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Figure 1. We propose GAMMA, an automatic and scalable solution to populate the 3D scene with digital humans, which have 1) varied
body shapes, 2) plausible body-ground contact, and 3) realistic and perpetual motions to reach goals (e.g. rings in the middle figure), with
the off-the-shelf path-finding algorithm.

Abstract

Our goal is to populate digital environments, in which
digital humans have diverse body shapes, move perpetu-
ally, and have plausible body-scene contact. The core chal-
lenge is to generate realistic, controllable, and infinitely
long motions for diverse 3D bodies. To this end, we pro-
pose generative motion primitives via body surface mark-
ers, or GAMMA in short. In our solution, we decompose
the long-term motion into a time sequence of motion prim-
itives. We exploit body surface markers and conditional
variational autoencoder to model each motion primitive,
and generate long-term motion by implementing the gen-
erative model recursively. To control the motion to reach
a goal, we apply a policy network to explore the genera-
tive model’s latent space and use a tree-based search to
preserve the motion quality during testing. Experiments
show that our method can produce more realistic and con-
trollable motion than state-of-the-art data-driven methods.
With conventional path-finding algorithms, the generated
human bodies can realistically move long distances for a
long period of time in the scene. Code is released for re-
search purposes at: https://yz—cnsdgz.github.
io/eigenmotion/GAMMA/

1. Introduction

In recent years, the rapid development of 3D technolo-
gies has accelerated the creation of a digital replica of the

real world and initiated new ways that people interact with
the world and communicate with each other. However, there
is no existing solution to automatically populate the digital
world with realistic virtual humans, which move and act
like real ones. This work aims to enable virtual humans to
cruise within a 3D digital environment, similar to Odysseus,
who arrived home after wandering and hazards. The vir-
tual humans follow randomized routes, pass individual way-
points, and reach the destination, while retaining realistic
body shape, pose, and body-scene contact. Such technology
can considerably enrich AR/VR user experiences and has
many downstream applications. For example, having vir-
tual humans strolling inside the digital model of a medieval
city can make the experience more vivid, which allows real
users to follow their guidance for better sightseeing. Be-
yond AR/VR, virtual humans can provide architects with a
blueprint, enabling better foresight into design functionali-
ties and defects.

This is particularly relevant to character animation in
graphics, foremost in the gaming industry. Conventionally,
a set of 3D characters are pre-designed, and a motion dataset
is pre-recorded. To let characters respond to user inputs
or background events, motions from the dataset are created
via motion graph [34] or motion matching [13]. Although
current AAA games demonstrate highly realistic character
motion, this conventional technology cannot easily handle a
massive number of characters with different behaviors [26].
Motion generalization across diverse characters usually re-
quires extra motion re-targeting procedures [5]. Moreover,
the generated motions are often deterministic, close to the
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pre-recorded clips, and hence have limited diversity.

The availability of large-scale motion capture datasets
(e.g. AMASS [44]) facilitates the learning of generative mo-
tion models. They can effectively produce motions based
on the motion in the past [80], action labels [58], scene con-
text [25] and music [40], without limit on a specific char-
acter. Although the motion realism is improved by replac-
ing 3D skeletons with expressive body meshes, e.g., SMPL-
X [52], the generated motion is limited to a few seconds. It
often has jittering, foot-skating, and other artifacts. To pop-
ulate the digital environment, we need a fully automated
way to generate long-term (potentially infinite) and realistic
motions for a large variety of human shapes.

This is a considerably challenging task and far beyond
the scope of existing solutions to our knowledge. The first
obstacle we encounter is how to generate infinitely long,
diverse, and stochastic human motion sequences. Existing
methods regard motion as a standard time sequence of high-
dimensional feature vectors and propose to model it with a
single deep neural network. However, the uncertainty of hu-
man motion grows as time progresses. It is unclear whether
a deep neural network has sufficient power to represent a
perpetual motion.

To overcome this issue, we decompose a long-term mo-
tion into a time sequence of motion primitives, model each
primitive, and compose them to obtain a long-term motion.
Our insight comes from psychological studies. Human re-
action time to visual stimuli is about 0.25 seconds [1, 68].
Namely, humans cannot control their body motion immedi-
ately after seeing a signal but have to wait for 0.25 sec-
onds to give a response due to body inertia. Therefore,
we let a motion primitive span 0.25 seconds. In this case,
it mainly contains unconscious body dynamics, which are
shorter, more deterministic, and easier to model. Specifi-
cally, we exploit the body surface markers to represent the
body in motion [80] and use conditional variational autoen-
coder (CVAE) [33, 64] to model body dynamics. To effi-
ciently recover the 3D body from markers, we design a body
regressor with recursions. By blending the marker predictor
and body regressor, our model can synthesize realistic long-
term motion, which is perceptually similar to high-quality
mocap sequences, e.g. from AMASS [44]. Of note, our
marker-based motion primitive is generalizable to various
body shapes, which initiates populating the 3D scene with
a massive amount of virtual humans of different identities.

The second challenge is how to let the virtual humans
move naturally within 3D scenes, towards a designated des-
tination, while considering the geometric constraints of the
environment. Inspired by Ling et al. [41], we propose a
novel motion synthesis pipeline with control, which con-
sists of a policy network and a tree-based search mech-
anism. We formulate long-term motion generation as a
Markov decision process, and use a policy network to ex-

plore the CVAE latent space. By sampling from the policy,
the body can gradually move to the goal, while keeping the
foot-ground contact plausible. Simultaneously, we organize
the motion generation process into a tree structure, which
searches best motion primitives at each generation step and
rejects unrealistic ones. We perform experiments to eval-
uate motion realism and controllability. Results show that
our method can produce realistic long-term motions in 3D
scenes and outperform state-of-the-art methods. Combing
with conventional path-finding algorithms, e.g., navigation
mesh baking and A* search [24,63], we can populate large-
scale 3D scenes with a massive number of virtual humans,
which have diverse body shapes, cruise following paths, and
finally reach their destinations.

We name our method GAMMA, for GenerAtive Motion
primitive via body surface MArkers. Code and model are
released for research purposes.

2. Related Work

Character animation. A 3D character is normally rigged
with a skeleton. To animate it, mocap data is used to ac-
tuate the skeleton, and the body mesh is deformed accord-
ingly. To control the character, e.g. following a walking
path, methods like motion graph [34] or motion match-
ing [12, 13, 84] are to search for the most suitable motion
clips from a dataset and blend them to remove discontinu-
ities. Despite high motion realism, these methods are not
well scalable to animate a massive number of characters
with a vast mocap dataset [26]. Although recent methods
like [27, 37] exploit neural networks to improve scalability
and efficiency, the generated motions are often determinis-
tic, close to the training samples, and hence lack diversity.

Generative models for 3D body motion synthesis. Based
on large-scale datasets, learned generative models can syn-
thesize motions based on certain conditions. For motion
prediction, the model aims at generating motion that is
expected to be close to the ground truth, provided on a
motion from the past [0, 7, 14, 16, 17, 20-22, 38, 39, 43,
,48,53,67,73,83]. When considering motion uncer-
tainty, stochastic motion prediction is proposed to gener-
ate diverse plausible motions based on the same motion
seed [8,9,11,18,41,46,70,75,76]. Although these meth-
ods can generalize well across various body shapes and ac-
tions, motion realism is seldom considered. For example,
the body is represented with stick figures. The generated
motion has a limited time horizon. Scene constraints are not
considered, global body configurations are not included.
More recent works exploit parametric body models
e.g. SMPL-X [52], and directly produce motions of expres-
sive body meshes. Compared to the skeleton, the motion of
3D bodies looks more realistic to our human eye and is di-
rectly compatible with existing rendering pipelines. Zhang
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et al. [80] extend stochastic motion prediction from stick
figures to 3D bodies, which generate diverse global motions
using a body surface marker-based representation. Petro-
vich et al. [58] proposes a transformer VAE to generate
stochastic 3D body motions based on action labels. Zhang
et al. [79] model dynamics of SMPL-X [52] body parame-
ters with a recurrent network for generating perpetual mo-
tions of diverse 3D bodies. Wang et al. [71] generate scene-
aware root motion trajectories and synthesize body poses
along the trajectory. Test-time optimization procedures are
then applied to improve the body-scene contact. Stark et
al. [65] propose a neural state machine model to synthesize
character motions interacting with objects, such as sitting
on the chair and carrying the box. Hassan et al. [25] pro-
pose to generate stochastic and dynamic body-scene inter-
actions by synthesizing the goal and the motion individually
with neural networks. Ling et al. [41] design an autore-
gressive VAE to model body dynamics of two consecutive
frames, and exploit reinforcement learning to train a policy
for task-driven motion synthesis. Rempe et al. [59] propose
an autoregressive model to learn 3D body motions, which is
generic for body shapes and motion types. Although it fo-
cuses on motion estimation, HuMoR can generate random
and long-term motions with plausible body-ground contact.

Body motion control. Motion can be controlled in differ-
ent ways. A straightforward approach is to extend a gen-
erative motion model by introducing control signals as ad-
ditional conditions, like in [23, 28, 32, 54]. Despite their
effectiveness, the learned model is sensitive to the train-test
domain gap, generating invalid motions when the control
signal is much different from the training data. Another
control approach is optimization-based, in which the con-
trol signal, e.g., fixed foot position when contacting with
the ground, is regarded as the data term, and the generative
model is used for regularization, e.g. [29, 72]. This shares
similarity with body motion recovery from observations as
in [30,42,59,78]. They can produce high-quality results,
but have high computational costs.

Many reinforcement learning (RL) methods are designed
to control infinitely long motion to complete specific tasks.
Most of them exploit physical simulation for body dynam-
ics modeling, and propose policy networks to control, e.g.
joint torques. To obtain human-like motions, additional
data, e.g. videos or mocap sequences, is used for the char-
acter to imitate [10, 49,55, 56]. To automatize which mo-
tion to imitate, Peng et al. [57] propose an adversarial im-
itation learning mechanism, designing an adversarial mo-
tion style reward during policy training. Yuan et al. [77]
focus on physics-aware motion estimation. They create a
humanoid according to the SMPL blend skinning, and thus
their humanoid is more human-like than the skeleton. Ling
et al. [41] first propose a CVAE-based generative motion
model, and then train a policy to produce latent variables

for motion control.

Ours vs. others. Our method is data-driven, so no need to
create a humanoid in physical simulation as in [49,77].

We are inspired by MotionVAE [41] and HuMoR [59]
for synthesizing task-oriented behavior and motion estima-
tion, respectively, in which the generative model’s latent
variables are manipulated to produce desired motions. Sim-
ilar to MotionVAE [41], our method contains a generative
motion model and a policy network, but is extended with
novel motion models and control methods. Specifically, we
first learn models of marker-based motion primitives, using
the large-scale motion dataset AMASS [44], and then learn
the policy based on the pre-trained motion model, so our
method is generic for various body shapes and action types.
The policy output distribution is regularized by a KLD term
in addition to the PPO term (see Eq. (10)), to encourage
the motion naturalness. Moreover, we exploit a tree-based
search scheme to further improve the motion quality during
testing. Therefore, our method is suitable for populating 3D
scenes in an efficient and scalable manner.

3. Method
3.1. Preliminaries

SMPL-X [52]. SMPL-X is a differentiable parametric body
model. Provided a compact set of body parameters, it yields
an expressive body mesh of a fixed topology with 10,475
vertices, including face and hand details. In our work, the
body parameter set is denoted as B = {3, ®}. The body
shape B € R0 is the lowest 10 components in the SMPL-
X body shape PCA space. The body configuration has
© ={tc RR c R0 c R 0, ¢ R*}, includ-
ing root translation, root orientation in axis-angle, 21 joint
rotations in axis-angle, and two hand poses in the MANO
PCA space [60], respectively. We then denote a SMPL-X
mesh as M(B). By sampling 3 from the standard normal
distribution and sampling @ from the Vposer [52], we can
obtain 3D bodies of diverse shapes and poses quickly. Al-
though our method is implemented with SMPL-X, it can be
straightforwardly extended to other parametric body mod-
els, e.g. [51,74].

MOJO [80]. MOJO is a solution to stochastic motion pre-
diction of 3D body meshes, including a surface marker-
based representation, a CVAE motion model, and a recur-
sive scheme for 3D body recovery. Corresponding to the
marker placement in mocap systems, the MOJO body mark-
ers are selected from the SMPL-X mesh template, convert-
ing the body motion into a time sequence of point clouds.
Compared to the representations like joint locations, surface
markers have richer body shape information and provide
more constraints on the body degrees-of-freedom (DoF).
The reprojection scheme exploits these benefits and effec-
tively recovers the body mesh from predicted markers via
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optimization. At each time step during inference, markers
are selected on the recovered body mesh, and then used as
input for the next time step. Since the markers are repro-
jected to the valid body shape space repeatedly, the marker
prediction error is hardly accumulated as time progresses,
keeping the 3D body valid.

Despite several advantages, MOJO produces motions
with limited length, and cannot control the motion gener-
ation process. In addition, the body fitting optimization sig-
nificantly increases the computation time.

Motion formulation. We decompose a long-term mo-
tion into a time sequence of motion primitives with over-
laps. Each motion primitive contains a motion seed X =
{x1,...,xpr} with M = {1,2}, denoting the overlapped
frames, and the future frames Y = {y1,...,yn}. Each
frame is represented by the concatenation of the 3D marker
locations. The motion primitive is defined in a canonical
space. Following MOJO [80], the canonical coordinate is
located at the pelvis in the frame ;. The X-axis is the hori-
zontal component pointing from the left hip to the right hip,
the Z-axis is pointing up, and the Y-axis is pointing forward.

3.2. Generative Motion Primitives
3.2.1 Model Architecture

The network architectures of GAMMA are illustrated in
Fig. 2. The generative motion primitive model consists of a
marker predictor and a body regressor.

The marker predictor. In our work, we exploit the ‘SSM2
67" marker placement in MOJO [80] due to its better empir-
ical performance. The marker predictor is cast by a CVAE,
which has a condition branch, an encoder, and a decoder.
The encoder is only used during training. During inference,
we can randomly draw z from A/(0, I) to obtain different
Y based on the same motion seed X . Compared to [76,80],
our model has no additional sampling module and latent
DCT, and hence is easier to train. Depending on whether
the motion seed X contains body dynamics, we design a 1-
frame predictor and a 2-frame predictor, denoting the num-
ber of frames in the motion seed X . Their properties are
investigated in the appendix.

The body regressor. This network learns to recover the
global translations and the joint rotations simultaneously
from the markers within a motion primitive. It takes the
predicted markers, an initial body parameter ©, and a pro-
vided body shape as input. Similar to HMR [31], the resid-
ual blocks are employed in a recursive manner. We set O,
including the global translation, orientation, body pose, and
hand pose, to zero in our implementation. To improve back-
propagation, the global body orientation and joint rotations
are converted into the 6D continuous representation [82] in
the input and inside of the network, and changed back to
axis-angle at the output. Since the body shape is dependent
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Figure 2. GAMMA architectures. The first two diagrams illustrate
the marker predictor and the body regressor, respectively. The bot-
tom two show their combinations. Random motion can be synthe-
sized via sampling z from the standard normal distribution, and
goal-driven motion can be synthesized via sampling z from the
policy output. The red arrows denote the sampling operation, and
the dash curves denote implementing motion primitive models re-
cursively. See respective sections for detailed demonstrations.

on gender, we also propose two versions of body regressors
for males and females, respectively, which are separately
trained.

3.2.2 Training

Training the marker predictor. First, we train the pre-
dictor to learn each individual motion primitive. Similar
to MOJO [80], the training loss contains a reconstruction
term and a robust KL-divergence term to regularize the la-
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tent space, which is formulated to

Loredictor = Ey [[Y = Y7 + AEy [ AY — AY "]
+ U (KL-div(¢(Z|X,Y)||N(0,I))),
(D

in which "¢¢ means the reconstructed variable, A denotes
the time difference, and A = 3 in our implementation. The
KLD term employs a robust function ¥(s) = 1+ s? —
1[15], which automatically reduces the gradient of the KLD
term when its value is small, to alleviate posterior collapse.

Second, we fine-tune the predictor by rolling out longer
sequences, like in [41,48,59]. Specifically, we use the last
one or two frames of a generated motion primitive as the
motion seed to generate the next motion primitive, and we
minimize the same loss Eq. (1) as above. The transfor-
mation between motion primitives is based on the ground
truth canonical coordinate. Since this rollout training pro-
cess takes prediction errors into account, learned generative
models can produce long motions stably during testing, and
favors recovering body shape when the motion seed is not
fully valid. In our experiments, the time horizon of the roll-
out is set to 8 motion primitives. The 1-frame model and
the 2-frame model are trained separately.

Training the body regressor. The body regressor is trained
with batches of canonicalized motion primitives. The train-
ing loss is based on forward kinematics, and is given by

£regressor - ‘M o M(®7ﬂ) - Vqt‘ + Oé|0h|2, (2)

in which Mo denotes selecting marker vertices from the
mesh template, V,; denotes the ground truth body surface
markers, and o = 0.01 in our work. This hand regulariza-
tion term is necessary, since there are only 3-4 markers for
each hand, and none of them are on the fingers. The regres-
sor is trained for male and female bodies separately. Al-
though we only train the body regressors with ground truth
markers, it performs stably when taking predicted markers
as input in our trials. We did not observe the advantages of
training the predictor and the regressor jointly in our exper-
iments (see Sec. 4.1).

3.3. Motion Synthesis and Control

By implementing GAMMA recursively, we can either
synthesize random motion by sampling z from A/ (0, I) at
all steps, or control the motion to reach the goal by addi-
tionally applying a policy network. The recursion mecha-
nism incorporates a SMPL-X body model, a motion blend-
ing module, and a canonicalization module, which are illus-
trated by dash curves and orange blocks in Fig. 2.

The SMPL-X module is to obtain the markers on the
body mesh, which is regressed from predicted markers.
Compared to the optimization-based reprojection scheme

in MOJO [80], our regression is significantly faster without
degrading the accuracy (see Tab. S2). However, due to lack
of regularization, the regressor cannot guarantee the body
is always valid. Invalid bodies can produce corrupted mo-
tion seeds, and hence destroy all future motion generation
steps. Therefore, the blending module is essential to keep
the recursion stable. Although one can use the predicted
markers as the motion seed only, prediction error gradually
accumulates over time in this case, causing high-frequent
body movements and jitters.

3.3.1 Goal-driven Motion Policy

Inspired by [41], we formulate motion synthesis as a
Markov decision process and control it via RL to reach a
goal. Under this setting, we define a time sequence of tu-
ples {(s¢, ar,7¢) }1_, denoting the state, the action, and the
reward at each primitive generation step.

The state. The state incorporates the motion seed and the
normalized vectors from individual markers pointing to the
goal in the canonical space. Given the goal location g € R3
on the ground plane, the state can be given by

si=(X,(g— X)n)" € RXVXS, 3)

in which I € {1, 2} denotes the length of the motion seed,
V denotes the number of markers, and (-),, denotes the nor-
malized 3D vector with unit length. This state has balanced
dimensions between the motion seed and the goal-based
features. Normalizing the vector length is helpful to sta-
bilize the policy training in our trials.

The action. Like in [4 1], we regard the latent variable z as
the action to generate the current motion primitive.

The reward. The reward evaluates the quality of a gener-
ated motion primitive, which is given by

T = Tpath + ﬁl Tori+ 62 Tcontact T ﬁ?) Tvposer + ﬁ4 Tgoal, (4)

including the path following reward, the body orientation
reward, the body-ground contact reward, the valid body
pose reward, and the goal-reaching reward, respectively.
Each of them ranges from 0 to 1. rpqs, €ncourages moving
towards the goal while following the straight path, which
can be given by

(7 — PV )ns (@™ — D)) + 1
2 b

Tpath = (5)
in which (p7’ —p(" ) denotes the normalized pelvis move-
ment along the ground plane, and (g*¥ — p;¥), denotes
the normalized direction to the goal along the ground plane.
Tor; €ncourages the body to face the goal and can be formu-
lated as

(o1, (g™ = P7')n) +1

ori — 5 6
r . ©)
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in which or denotes the unit vector of the body facing di-
rection at the last motion primitive frame. r.ontqct €nCOUT-
ages the body moving along the ground plane and discour-
age skating, which is formulated as
Teontact = € PTPol L = 1¥ial2 (7
which discourages the pelvis Z-location shift and encour-
ages the minimal marker speed close to zero within a mo-
tion primitive. 7yposer €ncourages the body pose to keep
valid, and is formulated as
Tvposer = e—|ﬂ(9)\27 3
which gives a higher value if the encoded pose in the
VPoser [52] latent space is closer to 0. The reward 74441
is added to all the motion primitives in the entire motion se-
quence according to the closest distance between any mo-
tion primitive to the goal. This reward can be formulated as

Lf\pzyfg\z) o — aly > €
( T i |p* g|2 9)

1 otherwise

Tgoal =

in which p{Y denotes the pelvis XY-location at the last
frame of the closest motion primitive, L denotes the range
of the activity area, (-); thresholds values to be non-
negative, and e is the tolerance defining the goal is reached.

Policy network and training. We employ the actor-critic
mechanism [66] for training the policy. The actor produces
a diagonal Gaussian distribution 7 (2;|s;), and its architec-
ture is illustrated in Fig. 2. The critic network shares the
GRU with the actor and is only used in the training phase to
estimate the expected return for the advantage function.

To train the policy, we set up a simulation environment.
The area range L is a 20 x 20m? ground plane. At the
beginning of the simulation, we create a character with a
random gender, body shape, and pose, and place it in the
center of the area with a random facing orientation. We
then randomly set a goal on the ground following a uniform
distribution. We first use the 1-frame model to produce 32
motion primitives from the same initial body, and then use
the 2-frame model to generate motions for each body clone.
The simulation terminates after generating 60 primitives, or
all motions reach the goal. The goal is regarded as reached
if its horizontal distance to the body pelvis is smaller than
0.75m in our trials.

We train the policy network for 500 epochs and run the
simulation 8 times for each epoch. Therefore, we collect
motion data from 4000 random body-goal pairs. We update
the policy network at each epoch by minimizing the follow-
ing loss

['policy = LPPO +E [(Rt - V(St))2

+ a¥ (KL-div(7(2|s)||N(0,1)))), (10)

in which the first term updates the policy network with
PPO [61], the second term is to update the critic network
for better value estimation, and the third term is to regu-
larize motion in the latent space. R; denotes the expected
return from rewards with a discount factor. More details are
referred to the appendix.

3.3.2 Tree-based Search

Given the probabilistic nature of our generative model, there
is no hard constraint on the body-scene interaction, when
sampling motions from the latent space. Therefore, we ex-
ploit a tree-based search to discard motion primitives with
inferior body-ground contact during test time.

Inspired by random tree-based motion planning [35,36],
we organize the motion generation process into a tree struc-
ture, with the root being the initial body pose. Each node
denotes a motion primitive, and hence has one parent and
multiple children. In addition, each node has a quality or
cost value, and all nodes at the same level are ranked. Dur-
ing generation, we can keep the best K nodes to yield new
motions, and discard the rest. Specifically, at the first level,
we generate [V primitive nodes from the root, and only keep
the best K while discarding others. At the second level,
we will have KN nodes after generation, and we keep the
best K. And so on. This tree-based search works both for
z ~ N(0,I)and z ~ 7(z|s). With the learned policy, the
search space is significantly reduced.

The design of the node quality/cost depends on the ap-
plication scenario and can be different from the reward. For
example, one can set a high weight on the foot-ground con-
tact to discard floating bodies, or put a high weight on the
distance to the goal to encourage fast movement.

4. Experiment

In this section, we perform empirical evaluations on mo-

tion realism and motion controllability. Additional exper-
iments, including the performance of the marker predictor
and the body regressor, comparison with other body rep-
resentations, the influence of bodies on motion generation,
and runtime test, are presented in the appendix.
Dataset. We exploit the large-scale mocap data
AMASS [44]. Specifically, we train the marker predictors
on CMU [3], MPI HDMOS5 [50], BMLmovi [ 19], KIT [45]
and Eyes Japan [2]. When training the body regressors,
we additionally use BMLrub, Transitions and TotalCap-
ture [69], but exclude KIT for testing (see Sec. A.1).

For each mocap sequence, we downsample it to 40fps,
and trim it into motion primitives. Each motion primitive
clip contains 10 frames or 0.25 seconds, and is canonical-
ized before model training. In addition, we also prepare
longer canonicalized clips with 10 motion primitives, which
are used for training with rollout.
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4.1. Evaluation on Motion Realism

We randomly select 100 static poses from HumanEva
and ACCAD, respectively, and generate a 10-second mo-
tion based on each static pose.

Baseline and our methods. To our knowledge, Hu-
MoR [59] is the state-of-the-art generative model for gener-
ating long-term motions of diverse 3D bodies. To produce
motions with static poses like ours, we set zero velocities to
the initial bodies and generate 10-second motions.

Our method has several versions. ‘ours-e2e’ denotes
training predictor and regressor end-to-end (see appendix).
‘ours-ro’ exploits a marker predictor with rollout training,
and blends the predicted markers and the reprojected mark-
ers by averaging. ‘ours-reproj’ exploits a marker predictor
without rollout training, and only uses the reprojected mark-
ers on the 3D body as the next motion seed. The suffix ‘-xf’
denotes that the number of frames in the motion seed is Xx.
We also use ‘ours-ro-policy’ to test the influence of the pol-
icy network. In this case, we set a random goal for each
initial static body, and generate a 10-second motion. More-
over, we randomly choose 200 sequences from AMASS to
measure how far we are from generating real motion. For
a fair comparison, neither test-time optimization nor tree-
based search is performed in this experiment.

Evaluation metrics. The metrics are about body-ground
contact and perceptual study. For the body-ground contact,
we set a threshold height of 0.05m from the ground plane
and a speed threshold of 0.075m/s for skating. Then the
contact score is defined as

— 1 — 5 — i _ |
s—e (min|Y,|—0.05)+ .e (min |Yyer] 0‘07o)+7 (11)

in which |Y,| and |Y,;| denote the height absolute value
and the velocity magnitude, respectively. (-)+ denotes the
zero-threshold function equivalent to ReLU. Therefore, this
score ranges from O to 1, and is the higher, the better. For
the perceptual study, we render the 100 generated motions
from HumanEva and let Amazon Mechanical Turk users
evaluate on a six-point Likert scale from ‘strongly disagree*
(1) to ‘strongly agree’ (6), similar to [80,81].

Results and discussion. The results are shown in Fig. 3.
First, we can see that our methods consistently outperform
HuMoR w.r.t. the body-ground contact. In particular, the
motion generated by the policy network outperforms all
others. This shows the contact reward for the policy training
is effective. We can also observe that the end-to-end train-
ing is not favorable in this case. Second, user study results
show that our methods produce perceptually more realistic
motions than HuMoR. By comparing ‘ours-ro-policy’ and
‘ours-ro-2f”, the perceptual score increases by a large mar-
gin, indicating the policy’s effectiveness. Since goal-driven
behavior is common in our daily lives, our generated mo-
tions with goals are more perceptually realistic than long-
term random motions.
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Figure 3. Motion realism analysis. From top to bottom, show the
body-ground contact and the perceptual score, respectively. At the
top, the box plot denotes the lower and the upper quartiles, and
the numbers denote the median. At the bottom, the X and Y-axis
denote the perceptual scores and the total counts, respectively. The
mean perceptual scores are shown beside the legend.

According to the visualizations, we can see that the Hu-
MoR can produce observable body jitters and other high-
frequency non-plausible movements. In contrast, our meth-
ods produce smoother motions with more plausible body-
ground contact. However, we observe some bodies moving
stiffly in our results, particularly in the 1-frame-based mod-
els. Since these methods generate motions only based on a
single frame, the continuity of higher-order dynamics is not
guaranteed. The 2-frame-based models can alleviate this
issue, especially when the body motion is slow and low-
frequent.

4.2. Evaluation on Motion Control

Datasets and evaluation metrics. For testing, we ran-
domly select 100 character-goal pairs from the simulation
area. Like policy training, each body yields 32 motions.
The simulation terminates when one body clone reaches the
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steps).  success rateT  avg. dist.]  contact score?
g-CVAE 24.1 0.91 3.46 0.8
policy(10) 33.9 0.95 3.32 0.94
policy(1) 21.2 1.0 3.60 0.93
policy(10) & top1 26.5 0.99 0.04 0.97
policy(10) & top4 23.4 0.96 1.98 0.96

Table 1. Comparison between motion control methods. The
up/down arrows denote the score is the higher/lower the better.
Best results are in bold, second best in blue.

. ]
g-CVAE i policy (10) ;
4 g

i3

>y
rO’I

Figure 4. Perceptual comparison between control methods. The
subfigures and the main figures denote the starting and the ending
frame, respectively. The yellow ring denotes the goal.

goal or after generating 60 primitives.

The evaluation metrics include: 1) steps, i.e. the mini-
mum number of motion primitives to achieve the goal. 2)
Success rate. We regard a test as successful if anybody’s
clone reaches the goal within 60 motion primitives. 3) Av-
erage distance. We average the distances of all bodies to
the target at the end of each simulation, which also mea-
sures how bodies are scattered when the goal is reached. 4)
Contact score, which is defined in Eq. (11).

Baseline and our methods. A conventional baseline is to
incorporate the goal into the generative motion model as an
additional condition, like in [25,65]. For a fair comparison,
we add the goal-based features in Eq. (3) to our models and
denote this baseline as ‘g-CVAE’.

About our methods, we use ‘policy ()’ to denote the
version with the KLD term weight in Eq. (10). In addition,
we use ‘top kK’ to denote selecting the best k primitives at
each tree level, according to the contact score and the dis-
tance to the goal.

Results and discussions. As shown in Tab. 1, our policy-
based methods are superior to ‘g-CVAE’ w.r.t. all metrics,
in particular the contact score. Between our policy-based
methods, we find a lower KLD weight can lead to faster but
less plausible motions. When exploiting search, the per-
formance consistently improves, and is not sensitive to the
value of k. Fig. 4 visualizes their results. We find ‘g-CVAE’
cannot keep the body valid, probably because the goals for
training can only be from the data, but goals for testing
are random. On the other hand, ‘policy (10)’ can largely
preserve the motion realism while driving the bodies to the
goal. Note that ‘top 4’ includes sub-optimal motions when
calculating the average, so its number is higher than ‘top 1°.

Moreover, we visualize how the policy is trained in
Fig. 5. The initial policy network (at epoch 0) can produce

Epoch 0 t Epoch 25

Epoch 250

Figure 5. Visualization of policy training process. The notations
are same to Fig 4, and the text indicates the training epochs.

valid goal-agnostic and random motions. In the early stage,
the policy drives the body to the goal as quickly as possible,
ignoring motion realism. With more training epochs, the
KLD term in Eq. (10) provides more motion regularization.
At 500 epochs, the goal-reaching behavior and the motion
realism are well balanced. With more training epochs, the
KLD term decreases, causing the motions to become more
regularized while ignoring the goals.

5. Conclusion

In this paper, we propose an automatic solution to popu-
late 3D scenes with diverse moving bodies. We learn gen-
erative models of body surface marker-based motion prim-
itives and synthesize long-term motion with a policy net-
work and tree-based search. Experiments show the effec-
tiveness and advantages over baselines. Together with con-
ventional path-finding algorithms, we can generate diverse
people wandering in the digital environment.

Limitations. The generated motion is not fully physically
plausible since our method is purely data-driven. For ex-
ample, the body can tilt, ignoring gravity. Compared to
AMASS sequences, motion realism still has room to im-
prove. Motion generated by the policy may take a long time
to reach a goal in the near distance, which is different from
real human behavior. In the future, we will extend our work
to synthesize more complex body-scene interactions.

Social impact. Although training male and female models
separately can improve motion realism, our method could
be potentially biased, if the male and female motion se-
quences are not well balanced in the dataset.
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