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Abstract

Classic black-box adversarial attacks can take advan-
tage of transferable adversarial examples generated by
a similar substitute model to successfully fool the target
model. However, these substitute models need to be trained
by target models’ training data, which is hard to acquire
due to privacy or transmission reasons. Recognizing the
limited availability of real data for adversarial queries, re-
cent works proposed to train substitute models in a data-
free black-box scenario. However, their generative adver-
sarial networks (GANs) based framework suffers from the
convergence failure and the model collapse, resulting in
low efficiency. In this paper, by rethinking the collabora-
tive relationship between the generator and the substitute
model, we design a novel black-box attack framework. The
proposed method can efficiently imitate the target model
through a small number of queries and achieve high at-
tack success rate. The comprehensive experiments over
six datasets demonstrate the effectiveness of our method
against the state-of-the-art attacks. Especially, we con-
duct both label-only and probability-only attacks on the
Microsoft Azure online model, and achieve a 100% attack
success rate with only 0.46% query budget of the SOTA
method [49].

1. Introduction

Recently, deep neural networks (DNNs) have been em-
ployed as a fundamental technique in the advancement
of artificial intelligence in both established and emerging
fields [24–28, 31–33, 42, 45, 46, 48]. Despite the success of
DNNs, recent studies have identified that DNNs are vulner-
able to adversarial examples [3, 6, 13, 16, 30, 41]. A virtu-
ally imperceptible perturbation to an image can lead a well
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Figure 1. Efficiency comparison with the state-of-the-art meth-
ods DaST [49] and DFME [43]. The left subplot shows substitute
models accuracy and the right subplot shows untargetd attack suc-
cessful rate. Attacks are conducted on MNIST in probability-only
scenarios with query budget Q = 40k (1k = 1000).

trained DNN to misclassify. Consequently, the security con-
cerns about DNNs have attracted many researchers’ interest
in studying the adversarial vulnerability and robustness of
networks [29].

Classical works [2, 13, 34] perform attacks in the white-
box setting: with full access to the model’s parameters
and architectures, they can directly use gradient-based opti-
mization to find successful adversarial examples. However,
this attack scenario is usually unavailable in real-world de-
ployment due to privacy and security. As a more practical
scenario in real-world systems, black-box attacks assume
that attackers can only query the target network and obtain
its outputs (probability or label) for a given input. By query-
ing the target network with real images, malicious attack-
ers can train substitute models to imitate the target models.
Then the substitute models can be used to generate adver-
sarial examples [8, 17, 39] to attack the target model based
on the transferability [10, 11, 41] of these adversarial ex-
amples. However, substitute models need to be trained by
target models’ training data, which is hard to acquire due to
privacy or transmission reasons.

Recently, some researchers [43, 44, 49] have recognized
the limited availability of real data for adversarial queries
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and proposed to train substitute models in a data-free black-
box scenario. By adopting the principle of generative adver-
sarial networks (GANs), they [43, 49] tried to address this
problem with a competition game: A generator is respon-
sible for synthesising some input images, and the substitute
model is trained to imitate the target model on these images.
In this game, the two adversaries — a substitute model and
a generator model, respectively try to minimize and max-
imize the matching rate between the substitute model and
the target model. However, it is very difficult to accurately
quantify substitute-target disagreement in a black-box sce-
nario, let alone directly using this object to train the genera-
tor. Consequently, this unstable training process makes the
models hard to converge. Even after an unlimited number of
queries, their approach inevitably leads to model collapse,
and can barely reach their ideal Nash equilibrium point in
practice (We empirically verify these phenomenons in Sec-
tion 4). Though the prior art has shed the light on data-free
substitute models training, these methods require a large
number of queries, which is not practical in real-world set-
tings (e.g., 2M (million) queries to attack the online model
on Microsoft Azure [49]). Actually, commercial models
are often deployed as pay-per-query prediction APIs for the
sake of the protection of data privacy. It remains an open
and very challenging problem: how to effectively learn a
substitute model with a limited query budget?

In this paper, we consider a more stringent yet more prac-
tical adversarial scenario, a black-box model with no access
to the real data and limited budgets for querying the target
model. Rethinking the collaborating relationship between
the generator and the substitute model, we design a pow-
erful black-box attack framework. As shown in Figure 1,
the proposed method can efficiently imitate the target model
through a small number of queries and achieve high attack
success rate in both probability and label based black-box
settings. Our contributions are as follows:

(1) We revisit the convergence problem of previous data-
free attack methods caused by their unstable training pro-
cess. Instead of training the generator with the inaccu-
rate substitute-target disagreement, we change the game be-
tween the generator and the substitute model. The two col-
laborating players are no longer forced to directly compete
in one minimize-maximize game. Instead, we give them
different objectives. Especially for the generator, we reset
its objective as synthesising surrogate dataset whose distri-
bution is close to the target training data. While, the substi-
tute model aim to efficiently imitate the target model with
the generated training examples. In our new game, the gen-
erator and the substitute model have relatively independent
optimization processes, which allows the substitute model
to converge more stably to the target model.

(2) Besides the problem of convergence, the previous
methods suffer from the model collapse, resulting in low

substitute model accuracy and low attack success rate. We
attempt to alleviate the mode collapse problem in data-free
substitute model training, through the lens of balancing data
distribution and promoting data diversity. On one hand, we
maximize the information entropy of the synthetic data in
each batch. When it maximizes, the categories are evenly
distributed. On the other hand, we randomly smooth the
pseudo ground-truth labels and steer the generator to syn-
thesis diverse data in each category.

(3) To further improve the training efficiency of the sub-
stitute model, we propose to go deeper into the utilization
of synthetic data. To achieve higher attack success rate, the
substitute model are encouraged to have decision bound-
aries that are highly consistent with the target model. Ac-
cordingly, we argue that there are two types of data that
need to be given extra attention. And we design two losses
to boost the training of the substitute model.

(4) Our empirical evaluations on six datasets under both
untargeted and targeted attacks show that the proposed
method can efficiently imitate a target model using a small
number of queries and successfully generate adversarial ex-
amples using the substitute model. Specifically, we achieve
98.0% untargeted attack success rate in the label-only
scenario on CIFAR10 with only 3.75% query budget of
the previous SOTA method DFME [43]. Moreover, we con-
duct both label-only and probability-only attacks on the Mi-
crosoft Azure online model, and achieve a 100% attack
success rate with only 0.46% query budget of the previ-
ous SOTA method DaST [49].

2. Related Work
Black-box Adversarial Attacks In the black-box setting,
attackers can only query the target network and obtain its
output (probability or label) for a given input. The transfer-
ability of adversarial examples was first verified by Szegedy
et al. [41], who found that adversarial examples generated
by one model are very likely to be misclassified by another.
Consequently, in the black-box setting, malicious attack-
ers can train substitute models to imitate the target mod-
els. Then the substitute models can be used to generate the
adversarial examples [8, 17, 39] to attack the target model
based on the transferability [41]. In this paper, we focus
on these transfer-based black-box attacks with a more strin-
gent yet more practical adversarial scenario: a black-box
model with no access to the real data and limited budgets
for querying the target model.

Note that there is another kind of black-box attack, called
query-based attack [1, 4, 5, 7] which utilizes inputs query
feedback to guide the attack method to generate adversarial
examples. Cheng et al. [5] proposed a score-based attack
method zeroth order based attack (ZOO) using gradient es-
timation. Brendel et al. [1] first proposed a decision-based
attack. Although these query-based methods also do not re-
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quire real training data when performing black-box attack-
sthere are still some notable differences from the data-free
transfer-based black-box attacks. The most significant dif-
ference is that query-based attack methods generate attacks
based on instances (they need to use one original data to ac-
cess the attacked model numerous times in the evaluation
stage to generate each attack). Therefore, the query cost re-
quired by their method is linearly related to the number of
generated adversarial samples. While, transfer-based black-
box attack does not need any query in the evaluation stage
but needs queries in the training stage. Such attacks will no
longer require an additional query cost to generate attack
samples after a substitute model is obtained.
Data-free Knowledge Distillation Data-free knowledge
distillation transfers knowledge of a teacher model to a stu-
dent model without original dataset [35]. A generative
model is trained to synthesize data samples for students to
query teacher in data-free manner [9, 12, 35]. The success
of data-free knowledge distillation hints at the feasibility of
data-free adversarial attacks [44, 49]. However, previous
works assume that the teacher model is a white-box model,
and directly utilized the gradient or feature map information
for distillation [12]. The gradient information of teacher
model is required to backpropagate to update student model,
which is not available in black-box scenarios. [43] utilizes
data-free knowledge distillation to extracts model knowl-
edge, which aims to steal the knowledge of target models.
Different from previous methods, it approximates the gradi-
ent of the target model which is a further step and inspiring
to adversarial attack. But the proposed method only takes
probability-only output of the target model into considera-
tion and ignores the label-only situation, which is a chal-
lenging and practical task in real-world application.

3. Methodology

3.1. Attack Scenarios and Notations

In real-world applications, pretrained models stored on
a remote server only provide APIs for inference. Neither
the model parameters nor the training data are accessible
to users. Assume that attackers can only access the label
or probability outputs of the black-box model returned by
APIs. We define them as label-only and probability-only
scenarios, respectively. Important notations appeared in this
paper are described in Table 1.

Table 1. Important notations and their descriptions

Notation Description
T ,S,G target model, substitute model, generator
X,Z, Y synthetic data, random noise, label

3.2. Framework Overview

In this section, we illustrate the framework of our pro-
posed data-free adversarial attack method in Figure 2. The
procedure of our method consists of two stages: 1) Effi-
cient Data Generation and 2) Substitute Model Distillation.
In stage 1, we reset the objective of generator G as syn-
thesising desired data whose distribution is close to the tar-
get training data. G is not directly involved in substitute
model distillation in stage 2. Consequently, the two players
are no longer forced to directly compete in one minimize-
maximize game. In stage 2, substitute model S aims to ef-
ficiently imitate the target model T with the generated data.
Based on transferability [41] of adversarial examples, these
adversarial examples carefully designed by S can then be
transferred to T . The detailed description of our method is
shown in Algorithm 1.

3.3. Efficient Data Generation

Firstly, given a batch of random noise Z =
{z1, z2, · · · , zn} and pseudo label Y = {y1, y2, · · · , yn},
the generator G is utilized to maps Z to the desired data
X = G(Z). The distribution of synthetic data X is ex-
pected to be similar to the real data. If the images generated
by G have the same distribution as the training dataset, their
predictions should also be similar. Thus, Then we optimize
G as follows:

LG = CE (T (X) , Y ) , (1)

where CE denotes cross-entropy loss function. However,
the back propagation of this loss requires the gradient infor-
mation of T , which violates the principles of black-box at-
tacks. Therefore, we use S to approximate T in Equation 1
as (We empirically verify the feasibility of this replacement
in experiment):

LG = CE (S (X) , Y ) . (2)

Note that the pseudo label y can be randomly generated
or provided by T . However, continuously querying T dur-
ing data generation will greatly consume the limited query
budget. As a result, we randomly sample Y as the pseudo
ground-truth labels.

As discussed in the Introduction, the previous method
suffers from the model collapse, resulting in low substi-
tute model accuracy and low attack success rate. We at-
tempt to alleviate the mode collapse problem, through the
lens of balancing the generated data distribution and pro-
moting the data diversity. In order to make the generated
samples covering all categories in our method, we intro-
duce information entropy to measure the degree of chaos
for labels. Assuming that there are k categories in total, and
Hinfor = − 1

k

∑k
i=1 pi log pi is the information entropy

loss for a given probability vector P = {p1, p2, . . . , pk}.
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Figure 2. The illustration of our proposed data-free adversarial attack method.

Then the information entropy loss LH for synthetic data is
formulated as a regularization term:

LH = −Hinfor(
1

n

k∑
i=1

S(Xi)) (3)

When LH reaches the maximum value, the categories are
evenly distributed. To further promote the data diversity,
we randomly smooth [40] the pseudo ground-truth labels
and steer the generator to synthesis diverse data in each cat-
egory.

In summary, we minimize the following loss function to
update G :

LG = CE
(
S (X) , Ŷ

)
+ αLH , (4)

where α denotes the hyperparameter to adjust the value of
regularization and Ŷ is the smoothed label. For each epoch,
we run t iterations to synthesize X . As opposed to previous
research, our approach does not rely on the adversarially
trained G. Actually, we randomly initialize G at each epoch.
In this case, G is only responsible for synthetic data X gen-
erated in this epoch, and G does not directly participate in
the model distillation stage.

3.4. Substitute Model Distillation

Once we obtain the synthetic data X , the outputs of
T (X) and S(X) are expected to be as consistent as pos-
sible. Inspired by knowledge distillation [15], S can imitate
the outputs of T as follows:

Ldis = d(T (X),S(X)), (5)

where d is a metric to measure the distance. In detail,
for label-only scenario, this measurement can be the cross-
entropy loss, and for probability-only scenario, d can be L2

Norm.
To achieve higher attack success rate, the substitute

model are encouraged to have decision boundaries that are

Algorithm 1 The proposed data-free black-box attack.

Require: random noise Z, generator G, target model T ,
substitute model S, synthetic data X , epochs E, itera-
tions per epoch t, parameters θG, θS and learning rate
γ1, γ2.

1: for each e ∈ E do
2: // Efficient data generation:
3: for each i ∈ t do
4: Generate a batch of data X ← G(Z)
5: Compute LG = CE (S (X) , y) + αLH

6: Update θG ← θG − γ1 ▽θG LG(θG)
7: Save X to D = {X1, · · · , Xt}
8: // Substitute model distillation:
9: for x in D do

10: Compute LS = Ldis + β1 · Lbd + β2 · Ladv

11: Update θS ← θS − γ2 ▽θS LS(θS)
12: return θS

L�� ��������� Desired data  

×
×

×

×

×

Substitute Target Substitute Target

Synthetic Data

Test data

Classification error

Adversarial attack

Adversarial examples

×
Decision boundary 

Figure 3. Left: Low diversity data and easy to learn. Right:
Desired data for distillation.

highly consistent with the target model. However, as shown
in Figure 3, the left sub-figure illustrate the poor data gen-
erated by previous methods with low diversity. They are
far from the classification boundary. These data are very
easy to learn for S and can easily lead to overfitting. To
further improve the training efficiency of substitute mod-
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els, we propose to go deeper into the utilization of synthetic
data. Accordingly, we argue that there are two types of data
that need to be given extra attention. The first type refers to
data where there are decision disagreements between S and
T (black circles). This type of data mainly exists between
the decision boundaries of the target and substitute models.
Giving more weight to these data helps to bridge the gap be-
tween the two decision boundaries. We pay more attention
to those samples and introduce a boundary support loss:

Lbd = d(T (X),S(X))·1 {argmax T (X) ̸= argmaxS(X)} .
(6)

The function 1 is an indicator when T and S produce in-
consistent predictions on the given data.

Data whose adversarial samples can easily transfer from
S to T are considered as another important type. The pres-
ence of this type of data means that near it, the decision
boundary of S and T are relatively close. Giving more at-
tention to this type of data ensures S continues to move in
the right direction close to the boundary of T . Then we
introduce an adversarial samples support loss:

Ladv = d(T (X),S(X))·1
{
argmax T (X̂) = argmaxS(X̂)

}
.

(7)
X̂ is the adversarial examples generated by PGD [34] at-
tack. Note that this loss will cost additional query cost. Note
that this loss requires us to query the target model again.

In summary, we update the loss of S as:

LS = Ldis + β1 · Lbd + β2 · Ladv, (8)

where β1 and β2 control the value of different loss functions
and are set to 1 by default.

4. Experiments
4.1. Experiment Setup

Datasets and models We evaluate our method on popu-
lar datasets: MNIST [23], FMNIST [47], SVHN [36], CI-
FAR10 [19], CIFAR100 [19] and Tiny-ImageNet [22]. Fol-
lowing the setting in [49], for MNIST and FMNIST, we
employ a lightweight CNN model as the target model. A
small CNN is used as the substitute model. Besides, we uti-
lize ResNet-34 [14] for SVHN and CIFAR-10 as the target
model, and use ResNet-18 [14] as the substitute model. Fol-
lowing the architecture in [12], we use the same generator
in StyleGAN [18].

Training details The substitute models are trained with a
batch size of 256 with SGD, with an initial learning rate of
0.01, a momentum of 0.9 and no weight-decay. The genera-
tor is also trained with a same batch size of 256, but using an
Adam optimizer with a fixed learning rate of 0.001. As there
are more categories in CIFAR100 and Tiny-ImageNet (100

classes in CIFAR100 and 200 classes in Tiny-ImageNet),
we set the size to 1024 to maintain the diversity of data
generated by G. The training epoch is 400, and we train
the generator 10 rounds at each epoch. The default query
budget Q = 20k for MNIST, FMNIST and SVHN, and
Q = 250k for CIFAR-10, CIFAR-100 and Tiny-ImageNet
in our experiments.

Baselines To ensure fair comparisons, we compare our
method with three types of state-of-the-art approaches:
1) black-box attacks that require for training data, e.g.
JPBA [38] and Knockoff [37]; 2) data-free black-box at-
tacks, e.g. DaST [49] and Del [44]; 3) data-free model ex-
tration attacks based on probability returned by the target
model, e.g. DFME [43]. Note that this method is not de-
signed for label-only scenarios. To facilitate comparison,
we extend this method to label-only scenarios based on the
framework of DaST. We conduct all experiments under a
same query budget Q.

Evaluations We utilize three common attack methods to
generate adversarial examples, which include FGSM [20],
BIM [21], PGD [2] *. For FMNIST and FMNIST, we set
perturbation bound ϵ = 32/255, and step size α = 0.031.
And for SVHN, CIFAR10 and CIFAR100, we set the per-
turbation bound ϵ = 8/255, step size α = 2/255. In the
untargeted attack scenario, we only generate adversarial ex-
amples on the images classified correctly by the attacked
model. In targeted attacks, we only generate adversarial ex-
amples on the images which are not classified to the spe-
cific wrong labels. The attack success rate (ASR) are calcu-
lated by n/m, where n and m are the number of adversarial
examples which can fool the attacked model and the total
number of adversarial examples, respectively. To evaluate
the performance of the proposed method in real-world tasks,
we further apply our method to attack the online model of
Microsoft Azure.
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Figure 4. Training flaws of previous SOTA methods.

*We use AdverTorch for implementation
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Table 2. ASR(%) comparisons between our proposed method and baselines over MNIST and FMNIST under a same query budget Q =
20k.

Dataset Type Targeted, label-only Untargeted, label-only Targeted, probability-only Untargeted, probability-only
Method FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

MNIST

JPBA 3.89 6.89 5.31 18.14 23.56 20.18 4.29 7.02 5.49 18.98 25.14 21.98
Knockoff 4.18 6.03 4.66 19.55 27.32 22.18 4.67 6.86 5.26 21.35 28.56 23.34

DaST 4.33 6.49 5.17 20.15 27.45 27.13 4.57 6.41 5.34 25.36 29.56 29.14
Del 6.45 9.14 6.13 22.13 25.69 23.18 6.97 9.67 6.24 24.56 25.35 25.28

DFME 10.45 14.28 6.38 50.14 68.89 63.38 11.67 16.32 7.93 54.16 70.18 66.32
Ours 14.45 28.71 9.86 66.21 95.90 87.89 16.99 36.82 14.55 60.45 97.46 80.76

FMNIST

JPBA 6.45 8.46 7.57 24.22 30.56 30.11 6.89 8.56 7.56 26.23 31.35 31.11
Knockoff 6.34 8.35 7.32 28.19 36.88 35.92 6.65 8.98 8.23 30.21 36.94 36.22

DaST 5.38 7.18 6.53 30.45 36.17 34.23 5.33 7.46 7.84 32.14 37.34 34.91
Del 3.89 8.19 7.47 28.14 34.14 32.45 3.23 8.59 8.11 31.43 36.26 33.87

DFME 7.18 22.45 24.58 60.45 74.29 72.19 9.44 26.89 25.74 62.15 78.56 77.89
Ours 30.08 76.46 32.42 91.41 100.00 98.83 31.15 79.3 35.45 91.99 99.90 98.93

4.2. Empirical Studies of Previous Methods

To better illustrate the training flaws of the previous
SOTA methods (DaST [49] and DFME [43]) that we men-
tioned in the introduction, in this section we provide an
empirical analysis of their proposed min-max competition
game. As shown in Figure 4, in the top subplot, we can see
the loss for the generator (green) and the loss for the sub-
stitute (orange) both oscillating sharply over time. Mean-
while, the accuracy (red) of the substitute model fluctuates
around a low level (10%) and the transferable attack suc-
cessful rate (blue) gradually decreases in violent oscilla-
tions. This unstable training process caused by the inaccu-
rate substitute-target disagreement makes the models hard
to converge. In the bottom subplot, we can see a relatively
stable substitute (orange) loss due to a more accurate esti-
mation of the substitute-target disagreement. However, with
the increase in the number of training epochs, the substitute
model loss stays close to zero, despite the increasing gen-
erator loss (green). This suggests that the generator is poor
at generating examples in some consistent way that makes
the substitute model hard to learn any more knowledge from
the target model. The substitute accuracy (red) and the at-
tack success rate (blue), which remain low and no longer
increase, also indicate the emergence of model collapse.

4.3. Black-box Attack Results

Experiments on MNIST and FMNIST We report the at-
tack success rate under targeted and untargetd attack for
label-only and probability-only scenarios. As shown in Ta-
ble 2, the attack success rate of our method is much higher
than other state-of-the-art baselines on all datasets. We re-
mark that our proposed method can achieve a very high
attack success rate with a small number of queries, while
other methods perform poorly. Compared to targeted at-

Table 3. Attack success rate on MNIST. A large query budget Q =
10M for all baselines, and a very small query budget Q = 10k for
our proposed method.

Type Dataset Attack DaST (10M) Del (10M) DFME (10M) Ours (10k)

L
ab

el
-o

nl
y MNIST

FGSM 35.75 34.30 37.20 66.21
BIM 38.58 38.65 70.85 95.91
PGD 36.12 36.95 56.46 87.89

FMNIST
FGSM 39.47 37.02 63.30 91.99
BIM 42.65 42.66 74.08 99.91
PGD 39.24 40.42 59.31 98.93

pr
ob

ab
ili

ty
-o

nl
y

MNIST
FGSM 55.64 53.34 58.44 60.45
BIM 58.55 58.27 90.36 97.46
PGD 55.89 56.92 75.88 80.76

FMNIST
FGSM 59.13 56.97 82.43 91.41
BIM 62.37 61.76 93.76 100.00
PGD 58.90 60.20 79.26 98.83

tacks, all of these methods show a higher ASR for un-
targeted attacks. The reason is that untargeted attacks at-
tempt to misdirect the model to predict any incorrect class,
whereas targeted attacks attempt to misguide the model to
a particular class. Obviously, our method can even ob-
tain higher ASR improvements than other baselines in tar-
geted attacks. Moreover, we found that other methods can
not achieve a satisfactory attack success rate with a small
number of queries Q = 10k. This unstable training pro-
cess caused by the inaccurate substitute-target disagreement
makes the models hard to converge. Because their gener-
ators are trained with the inaccurate substitute-target dis-
agreement, which is difficult to converge at an early stage.
Consequently, these methods require a large number of
queries, which is not practical in real-world applications.

To futher demonstrate the advantages of our method,
we report the best results of other data-free adversarial at-
tack methods with a large number of queries Q = 10M.
As shown in Table 3, our method still outperforms other
baselines by a large margin with only a small number of
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Table 4. ASR(%) comparisons between our proposed method and baselines over several datasets. The default query budget Q = 250k.

Dataset Type Targeted, label-only Untargeted, label-only Targeted, probability-only Untargeted, probability-only
Method FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD FGSM BIM PGD

SVHN

JPBA 4.13 5.18 5.03 22.15 27.43 26.23 4.67 5.85 5.52 23.11 27.72 26.82
Knockoff 3.89 4.98 4.82 23.78 26.05 24.75 4.43 5.50 5.15 24.51 26.94 24.99

DaST 4.28 5.19 5.12 22.16 28.94 21.36 5.19 5.82 5.96 22.29 29.29 21.95
Del 4.67 5.01 4.45 20.14 25.44 24.78 5.53 5.81 4.81 20.88 25.79 25.74

DFME 9.78 15.38 14.11 34.18 36.82 35.11 10.12 15.88 14.45 34.23 37.54 35.54
Ours 21.58 31.25 21.88 55.76 76.37 74.51 19.34 32.81 24.02 58.01 76.37 75.59

CIFAR10

JPBA 6.32 7.70 7.92 27.82 33.23 31.70 7.28 8.56 7.64 28.77 33.38 31.96
Knockoff 6.26 7.02 7.04 29.61 31.86 30.68 6.46 8.27 7.35 30.02 31.98 30.35

DaST 6.54 7.81 7.41 27.61 34.43 26.99 8.15 8.40 8.26 27.58 34.75 27.47
Del 7.14 7.44 6.95 25.33 30.45 30.34 7.86 8.29 7.17 26.38 31.53 31.47

DFME 12.62 18.32 16.76 39.66 42.07 40.51 12.58 18.70 16.80 39.43 43.33 40.69
Ours 34.57 76.95 72.27 86.13 99.22 99.41 31.54 73.93 69.14 83.89 99.32 99.02

JPBA 4.35 6.20 6.17 33.58 38.54 37.08 5.73 7.50 6.41 34.21 39.12 37.31

CIFAR100

Knockoff 4.40 5.86 5.25 34.84 36.92 36.34 4.88 7.05 6.18 36.01 37.61 35.47
DaST 4.97 6.19 5.92 33.57 39.86 32.71 6.38 7.04 7.01 32.80 40.34 32.78
Del 5.38 5.72 5.69 30.80 35.63 36.15 6.30 6.53 5.23 31.64 36.63 37.44

DFME 11.23 17.02 15.58 45.66 47.26 46.22 10.62 17.62 15.17 44.76 48.73 46.51
Ours 26.64 46.88 42.77 78.61 91.31 91.21 7.91 56.15 52.54 83.69 94.53 94.14
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Figure 5. Left: ASR and accuracy of BIM attacks generated by
our method and DFME with a limited query budget Q = 150k on
CIFAR10. Right: With a large number of queries Q = 4000k,
DFME obtains a comparable performance.

queries Q = 10k. According to Table 2 and Table 3, these
benchmark methods can achieve better performance when
the number of queries is large. This is due to the grad-
ual stabilization training of GAN in the later stages. On
the contrary, in our method the generator and the substi-
tute model are no longer forced to directly compete in one
minimize-maximize game. As a result, our method can con-
verge rapidly at the early stage. This is another proof that it
is feasible and effective for us to replace T with S in gener-
ator training.
Experiments on SVHN and CIFAR-10, CIFAR-100
Since grayscale image datasets with a simple style (i.e.
MNIST and FMNIST) are easily to learn for neural net-
works, underlying representations can be easily learnt when
queried over synthetic data. Therefore, we futher inves-
tigate the performance of our method on more complex
datasets. We remark that we have discussed in Figure 1
that the performance of DaST is very poor on MNIST with

a small query budget, and it is difficult to scale to large
datasets. Consequently, we first compare our method with
the best baseline DFME on CIFAR10 dataset. As shown in
Figure 5, a small query budget leads to extremely unstable
performance for DFME. Our method is still able to obtain
a much higher success rate and accuracy than DFME. Ac-
tually, the accuracy and ASR of our proposed method is
61.9% and 98.0% when Q = 60k, respectively. In suffi-
cient queries (Q = 400M), DFME can obtain an compa-
rable ASR (97.8%) to ours, but the test accuracy is much
lower than our method (43.9%).

As shown in Table 4, we conduct extensive compar-
isons with multiple methods for each dataset under both
probability-only and label-only scenarios. For both untar-
get and target attacking settings, our method achieves the
best ASR over probability-only and label-only scenarios un-
der all datasets. In addition, compared to the strong base-
line DFME, our method significantly outperforms it with a
large margin. Note that the number of categories directly af-
fects the training of substitute model. Experiments on larger
datasets (CIFAR-100 and Tiny-ImageNet) are all conducted
with a large batch size (1024). Obviously, our method still
achieves a very high ASR on CIFAR100 dataset, which has
100 categories of images. Experiments on Tiny-ImageNet
can be found in the supplementary.

Attacks on the Microsoft Azure Online Model To in-
vestigate the effectiveness of our method in a real-world set-
ting, we conduct experiments for attacking the online model
on Microsoft Azure in two scenarios. Following the set-
ting in [49], we employ the example MNIST model of the
machine learning tutorial on Azure as the target model and
make it available as a web service. The black-box scenario
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Table 5. Attack results of the Microsoft Azure online model.

Type Attack DaST Del DFME Ours

label-only
FGSM 66.46 65.22 80.24 98.12
BIM 74.16 73.95 84.26 100.00
PGD 72.55 71.28 83.16 98.35

probability-only
FGSM 71.32 70.05 84.72 99.32
BIM 78.91 78.54 88.66 100.00
PGD 77.49 76.00 87.34 99.56
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Figure 6. ASR of BIM attacks generated by our method for attack-
ing the online model.

does not provide any information regarding this model, in-
cluding its structure and parameters. We can only obtain
information from the outputs of this model. The target
model achieves 91.80% accuracy on MNIST test set. We
report the untargetd attack results for both probability-only
and label-only scenarios in Table 5, and all experiments are
conducted with the query budget Q = 10k. Our method
achieves a 100% attack success rate for both label-only and
probability-only attacks.

We remark that as reported in [49], DaST is trained by
20M queries for the attacked model in the training stage.
However, the attacked Azure model is too simple to attack
for our method. We show the curve of attack success rate of
BIM attacks generated by our method in the training stage
of Azure experiments, which is shown in Figure 6. Obvi-
ously, our method can achieve a high ASR of 100% with a
very small queries Q = 9.2k (much lower than DaST), and
the accuracy of substitute model is 89.11%.

4.4. Comprehensive Understanding of our method

Contribution of different loss To begin with, we investi-
gate the contribution of different loss functions introduced
in our method, including the boundary support loss Lbd and
the adversarial lossLadv described in Section 3.4, as well as
the information entropy loss LH . As shown in Table 6, cut-
ting off both Lbd and Ladv will lead to poor performance,
but it seems cutting off the LH may lead to more severe
degradation. According to our previous discussion in Sec-
tion 3.4, if we do not control the distribution of the labels on
the generated data, the generator can produce skewed data
with an extreme distribution, i.e. label imbalance. Besides,
the boundary support loss Lbd and the adversarial loss Ladv

are also important for substitute model training.

Table 6. Ablation Study by cutting of different modules.

Method SVHN CIFAR10 CIFAR100

Ours 77.13 99.26 94.36

w/o LH 72.45 93.78 90.16
w/o Lbd 73.69 96.02 91.58

w/o Ladv 74.06 97.34 90.12
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Figure 7. Accuracy and ASR of substitute models on various
datasets for untargetd attack and probability-only scenarios.

Convergence Process In this section, we show detailed
accuracy and ASR curves in Figure 7. The training accuracy
increases smoothly during the whole training phrase, and
converge to local optima at around 40 epochs for MNIST
and 50 epochs for FMNIST. In each epoch, the black-box
model is queried for 256 times. With such small queries,
it strongly demonstrate the effectiveness of our method in
stealing the target model in a data-free manner. Addition-
ally, we can see from Figure 7 that the accuracy and ASR
are highly correlated, and the training curve for accuracy
fluctuates slightly. Due to the transferability of adversarial
examples, ASR tends to be higher than the accuracy.

5. Conclusion
In this paper, we consider a more stringent yet more prac-

tical adversarial scenario, a black-box model with no access
to the real data and limited budgets for querying the tar-
get model. Though the prior art has shed the light on data-
free black-box attack, their GANs based framework suffers
from the convergence failure and the model collapse, re-
sulting in low efficiency. Rethinking the collaborating re-
lationship between the generator and the substitute model,
we design a powerful new black-box attack framework. The
comprehensive experiments over the six datasets and one
online machine learning platform demonstrate the proposed
method can efficiently imitate the target model with a small
query budget and achieve high attack success rate.
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