the great potential of transformers for vision tasks. Later,
transformers dominate the benchmarks in a broad of dis-
criminative tasks [10,17,43,53,56,59,60,64]. However, the
self-attention in transformer blocks brings quadratic com-
putational complexity, which limits its application for high-
resolution inputs. A few recent works [10, 43, 56] tackle
this problem by proposing to compute self-attention in lo-
cal windows, so that linear computational complexity can
be achieved. Moreover, the hierarchical architecture makes
them suitable to serve as general purpose backbones.
Transformer-based GANs. Recently, the research com-
munity begins to explore using transformers for generative
tasks in the hope that the increased expressivity can benefit
the generation of complex images. One natural way is to
use transformers to synthesize pixels in an auto-regressive
manner [6, 12], but the slow inference speed limits their
practical usage. Recently a few works [24, 37, 62, 67] at-
tempt to propose transformer-based GANs, yet most of
these methods only support the synthesis up to 256 × 256
resolution. Notably, the HiT [67] successfully generates
1024 × 1024 images at the cost of reducing to MLPs in
its high-resolution stages, hence unable to synthesize high-
fidelity details as the Conv-based counterpart [29]. In com-
parison, our StyleSwin can synthesize fine structures using
transformers, leading to comparable quality as the leading
ConvNets on high-resolution synthesis.

3. Method
3.1. Transformer-based GAN architecture

We start from a simple generator architecture, as shown
in Figure 2(a), which receives a latent variable z ∼ N (0, I)
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Figure 2. The architectures we investigate. (a) The baseline architecture is comprised of a series of transformer blocks hierarchically. (b)
The proposed StyleSwin adopts style-based architecture, where the style codes derived from the latent code z modulate the feature maps
of transformer blocks through style injection. (c) The proposed double attention enlarges the receptive field of transformer blocks by using
split heads attending to the local and the shifted windows respectively.

as input and gradually upsamples the feature maps through
a cascade of transformer blocks.

Due to the quadratic computational complexity, it is un-
affordable to compute full-attention on high-resolution fea-
ture maps. We believe that local attention is a good way
to achieve trade-off between computational efficiency and
modeling capacity. We adopt Swin transformer [43] as
the basic building block which computes multi-head self-
attention (MSA) [57] locally in non-overlapping windows.
To advocate the information interaction across adjacent
windows, Swin transformer uses shifted window partition
in alternative blocks. Specifically, given the input feature
map xl ∈ RH×W×C of layer l, the consecutive Swin blocks
operate as follows:

x̂l = W-MSA(LN(xl)) + xl

xl+1 = MLP(LN(x̂l)) + x̂l

}
regular window,

x̂l+1 = SW-MSA(LN(xl+1)) + xl+1

xl+2 = MLP(LN(x̂l+1)) + x̂l+1

}
shifted window,

(1)

where W-MSA and SW-MSA denote the window-based

multi-head self-attention under the regular and shifted win-
dow partitioning respectively, and LN stands for layer nor-
malization. Since such block-wise attention induces lin-
ear computational complexity relative to the image size, the
network is scalable to the high-resolution generation where
the fine structures can be modeled by these capable trans-
formers as well.

Since the discriminator severely affects the stability of
adversarial training, we opt to use a Conv-based discrim-
inator directly from [29]. In our experiment, we find that
simply replacing the convolution with transformer blocks
under this baseline architecture yields more stabilized train-
ing due to the improved model capacity. However, such
naive architecture cannot make our transformer-based GAN
compete with the state of the arts, so we make further stud-
ies which we introduce as follows.

Style injection. We first strengthen the model capability by
adapting the generator to a style-based architecture [29, 30]
as shown in Figure 2(b). We learn a non-linear mapping
f : Z → W to map the latent code z from Z space to W
space, which specifies the styles that are injected into the
main synthesis network. We investigate the following style
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Style injection methods FID ↓

Baseline 15.03

AdaIN 6.34
AdaLN 6.95
AdaBN > 100

AdaRMSNorm 7.43

Modulated MLP 7.09
Cross attention 6.59

Table 1. Comparison of different style injection methods on
FFHQ-256. The style injection methods considerably improve the
FID, among which the AdaIN leads to the best generation quality.

injection approaches:
• AdaNorm modulates the statistics (i.e., mean and vari-

ance) of feature maps after normalization. We study mul-
tiple normalization variants, including instance normal-
ization (IN) [54], batch normalization (BN) [21], layer
normalization (LN) [3] and the recently proposed RM-
Snorm [65]. Since the RMSNorm removes the mean-
centering of LN, we only predict the variance from the
W code.

• Modulated MLP: Instead of modulating feature maps, one
can also modulate the weights of linear layers. Specif-
ically, we rescale the channel-wise weight magnitude
of the feed-forward network (FFN) within transformer
blocks. According to [30], such style injection admits
faster speed than AdaNorm.

• Cross-attention: Motivated by the decoder trans-
former [57], we explore a transformer-specific style injec-
tion in which the transformers additionally attend to the
style tokens derived from the W space. The effectiveness
of this cross-attention is also validated in [67].
Table 1 shows that all the above style injection methods

significantly boost the generative modeling capacity except
that the training with AdaBN does not converge because the
batch size is compromised for high-resolution synthesis. In
comparison, AdaNorm brings more sufficient style injection
possibly because the network could take advantage of the
style information twice — in either the attention block and
the FFN, whereas the modulated MLP and cross-attention
make use of the style information once. We did not fur-
ther study the hybrid of modulated MLP and cross-attention
due to efficiency considerations. Furthermore, compared
to AdaBN and AdaLN, AdaIN offers finer and more suf-
ficient feature modulation as feature maps are normalized
and modulated independently, so we choose AdaIN by de-
fault for our following experiments.

Double attention. Using local attention, nonetheless, sac-
rifices the ability to model long-range dependencies, which
is pivotal to capture geometry [4, 66]. Let the window size

used by the Swin block be κ × κ, then due to the shifted
window strategy, the receptive field increases by κ in each
dimension using one more Swin block. Suppose we use
Swin blocks to process a 64 × 64 feature map and we by
default choose κ = 8, then it takes 64/κ = 8 transformer
blocks to span over the entire feature map.

In order to achieve an enlarged receptive field, we pro-
pose double attention which allows a single transformer
block to simultaneously attend to the context of the local
and shifted windows. As illustrated in Figure 2(c), we split
h attention heads into two groups: the first half of heads per-
form the regular window attention whereas the second half
compute the shifted window attention, both of whose results
are further concatenated to form the output. Specifically, we
denote with xw and xsw the non-overlapping patches under
the regular and shifted window partitioning respectively, i.e.
xw,xsw ∈ R

HW
κ2 ×κ×κ×C , then the double attention is for-

mulated as,

Double-Attention = Concat(head1, ..., headh)WO (2)

where WO ∈ RC×C is the projection matrix used to mix
the heads to output. The attention heads in Equation 2 can
be computed as:

headi=

{
Attn(xwW

Q
i ,xwW

K
i ,xwW

V
i ) i≤

⌊
h
2

⌋
Attn(xswW

Q
i ,xswW

K
i ,xswW

V
i ) i>

⌊
h
2

⌋
(3)

where WQ
i ,WK

i ,W V
i ∈ RC×(C/h) are query, key and

value projection matrix for i-th head respectively. One can
derive that the receptive field of each dimension increases
by 2.5κ with one additional double attention block, which
allows capturing larger context more efficiently. Still, for a
64×64 input, it now takes 4 transformer blocks to cover the
entire feature map.

Local-global positional encoding. Relative positional en-
coding (RPE) adopted by the default Swin blocks encodes
the relative position of pixels and has proven crucial for
discriminative tasks [9, 43]. Theoretically, a multi-head lo-
cal attention layer with RPE can express any convolutional
layer of window-sized kernels [8, 38]. However, when sub-
stituting the convolutional layers with transformers that use
RPE, one thing is rarely noticed: ConvNets could infer the
absolute positions by leveraging the clues from the zero
paddings [22,31] yet such feature is missing in Swin blocks
using RPE. On the other hand, it is essential to let the gener-
ator be aware of the absolute positions because the synthesis
of a specific component, e.g., mouth, highly depends on its
spatial coordinate [1, 40].

In view of this, we propose to introduce sinusoidal po-
sition encoding [7, 57, 61] (SPE) on each scale, as shown
in Figure 2(b). Specifically, after the scale upsampling, the

11307



Figure 3. Blocking artifacts become obvious on 1024× 1024 res-
olution. These artifacts correlate with the window size of local
attentions.

feature maps are added with the following encoding:

[sin(ω0i), cos(ω0i), ···︸ ︷︷ ︸
horizontal dimension

, sin(ω0j), cos(ω0j), ···︸ ︷︷ ︸
vertical dimension

]∈RC , (4)

where and ωk = 1/100002k and (i, j) denotes the 2D lo-
cation. We use SPE rather than learnable absolute posi-
tional encoding [11] because SPE admits translation invari-
ance [58]. In practice, we make the best of RPE and SPE
by employing them altogether: the RPE applied within each
transformer block offers the relative positions within the lo-
cal context, whereas the SPE introduced on each scale in-
forms the global position.

3.2. Blocking artifact in high-resolution synthesis

While achieving state-of-the-art quality on synthesizing
256 × 256 images with the above architecture, directly
applying it for higher resolution synthesis, e.g., 1024 ×
1024, brings blocking artifacts as shown in Figure 3, which
severely affects the perceptual quality. Note that these are
by no means the checkboard artifacts caused by the trans-
posed convolution [48] as we use bilinear upsampling fol-
lowed by anti-aliasing filters as [29].

We conjecture that the blocking artifacts are caused by
the transformers. To verify this, we remove the attention
operators starting from 64 × 64 and employ only MLPs to
characterize the high-frequency details. This time we ob-
tain artifact-free results. To be further, we find that these
artifacts exhibit periodic patterns with a strong correlation
with the window size of local attention. Hence, we are cer-
tain it is the window-wise processing that breaks the spatial
coherency and causes the blocking artifacts. To simplify,
one can consider the 1D case in Figure 4, where attention
is computed locally in strided windows. For a continuous
signal, the window-wise local attention is likely to produce
a discontiguous output because the values within the same

(a) (b)

Figure 4. A 1D example illustrates that the window-wise local at-
tention causes blocking artifacts. (a) Input continuous signal along
with partitioning windows. (b) Output discontinuous signal af-
ter window-wise attention. For simplicity, we adopt one attention
head with random projection matrices.

window tend to become uniform after the softmax opera-
tion, so the outputs of neighboring windows appear rather
distinct. The 2D case is analogous to the JPEG compression
artifacts caused by the block-wise encoding [42].

3.3. Artifact suppression

In the next, we discuss a few solutions to suppress the
blocking artifacts.

Artifact-free generator. We first attempt to reduce artifacts
by improving the generator.
• Token sharing. Blocking artifacts arise because there

is an abrupt change of keys and values used by the at-
tention computing across distinct windows, so we pro-
pose to make windows have shared tokens in a way like
HaloNet [56]. However, artifacts are still noticeable since
there always exist tokens exclusive to specific windows.

• Theoretically, sliding window attention [20] should lead
to artifact-free results. Note that training the generator
with sliding attention is too costly so we only adopt the
sliding window for inference.

• Reduce to MLPs on fine scales. Just as [67], one can re-
move self-attention and purely rely on point-wise MLPs
for fine structure synthesis at the cost of sacrificing the
ability to model high-frequency details.

Artifact-suppression discriminator. Indeed, we observe
blocking artifacts in the early training phase on 256 × 256
resolution, but they gradually fade out as training precedes.
In other words, although the window-based attention is
prone to produce artifacts, the generator does have the capa-
bility to offer an artifact-free solution. The artifacts plague
the high-resolution synthesis because the discriminator fails
to examine the high-frequency details. This enlightens us to
resort to stronger discriminators for artifact suppression.

• Patch discriminator [23] possesses limited receptive field
and can be employed to specifically penalize the local
structures. Experiments show partial suppression of the
blocking artifacts using a patch discriminator.
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(a) (b) (c)

Figure 5. The Fourier spectrum of blocking artifacts. (a) Images
with blocking artifacts. (b) The artifacts with periodic patterns
can be clearly distinguished in the spectrum. (c) The spectrum of
artifact-free images derived from the sliding window inference.
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Figure 6. The wavelet discriminator suppresses the artifacts by
examining the wavelet spectrum of the multi-scaled input.

• Total variation annealing. To advocate smooth outputs,
we apply a large total variation loss at the beginning of
training, aiming to suppress the network’s tendency to ar-
tifacts. The loss weight is then linearly decayed to zero
towards the end of training. Though artifacts can be com-
pletely removed, such handcrafted constraint favors over-
smoothed results and inevitably affects the distribution
matching for high-frequency details.

• Wavelet discriminator. As shown in Figure 5, the periodic
artifact pattern can be easily distinguished in the spec-
tral domain. Inspired by this, we resort to a wavelet dis-
criminator [13] to complement our spatial discriminator
and we illustrate its architecture in Figure 6. The dis-
criminator hierarchically downsamples the input image
and on each scale examines the frequency discrepancy

Solutions FID ↓ Remove artifacts?

Window-based attention 8.39 ✗

Sliding window inference 12.08 ✓

Token sharing 8.95 ✗

MLPs after 64× 64 12.69 ✓

Patch discriminator 7.73 ✗

Total variation annealing 12.79 ✓

Wavelet discriminator 5.07 ✓

Table 2. Comparison of the artifact suppression solutions on
FFHQ-1024.

relative to real images after discrete wavelet decompo-
sition. Such a wavelet discriminator works remarkably
well in combating the blocking artifacts. Meanwhile, it
does not bring any side-effects on distribution matching,
effectively guiding the generator to produce rich details.
Table 2 compares the above artifact suppression meth-

ods, showing that there are four approaches that could to-
tally remove the visual artifacts. However, sliding window
inference suffers from the train-test gap, whereas MLPs fail
to synthesize fine details on high-resolution stages, both of
them leading to a higher FID score. On the other hand, the
total variation with annealing still deteriorates the FID. In
comparison, the wavelet-discriminator achieves the lowest
FID score and yields the most visually pleasing results.

4. Experiments

4.1. Experiment setup

Datasets. We validate our StyleSwin on the following
datasets: CelebA-HQ [27], LSUN Church [63], and FFHQ
[29]. CelebA-HQ is a high-quality version of CelebA
dataset [44] which contains 30,000 human face images of
1024 × 1024 resolution. FFHQ [29] is a commonly used
dataset for high-resolution image generation. It contains
70,000 high-quality human face images with more varia-
tion of age, ethnicity and background, and has better cov-
erage of accessories such as eyeglasses, sunglasses, hats,
etc. We synthesize images on FFHQ and CelebA-HQ on
either 256 × 256 and 1024 × 1024 resolutions. LSUN
Church [63] contains around 126,000 church images in di-
verse architecture styles, on which we conduct experiments
with 256× 256 resolution.

Evaluation protocol. We adopt Fréchet Inception Distance
(FID) [18] as the quantitative metric, which measures the
distribution discrepancy between generated images and real
ones. Lower FID scores indicate better generation quality.
For FFHQ [29] and LSUN Church [63] datasets, we ran-
domly sample 50,000 images from the original datasets as
validation sets and calculate FID between the validation sets
and 50,000 generated images. For CelebA-HQ [27], we cal-
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Methods FFHQ CelebA-HQ LSUN Church

StyleGAN2 [30] 3.62∗ - 3.86
PG-GAN [27] - 8.03 6.42

U-Net GAN [50] 7.63 - -
INR-GAN [51] 9.57 - 5.09
MSG-GAN [26] - - 5.20

CIPS [1] 4.38 - 2.92
TransGAN [24] - 9.60∗ 8.94
VQGAN [12] 11.40 10.70 -

HiT-B [67] 2.95∗ 3.39∗ -
StyleSwin 2.81∗ 3.25∗ 2.95

Table 3. Comparison of state-of-the-art unconditional image gen-
eration methods on FFHQ, CelebA-HQ and LSUN Church of
256 × 256 resolution in terms of FID score (lower is better). The
subscript (∗) indicates that bCR is applied during training.

culated the FID between 30,000 generated images and all
the training samples.

4.2. Implementation details

During training we use Adam solver [33] with β1 = 0.0,
β2 = 0.99. Following TTUR [18], we set imbalanced learn-
ing rates, 5e−5 and 2e−4, for the generator and discrimina-
tor respectively. We train our model using the standard non-
saturating GAN loss with R1 gradient penalty [30] and sta-
bilize the adversarial training by applying spectral normal-
ization [47] on the discriminator. By default, we report all
the results with the wavelet discriminator as shown in Fig-
ure 6. Using 8 32GB V100 GPUs, we are able to fit 32 im-
ages as one training batch for the training on 256× 256 res-
olution and the batch size reduces to 16 on 1024×1024 res-
olution. For fair comparison with prior works, we report the
FID with balanced consistency regularization (bCR) [68] on
the FFHQ-256 and CelebA-HQ 256 datasets with the loss
weight λreal = λfake = 10. Similar to [67], we do not ob-
serve performance gain using bCR on higher resolutions.
Note that we do not adopt complex training strategies, such
as path length and mixing regularizations [29], as we wish
to conduct studies on neat network architectures.

4.3. Main results

Quantitative results. We compare with state-of-the-art
Conv-based GANs as well as the recent transformer-based
methods. As shown in Table 3, our StyleSwin achieves
state-of-the-art FID scores on all the 256 × 256 synthesis.
In particular, on both FFHQ and LSUN Church datasets,
StyleSwin outperforms StyleGAN2 [30]. Besides the im-
pressive results on resolution 256 × 256, the proposed
StyleSwin shows a strong capability on high-resolution im-
age generation. As shown in Table 4, we evaluate models on
FFHQ and CelebA-HQ on the resolution of 1024 × 1024,

Methods FFHQ-1024 CelebA-HQ 1024

StyleGAN1 [30] [29] 4.41 5.06
COCO-GAN - 9.49
PG-GAN [27] - 7.30

MSG-GAN [26] 5.80 6.37
INR-GAN [51] 16.32 -

CIPS [1] 10.07 -
HiT-B [67] 6.37 8.83
StyleSwin 5.07 4.43

Table 4. Comparison of state-of-the-art unconditional image gen-
eration methods on FFHQ and CelebA-HQ of resolution 1024 ×
1024 in terms of FID score (lower is better). 1We report the FID
score of StyleGAN2 on FFHQ-1024 and that of StyleGAN on
CelebA-HQ 1024. For fair comparison, we report results of Style-
GAN2 without style-mixing and path regularization.

Model Configuration FID ↓

A. Swin baseline 15.03
B. + Style injection 8.40
C. + Double attention 7.86
D. + Wavelet discriminator 6.34
E. + SPE 5.76
F. + Larger model 5.50
G. + bCR 2.81

Table 5. Ablation study conducted on FFHQ-256. Starting from
the baseline architecture, we prove the effectiveness of each pro-
posed component.

where the proposed StyleSwin also demonstrates state-of-
the-art performance. Notably, we obtain the record FID
score of 4.43 on CelebA-HQ 1024 dataset while consid-
erably closing the gap with the leading approach Style-
GAN2 without involving complex training strategies or
additional regularization. Also, StyleSwin outperforms
the transformer-based approach HiT by a large margin on
1024 × 1024 resolution, proving that the self-attention on
high-resolution stages is beneficial to high-fidelity detail
synthesis.

Qualitative results. Figure 7 shows the image samples gen-
erated by StyleSwin on FFHQ and CelebA-HQ of 1024 ×
1024 resolution. Our StyleSwin shows compelling qual-
ity on synthesizing diverse images of different ages, back-
grounds and viewpoints on the resolution of 1024 × 1024.
On top of face modeling, we show generation results of
LSUN Church in Figure 8, showing StyleSwin is capable
to model complex scene structures. Both the coherency of
global geometry and the high-fidelity details all prove the
advantages of using transformers among all the resolutions.

Ablation study. To validate the effectiveness of the pro-
posed components, we conduct ablation studies in Table 5.
Compared with the baseline architecture, we observe sig-
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(a) (b)

Figure 7. Image samples generated by our StyleSwin on (a) FFHQ 1024× 1024 and (b) CelebA-HQ 1024× 1024.

Figure 8. Image samples generated by our StyleSwin on LSUN
Church 256× 256.

nificant FID improvement thanks to the enhanced model ca-
pacity brought by the style injection. The double attention
makes each layer leverage larger context at one time and
further reduces the FID score. Wavelet discriminator brings
a large FID improvement because it effectively suppresses
the blocking artifacts and meanwhile brings stronger super-
vision for high-frequencies. In our experiment, we observe
faster adversarial training when adopting the wavelet dis-
criminator. Further, introducing sinusoidal positional en-
coding (SPE) on each generation scale effectively reduces
the FID. Employing a larger model brings slight improve-
ment and it seems that the model capacity of the current
transformer structure is not the bottleneck. From Table 5
we see that bCR considerably improves the FID by 2.69,
which coincides with the recent findings [24, 37, 67] that
data augmentation is still vital in transformer-based GAN
since transformers are data-hungry and prone to overfitting.
However, we do not observe its effectiveness on higher res-
olutions, e.g., 1024 × 1024, and we leave regularization

Methods #params FLOPs

StyleGAN2 [30] 30.37M 74.27B
StyleSwin 40.86M 50.90B

Table 6. Comparison of the network parameters and FLOPs with
StyleGAN2.

schemes for high-resolution synthesis to future work.

Parameters and Throughput. In Table 6, We compare
the number of model parameters and FLOPs with Style-
GAN2 for 1024 × 1024 synthesis. Although our approach
has a larger model size, it achieves lower FLOPs than Style-
GAN2, which means the method achieves competitive gen-
eration quality with less theoretical computational cost.

5. Conclusion

We propose StyleSwin, a transformer-based GAN for
high-resolution image generation. The use of local atten-
tion is efficient to compute while attaining most modeling
capability since the receptive field is largely compensated
by double attention. Besides, we find one key feature is
missing in transformer-based GANs — the generator is not
aware of the position for patches under synthesis, so we in-
troduce SPE for global positioning. Thanks to the increased
expressivity, the proposed StyleSwin consistently outper-
forms the leading Conv-based approaches on 256 × 256
datasets. To solve the blocking artifacts on high-resolution
synthesis, we propose to penalize the spectral discrepancy
with a wavelet discriminator [13]. Ultimately, the proposed
StyleSwin offers compelling quality on the resolution of
1024 × 1024, which for the first time, approaches the best
performed ConvNets. Our work hopefully incentives more
studies on utilizing the capable transformers in generative
modeling.
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