
Text Spotting Transformers

Xiang Zhang1 Yongwen Su2 Subarna Tripathi3 Zhuowen Tu1

1UC San Diego 2Shanghai Jiao Tong University 3Intel Labs
{xiz102, ztu}@ucsd.edu, heyue2001@gmail.com, subarna.tripathi@intel.com

Abstract

In this paper, we present TExt Spotting TRansformers
(TESTR), a generic end-to-end text spotting framework us-
ing Transformers for text detection and recognition in the
wild. TESTR builds upon a single encoder and dual de-
coders for the joint text-box control point regression and
character recognition. Other than most existing litera-
ture, our method is free from Region-of-Interest operations
and heuristics-driven post-processing procedures; TESTR
is particularly effective when dealing with curved text-boxes
where special cares are needed for the adaptation of the tra-
ditional bounding-box representations. We show our canon-
ical representation of control points suitable for text in-
stances in both Bezier curve and polygon annotations. In
addition, we design a bounding-box guided polygon de-
tection (box-to-polygon) process. Experiments on curved
and arbitrarily shaped datasets demonstrate state-of-the-
art performances of the proposed TESTR algorithm.

1. Introduction

Text detection and recognition in natural scenes, called
text spotting, is an active area of research in computer vi-
sion [11, 15, 23, 24, 29, 33, 38]. Text spotting is of great
importance in real-world applications such as mapping, au-
tonomous driving, and image retrieval. The text spotting
problem typically consists of two sub-tasks: 1) text detec-
tion that localizes text boxes in a natural image, and 2) text
recognition that reads the characters from the detected text.
Despite its practical significance and a steady progress ob-
served recently, text spotting remains a challenging prob-
lem that requires further improvement. The main difficulty
in text spotting is contributed by multiple factors including
large variations in font, size, style, color, shape, occlusion,
distortion, and layout for natural scene images.

Classical text spotting methods [24, 38] often perform
text detection and recognition in two separate steps. In the
detection module, the regions of interest are proposed for

Code available at https://github.com/mlpc-ucsd/TESTR.
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Figure 1. Illustration of the overall TESTR pipeline. The input
image is passed through a feature backbone and Transformer en-
coder, and the multi-scale feature is shared across the location and
character decoder, which predict the coordinates of control points
and characters of the text instance respectively. The canonical
representation of control points serves both polygon vertices and
Bezier curve control points.

text instance detection. After alignment, the features are
then used in the text recognition module. In natural scenes,
text-boxes often appear in arbitrary orientations [50] and
are non-rectangular [24]. This poses further challenges for
the algorithm development that typically requires a number
of heuristics designs with intermediate and post-processing
steps [11, 15, 29, 34].

Transformers [43] have achieved a remarkable success
in natural language processing [4] and computer vision [6].
DEtection TRansformers (DETR) [2] have also made a
profound impact to object detection by removing the pro-
posal anchors and the non-maximum suppression processes
needed in the sliding window based approaches [36]. LETR
[49] extends DETR by adopting Transformers to directly
detect geometric structures such as line segments beyond
the bounding box representation.

Inspired by the DETR family models [2, 16, 49, 52],
we propose TExt Spotting TRansformers (TESTR), a
Transformer-based text spotting method that performs text
detection and recognition in a unified framework. TESTR
avoids the heuristics design and the intermediate stages re-
quired in many of the existing text spotting approaches.

The contribution of TESTR is listed as follows.

• We propose a single-encoder dual-decoder framework
that jointly performs curved text instance detection
and recognition using Transformers beyond the stan-
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(a) (He et al.,  CVPR 2018) IMAGE GT: W CNN Det. Text Align Sampling Rec. H Q A

(b) Mask TextSpotter
(Liao et al.,  ECCV 2018) IMAGE GT: W, C CNN Proposal Generation RoI Align Det. Seg. & Char Rec. Grouping H Q A

(c) Unconstrained
(Qin et al.,  ICCV 2019) IMAGE GT: W CNN Proposal Generation RoI Masking Det. Rec.Seg. Grouping H Q A

(e) ABCNet
(Liu et al.,  CVPR 2020) IMAGE GT: W CNN Det. Bezier Align Rec. H Q A

(h) PGNet
(Wang et al.,  AAAI 2021) IMAGE GT: W CNN Rec.Det.Seg. & Char Rec. Grouping H Q A

IMAGE GT: W CNN Proposal Generation Rec.Det. H Q A

(d) CharNet
(Xing et al.,  ICCV 2019)

IMAGE GT: W, C CNN Det. Rec.Seg. Seg. Char Grouping H Q A

(f) Text Perceptron
(Qiao et al.,  AAAI 2020) IMAGE GT: W CNN Det. STM Rec.Seg. H Q A

(g) MANGO 
(Qiao et al.,  AAAI 2021) IMAGE GT: W, C CNN Det. Rec.Seg. Seg. Char Grouping H Q A

(i) TESTR (Ours)

Figure 2. Overview of some end-to-end scene text spotting methods that are most relevant to ours. Inside the GT (ground-truth) box, ‘W’
and ‘C’ represent word-level annotation and character-level annotation. The ‘H’, ‘Q’, and ‘A’ represent that the method is able to detect
horizontal, quadrilateral, and arbitrarily-shaped text, respectively. The dashed box represents the shape of the text which the method is
unable to detect. Figure style from [24, 46].

dard bounding box representation. Our method,
thanks to direct regression of the control points co-
ordinates, is a holistic approach that requires nei-
ther heuristics-driven post-processing procedures, nor
Region-of-Interest operations.

• We introduce a box-to-polygon process that achieves
bounding-box guided polygon detection in the detec-
tion Transformers. Experimental results show an ap-
parent performance boost.

• The canonical representation of control points makes
our method appropriate for both the polygonal and
Bezier curve annotations. TESTR achieves state-
of-the-art performances on challenging datasets, i.e.
Total-Text and CTW1500.

1.1. Related Works

Scene text spotting consists of text detection and recog-
nition. Two-stage approaches are first developed to address
the task, which train detection and recognition modules sep-
arately and simply join them during inference. Recent lit-
erature focuses on end-to-end methods, which tackles de-
tection and recognition simultaneously through RoI oper-
ations during training. While these methods demonstrate
satisfying performance, the text spotting task still remains a
challenge due to the prevalence of arbitrarily-shaped texts.
We will discuss related works from the perspectives of
text detection, text recognition, regular text spotting, and
arbitrarily-shaped text spotting. Figure 2 is an overview of
exemplary works.

Text Detection. Early works [7, 19, 42] focus on hor-
izontal text detection, which predict rectangular bounding
boxes for the text instances. They pose apparent limitations
as texts in the wild are mostly multi-oriented quadrilateral,

curved, or even arbitrarily shaped. Efforts have been made
to address these challenging cases. [18,51] use both rotated
boxes and quadrangles to achieve multi-oriented quadrilat-
eral text detection. [1] enables the detection of arbitrarily-
shaped texts through the prediction of character boxes.
While achieving a dramatic performance boost, it requires
expensive character-level annotations and post-processing
to group the detected characters back to texts. [47] uses pair-
wise point representation for text regions, yet it is restricted
to the sequential decoding of RNNs. [24, 26] introduce a
novel Bezier curve representation of the curved texts, and
significantly improve the detection performance on them.

Text Recognition. Classical works [30,32,45] adopt sta-
tistical approaches to classify characters and group them
into words. Deep-learning based methods [14, 40] have
ushered a new era for text recognition. CRNN [38] inte-
grates CNN and RNN to perform text recognition. How-
ever, it is mainly applicable to regular texts and limited as
to arbitrarily-shaped texts. [22,39] use a spatial transformer
to convert irregular texts into rectangular shapes, and then
feed them into the feature extractor and sequence decoder
for recognition.

Regular End-to-end Scene Text Spotting. To further
enhance the performance of text spotting, [15] proposes an
end-to-end trainable text spotting framework. RoI Pooling
is introduced to bridge the gap between text detection and
recognition. However, this method is limited to horizon-
tal texts. Other literature conducts quadrilateral text spot-
ting based on other specially crafted RoI operations, such
as Text-Align [11] and RoI-Rotate [23], while remaining
incapable of spotting arbitrarily-shaped texts.

Arbitrarily-shaped End-to-end Scene Text Spotting.
In [41], quadrangle text region proposals are generated, fol-
lowed by an RoI transform. While this method can rec-
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Figure 3. Overall architecture of Text Spotting Transformers (TESTR). First, the encoder performs multi-scale deformable self-attention
across feature maps, and a guidance generator produces coarse bounding boxes from the features. These boxes are encoded and added
on top of the learnable control point query embeddings to guide the learning of control points. Control point queries are fed through the
location decoder and feed-forward networks (FFNs) to predict their coordinates. The character decoder, with shared reference points as
the location decoder for the multi-scale cross-attention, predicts characters for the corresponding text instance. The framework is end-
to-end trainable and performs detection and recognition in a unified way. Note that the control point and character queries with identical
background color belong to the same text instance in the output image.

ognize irregular texts, its quadrilateral representation is not
optimal for arbitrarily-shaped text regions. CharNet [48]
performs character and text detection in a single pass, re-
quiring character-level annotations. TextDragon [8] gen-
erates multiple local quadrangles around the text center-
line, with RoISlide operation for feature warping and ag-
gregation within the text instance. Though not requiring
character-level supervision, it still needs to perform center-
line detection, grouping, and sorting to convert local quad-
rangles to text boundaries.

Other literature focuses on segmentation-based methods
for arbitrarily-shaped text spotting. Mask TextSpotter [29],
built on Mask R-CNN [9], performs text- and character-
level segmentation, requiring further grouping before get-
ting final results. [35] proposes RoI masking that multiplies
segmentation probability maps with features to suppress
the background, whereas [17] uses binary maps to mitigate
the inaccuracies in segmentation. While these approaches
achieve fair performance, the mask representation is subject
to post-processing such as polygon fitting and smoothing to
obtain desirable boundaries. MANGO [33] develops Mask
Attention module to retain global features for multiple in-
stances, yet it still requires centerline segmentation to guide
the grouping of the predictions.

Recent works try to develop appropriate representations
that directly capture the text boundaries. ABCNet [24] and
ABCNet v2 [26] introduce parametric Bezier curve repre-
sentations for curved texts, and develop Bezier-Align for
feature extracting. However, low-order Bezier curves ex-

hibit limitations when representing heavily curved or wavy
text shapes. [34] uses Shape Transform Module to generate
fiducial points around the text boundaries and rectify irregu-
lar texts. PGNet [46] transforms the polygonal text bound-
aries to the centerline, border offset, and direction offset
and perform multi-task learning for these objectives. While
eliminating RoI operations, it still uses a specially designed
polygon restoration process.

In contrast, our approach relies solely on Transformers,
which is entirely free from RoI operations. With the out-
puts being coordinates of polygon vertices or Bezier control
points for the text instance, along with the corresponding
character sequence, no special post-processing is needed.

2. Method
TExt Spotting TRansformers (TESTR) is an end-to-end

trainable framework that handles text detection and recog-
nition in a unified manner. The overall architecture is shown
in Figure 3. We first introduce the multi-scale deformable
attention as in Deformable DETR [52], and elaborate on the
key components of our model – dual decoders for detection
and recognition, and box-to-polygon detection procedure.

2.1. Multi-Scale Deformable Attention

One obstacle for the text spotting task is the prevalence
of small text instances in the images. Current literature tries
to overcome this limitation by leveraging multi-scale fea-
ture maps, such as Feature Pyramid Network (FPN) [20].
To utilize such feature maps, we take the multi-scale de-
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formable attention module in [52]. Given a set of L level
multi-scale feature maps {Ul}Ll=1, with each level as Ul ∈
RC×Hl×Wl , and p(q) as the normalized coordinates of the
reference point for the query q, the multi-scale deformable
attention can be expressed as

MSDeformAttn(q, p(q), {Ul}Ll=1) =

H∑
h=1

Wh

{
L∑

l=1

K∑
k=1

Ahlk(q) ·W′
hUl [ϕl (p(q)) + ∆phlk(q)]

}
(1)

where h, l, k are indices for the attention head, input
feature level, and sampling point respectively. Ahlk denotes
the attention weight for query q, normalized with respect to
K sampling points. ϕl maps the normalized coordinates to
the scale of l-th level feature map, and ∆p generates an
appropriate sampling offset for the query. Both of them are
added to form the sampling location for the feature map Ul.
W′

h and Wh are trainable weight matrices that are similar
to those present in the original multi-head attention.

Instead of relying on the original attention, which re-
quires sampling of H×W points in the feature map, multi-
scale deformable attention samples LK points, largely re-
ducing computational overheads and enabling the capability
to use multi-scale feature maps. We will illustrate its effi-
ciency in the experiment section.

2.2. Dual Decoders

We formulate the holistic text spotting task as a set
prediction problem. Given an image I , we need to
output a set of point-character tuples, defined as Y ={(

P(i), C(i)
)}K

i=1
, where i is the index for each text in-

stance, P(i) = (p
(i)
1 , · · · , p

(i)
N ) is the coordinates of N

control points, and C(i) = (c
(i)
1 , · · · , c

(i)
M ) is the M char-

acters of the text.
To tackle this problem, we propose a dual-decoder

paradigm for predictions of different modalities, location
decoder for detection (to predict P(i)) and character de-
coder for recognition (to predict C(i)).

Location decoder. We extend the queries in origi-
nal DETR [2] to composite queries for predicting mul-
tiple control points for each instance. We have Q such
queries, each corresponding to a text instance, as P(i).
Each query element is composed of subqueries pj , where
P(i) = (p

(i)
1 , · · · , p

(i)
N ). To capture the relationship be-

tween different text instances and between different sub-
queries within a single text instance in a structural way, we
utilize factorized self-attention, inspired by [5]. The fac-
torized self-attention is composed of an intra-group atten-
tion, which is a self-attention within subqueries belonging
to each of the P(i), and an inter-group attention, which is a
self-attention across pj of different queries.

The initial control point queries are fed into the location
decoder. After the process of multi-layer decoding, the final
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Figure 4. Illustration of the box-to-polygon detection process. The
guidance generator predicts coarse bounding boxes and scores as
shown in the left image. The coordinates of top Q boxes are fed
to the differentiable encoding module φ and the encoded results
are added to the shared control point query embeddings, which are
taken by the location decoder for the final polygonal predictions.

control point queries are taken by a classification head pre-
dicting the confidence, and a 2-channel regression head out-
putting the normalized coordinates for each control point.

The control points predicted here can either be N poly-
gon vertices, or control points for Bezier curves, as in [24].
For the polygon points, we use the sequence that starts with
the top left corner and moves in the clockwise order.

For the Bezier control points, Bernstein Polynomials
[27] can be used to construct the parametric curve

c(t) =

N∑
j=1

pjB(j−1),(N−1)(t), t ∈ [0, 1] (2)

where Bernstein basis polynomials are defined as

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, i = 0, 1, · · · , n (3)

Following [24], we use two cubic Bezier curves for a sin-
gle text instance, corresponding to the two possibly curved
sides of the text. One can sample across t to convert Bezier
curves back to polygons.

Character decoder. The character decoder follows most
of the location decoder, with control point queries replaced
by character queries C(i). The initial character queries com-
prise a learnable query embedding and 1D sine positional
encoding, and are shared across different text instances. The
character query C(i) and control point query P(i) with the
same index belong to the same text instance, and therefore
the reference points of the multi-scale deformable cross-
attention are shared to ensure they get the identical contexts
from the image feature. A classification head takes the fi-
nal character queries to predict among multiple character
classes.

2.3. Box-to-Polygon Detection Process

The decoder models the Bayesian inference process
P (Y |I) ∝ P (I|Y )P (Y ) for our set prediction problem,
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where P (I|Y ) captures the relationship between hypothe-
ses (queries) and input I through cross-attention, while
P (Y ) models the prior on configuration of Y through self-
attention. We argue that when Y is complex, in our case
of composite queries, P (Y ) is hard to learn. Hence, we
propose a box-to-polygon detection approach, which takes
the bounding boxes of text instances and uses them to guide
the polygon detection. This process, employing information
related to concrete image I to form input-specific priors, fa-
cilitates the training of polygon control point regression.

The framework begins with the guidance generator in
Figure 3, which is a proposal generator outputting coarse
bounding box coordinates and probabilities. Boxes with
top-Q probabilities are selected and their coordinates are
denoted as {w(i)}Qi=1. The initial control point queries de-
scribed in 2.2 are formed by:

P(i) = φ(w(i)) + (p1, · · · , pN ) (4)

where (p1, · · · , pN ) is the control point query embed-
ding, shared across Q queries, modeling the general rela-
tion between control points that is irrelevant to the specific
bounding box location. φ is the sine positional encoding
function followed by a linear and normalization layer, and
therefore is fully differentiable. φ(w(i)), as the encoded
bounding box information, is shared across N subqueries
within a single instance, modeling the overall location and
scale of the text instance. w(i) is also used as the initial ref-
erence point for the multi-scale deformable cross-attention.

An illustration of this process is provided in Figure 4
with details of the guidance generator. Ablation studies in
Section 3.4 demonstrate the significant improvement in the
recognition accuracy brought by this process.

2.4. Training Losses

Bipartite matching. Since TESTR outputs a fixed num-
ber of predictions unlike the actual number (G) of ground
truth instances, we need to find an optimal matching be-
tween them to calculate the loss. Specifically, we need to
find an injective function σ : [G] 7→ [Q] that minimizes the
following matching cost C:

argmin
σ

G∑
i=1

C(Y (i), Ŷ (σ(i))) (5)

where Ŷ (j) = (P̂(j), Ĉ(j)) is the prediction to be
matched and Y (i) is the ground truth. For simplicity, we
use the control point location to guide the learning of char-
acter decoding. Therefore, the matching cost is defined as
a mixture of confidence and coordinate deviation. For i-th
ground truth and its matched σ(i)-th query, the cost func-
tion is

C(Y (i), Ŷ (σ(i))) = λclsFL′(b̂(σ(i))) + λcoord
∑N

k=1

∥∥∥p(i)k − p̂
(σ(i))
k

∥∥∥ (6)

where b̂(σ(i)) is the probability for the only instance class
– text, which also serves as the confidence score. FL′

is derived from the focal loss [21], and is defined as the
difference of the positive and negative term: FL′(x) =
−α(1 − x)γ log(x) + (1 − α)xγ log(1 − x). The second
term in Equation 6 is the L-1 distance between ground truth
and predicted control point coordinates.

The problem in 5 can be efficiently solved by the Hun-
garian algorithm [13]. We use the same bipartite matching
scheme to match proposals in the guidance generator with
ground truth boxes, which are bounding boxes for the con-
trol points.

Instance classification loss. We adopt focal loss as the
classification loss of text instances. For the j-th query, the
loss is defined as:

L(j)
cls =− 1{j∈Im(σ)}α(1− b̂(j))γ log(b̂(j))

− 1{j /∈Im(σ)}(1− α)(b̂(j))γ log(1− b̂(j))
(7)

where Im(σ) is the image of the mapping σ.
Control point loss. L-1 distance loss is used for control

point coordinate regression:

L(j)
coord = 1{j∈Im(σ)}

N∑
i=1

∥∥∥p(σ−1(j))
i − p̂

(j)
i

∥∥∥ (8)

Character classification loss. We deem the character
recognition as a classification problem, where each class is
assigned a specific character. Cross entropy loss is used
here:

L(j)
char = 1{j∈Im(σ)}

M∑
i=1

(
−c

(σ−1(j))
i log ĉ

(j)
i

)
(9)

The loss function for the dual decoders comprises the
three aforementioned losses:

Ldec =
∑
j

(
λclsL(j)

cls + λcoordL(j)
coord + λcharL(j)

char

)
(10)

Bounding box intermediate supervision loss. To make
the proposals in Section 2.3 more accurate, we also intro-
duce intermediate supervision for them at the encoder side.
The same bipartite matching scheme is used to match these
bounding box proposals to the ground truth. We denote the
matching here as σ′, and the overall loss here is

Lenc =
∑
i

(
λclsL(i)

cls + λcoordL(i)
coord + λgIoUL(i)

gIoU

)
(11)

where the classification loss L(i)
cls and control point loss

L(i)
coord are identical to the ones used for polygon detection,

except for the different matching σ′ used. LgIoU is the gener-
alized IoU loss defined in [37] for bounding box regression.

The final loss for the entire model is simply the sum of
the encoder and decoder loss.
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3. Experiments
3.1. Datasets

Here we briefly introduce the datasets used in this paper.
SynthText 150k. Unlike existing SynthText 800k which

contains mostly straight texts in quadrilateral annotations,
SynthText 150k synthesized in [24] comes with 94,723 im-
ages containing mostly straight text and 54,327 with major
curved texts in Bezier annotations.

ICDAR 2015. The ICDAR 2015 [12] is the official
dataset for ICDAR 2015 Robust Reading Competition. It
contains 1000 training images and 500 testing images, with
horizontal and perspective texts with quadrilateral box an-
notation. The images were captured with hand-held cam-
eras in the wild, therefore blurs and obscurities are frequent.

Total-Text. The Total-Text [3] is a popular curved text
benchmark, with 1255 images for training and 300 for test-
ing. Word-level polygon or Bezier annotations are used.

CTW1500. [25] is another important curved scene text
benchmark, with 1000 training images and 500 testing im-
ages. Different from Total-Text, it contains both English
and Chinese texts. As the proportion of Chinese texts is
small, we ignore them during training.

We follow the standard evaluation protocols used in
these datasets, which involve the calculation of IoU between
predicted and ground truth polygons. The output of TESTR
with Bezier annotations is converted back to polygons prior
to evaluation.

3.2. Implementation Details

We use ResNet-50 [10] as the feature backbone for all
the experiments. Multi-scale feature maps are directly
drawn from the last three stages of ResNet without FPN.
The parameters for the deformable Transformers are similar
to [52], with H = 8 heads and K = 4 sampling points for
the deformable attentions, and we use 6 layers of encoders
and decoders.

Data augmentation. The data augmentation during
training is conducted by 1) random resize with the shorter
edge ranging from 480 to 896, and the longest edge kept
within 1600; 2) instance-aware random crop, which ensures
the cropped size larger than half of the original size and no
texts being cut. During test time, we resize the shorter edge
to 1600 while keeping the longest edge within 1892.

Pre-training. The model is pretrained on a mixture of
SynthText 150k, MLT 2017 [31] and TotalText for 440k
iterations. The base learning rate for the polygon variant
is 1 × 10−4 and is decayed at the 340k-th iteration by a
factor of 0.1. Learning rates are scaled by a factor of 0.1
for the linear projections used to predict reference points,
sampling offsets of the multi-scale deformable attention and
feature backbone. AdamW [28] is used as the optimizer,
with β1 = 0.9, β2 = 0.999 and weight decay of 10−4. We

use Q = 100 composite queries. The max text length M
is 25, and number of polygon control points N is 16. The
weighting factors for the losses are λcls = 2.0, λcoord = 5.0,
λchar = 4.0, λgIoU = 2.0. We set α = 0.25, γ = 2.0 for
the focal loss. For the Bezier variant of the model, we have
N = 8 control points, double the value of base learning
rate, and half λchar for the purpose of balancing. The pre-
training process takes about 3 days on 8 RTX 2080Ti GPUs
with the image batch size of 8.

Finetuning. The model is finetuned on specific datasets
prior to evaluation to mitigate the variance across different
datasets. For the Total-Text and ICDAR 2015 dataset, we
finetune the model for 20k iterations, with the base learning
rate scaled by 0.1. For CTW1500, to address the longer
texts present in the dataset, the maximum text length M is
set to 100, and therefore the model is finetuned for 200k
iterations, larger than the ones needed for the other two.

3.3. Results
Here we present the benchmark of our model TESTR in

polygonal or Bezier curve annotations.
Irregular texts. We test our method on two irregular

text benchmarks: Total-Text and CTW1500, and the quan-
titative results are shown in Table 1 and 2.

In terms of text detection, the TESTR-Beizer outper-
forms the previous most accurate model by 1.0% on the
F-score metric on the Total-Text dataset. The TESTR-
Polygon has almost the same detection accuracy as ABC-
Net v2 and is free of Bezier annotations. On the CTW-1500
dataset, the F-score of TESTR surpasses that of ABCNet
v2 by a large margin, with 1.6% for Bezier and 2.4% for
polygonal annotations.

In the case of end-to-end text spotting, TESTR-Polygon
significantly surpasses the best-reported results by 2.8%
when equipped with full lexicons on CTW1500. On Total-
Text, our method outperforms the previous best results by
0.4% without lexicons and by 0.3% with full lexicons.

Qualitative results on the two datasets are shown in the
Figure 5 and 6. The results illustrate our method can handle
both straight and curved texts well. The failure cases for
TESTR with Bezier annotations are displayed, e.g. the last
column of Figure 1, where it fails to generate the correct
bounding polygon for the Bezier curves, while the polygon
model variant succeeds. This observation is consistent with
the quantitative results.

In summary, the results on Total-Text and CTW1500
demonstrate the effectiveness of our method for arbitrarily-
shaped text spotting. Meanwhile, the overall performance
of TESTR-Polygon is better than TESTR-Bezier mostly.

Regular texts. We evaluate our method on ICDAR2015
containing many perspective texts annotated with quadrilat-
eral bounding boxes, and the results are shown in Table 3.
In the detection stage, our method achieves state-of-the-art
F-score. In the end-to-end text spotting, our method exhibits
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Table 1. Scene text spotting results on Total-Text. “None” refers to recognition without lexicon. “Full” lexicon contains all the words in
the test set.

Method Backbone Detection End-to-End FPS
P R F None Full

FOTS [23] ResNet-50 52.3 38.0 44.0 32.2 − −
Textboxes [19] ResNet-50-FPN 62.1 45.5 52.5 36.3 48.9 1.4
Mask TextSpotter [29] ResNet-50-FPN 69.0 55.0 61.3 52.9 71.8 4.8
CharNet [48] ResNet-50-Hourglass57 87.3 85.0 86.1 66.2 − 1.2
Text Dragon [8] VGG16 85.6 75.7 80.3 48.8 74.8 −
Boundary TextSpotter [44] ResNet-50-FPN 88.9 85.0 87.0 65.0 76.1 −
Unconstrained [35] ResNet-50-MSF 83.3 83.4 83.3 67.8 − −
Text Perceptron [34] ResNet-50-FPN 88.8 81.8 85.2 69.7 78.3 −
Mask TextSpotter v3 [17] ResNet-50-FPN − − − 71.2 78.4 −
ABCNet-MS [24] ResNet-50-FPN − − − 69.5 78.4 6.9
ABCNet v2 [26] ResNet-50-FPN 90.2 84.1 87.0 70.4 78.1 10
MANGO [33] ResNet-50-FPN − − − 72.9 83.6 4.3
PGNet [46] ResNet-50-FPN 85.5 86.8 86.1 63.1 − 35.5

TESTR-Bezier (ours) ResNet-50 92.8 83.7 88.0 71.6 83.3 5.5
TESTR-Polygon (ours) ResNet-50 93.4 81.4 86.9 73.3 83.9 5.3

Figure 5. Qualitative results on Total-Text without lexicons. Top row: Bezier; bottom row: polygon annotations. The predictions are shown
in green contours, with Bezier control points in red. The number before text is the confidence score. TESTR-Bezier fails to capture the
shape of the “ANKYLOSAURUS” text in the last column, while the polygon variant succeeds. Zoom in for better visualization.

Table 2. End-to-end text spotting results on CTW1500. “None”
represents lexicon-free, while “Full” indicates all the words in the
test set are used.

Method Detection End-to-End

P R F None Full

Text Dragon [8] 84.5 82.8 83.6 39.7 72.4
Text Perceptron [34] 87.5 81.9 84.6 57.0 −
ABCNet [24] − − − 45.2 74.1
ABCNet v2 [26] 85.6 83.8 84.7 57.5 77.2
MANGO [33] − − − 58.9 78.7
TESTR-Bezier (ours) 89.7 83.1 86.3 53.3 79.9
TESTR-Polygon (ours) 92.0 82.6 87.1 56.0 81.5

remarkable performance in the lexicon-free setting, on par
with Text Perceptron with generic lexicons. When lexicons
are available, TESTR works best with the “Strong” type,
obtaining competitive results compared with other methods.
Qualitative results in the right column of Figure 6 show our

method can recognize texts even in occluded scenes or from
extreme viewing angles.

3.4. Ablation Studies

To illustrate the effectiveness of the proposed compo-
nents, we conduct multiple ablation studies on Total-Text
with polygonal annotations.

Box-to-polygon detection process. In our design of
TESTR, the encoder performs multi-scale self-attention
across feature maps, and a guidance generator produces
coarse bounding boxes from the encoded features. These
bounding boxes, encoded and added on top of the learn-
able control point query embeddings, are used to guide the
learning of control point regression in the location decoder.
We ablate this module by replacing the φ(w(i)) term in
Equation 4 with a learnable embedding vector to show how
the bounding box guidance affects the results. The results
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Figure 6. Qualitative results of TESTR on CTW1500 (left column)
and ICDAR (right column) using polygonal annotations.

Table 3. Results on ICDAR 2015 dataset. “S”, “W”, “G”, “N” rep-
resent recognition with “Strong”, “Weak”, “Generic” or “None”
lexicon respectively.

Method Detection End-to-End

P R F S W G N

He et al. [11] 87.0 86.0 87.0 82.0 77.0 63.0 −
TextNet [41] 89.4 85.4 87.4 78.7 74.9 60.5 −
FOTS [23] 91.0 85.2 88.0 81.1 75.9 60.8 −
CharNet R-50 [48] 91.2 88.3 89.7 80.1 74.5 62.2 60.7
Boundary TextSpotter [44] 89.8 87.5 88.6 79.7 75.2 64.1 −
Unconstrained [35] 89.4 85.8 87.5 83.4 79.9 68.0 −
Text Perceptron [34] 92.3 82.5 87.1 80.5 76.6 65.1 −
Mask TextSpotter v3 [17] − − − 83.3 78.1 74.2 −
ABCNet v2 [26] 90.4 86.0 88.1 82.7 78.5 73.0 −
MANGO [33] − − − 81.8 78.9 67.3 −
PGNet [46] 91.8 84.8 88.2 83.3 78.3 63.5 −
TESTR-Polygon (ours) 90.3 89.7 90.0 85.2 79.4 73.6 65.3

shown in Table 4 demonstrate that the box-to-polygon de-
tection process could improve Precision, Recall, F-score by
0.5%, 3.6% and 2.2% in detection respectively, and signifi-
cantly improve the end-to-end recognition results by 5.8%.

Multi-scale feature. Our method leverages multi-scale
feature maps to overcome the challenge of the prevalent
small text instances in the images. We conduct ablations by
using only the feature map from the last stage of ResNet.
Table 4 shows that adopting multi-scale features could im-
prove Precision, Recall, F-score by 1.2%, 2.3% and 1.8%
in detection respectively, and dramatically improve the end-
to-end results by 10.8%. This indicates the text recognition

task benefits much from features with larger scales.

Table 4. Ablation study on Total-Text using TESTR with polygo-
nal output.

Multi-scale Features Box Guidance Detection E2E
P R F

− ✓ 92.2 79.1 85.1 62.5
✓ − 92.9 77.8 84.7 67.5
✓ ✓ 93.4 81.4 86.9 73.3

Input scale. To demonstrate the tradeoffs between speed
and accuracy, we evaluate our model with the shorter side
of the image resized to 720, 1000, 1280, 1600 respectively.
The results are shown in Table 5. The F-score of both de-
tection and end-to-end recognition increases with FPS de-
creasing as the input scale grows larger.

Table 5. Performance of TESTR with different input scales on
Total-Text.

Model Type Input Detection E2E FPS
P R F

Bezier

720 91.5 81.5 86.2 62.6 11.6
1000 91.2 84.1 87.5 69.4 7.9
1280 92.3 83.7 87.8 70.9 5.8
1600 92.8 83.7 88.0 71.6 5.5

Polygon

720 92.7 79.7 85.7 66.2 11.7
1000 92.1 81.4 86.4 70.5 8.0
1280 92.5 81.5 86.7 72.2 6.0
1600 93.4 81.4 86.9 73.3 5.3

4. Discussions
Limitations and future work In our setting of TESTR,

we assume a fixed number of polygon control points, which
might not be optimal. For most perspective texts, quadrilat-
erals would be sufficient, while many more vertices would
be required if texts come with higher curvature. In the fu-
ture, we would like to investigate methods that adaptively
determine the adequate number of polygon control points
within our framework to better capture their shapes.

Conclusions In this paper, we have presented TESTR,
a text spotting framework based on single-encoder dual-
decoder Transformer architecture. By modeling the
text detection and recognition in a holistic fashion, our
model directly performs set prediction without heuristics-
driven post-processing or Region-of-Interest operations. A
bounding-box guided polygon detection procedure allows
efficient detection of arbitrarily-shaped texts. In addition,
our canonical representation of control points enables the
model to function effectively for both polygonal and Bezier
annotations. Experimental results on challenging curved
or oriented text benchmarks, Total-Text and CTW1500,
demonstrate the state-of-the-art performance of TESTR.
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