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Abstract

A fundamental challenge for machine learning models
is generalizing to out-of-distribution (OOD) data, in part
due to spurious correlations. To tackle this challenge, we
first formalize the OOD generalization problem as con-
strained optimization, called Disentanglement-constrained
Domain Generalization (DDG). We relax this non-trivial
constrained optimization problem to a tractable form with
finite-dimensional parameterization and empirical approxi-
mation. Then a theoretical analysis of the extent to which the
above transformations deviates from the original problem is
provided. Based on the transformation, we propose a primal-
dual algorithm for joint representation disentanglement and
domain generalization. In contrast to traditional approaches
based on domain adversarial training and domain labels,
DDG jointly learns semantic and variation encoders for
disentanglement, enabling flexible manipulation and aug-
mentation on training data. DDG aims to learn intrinsic
representations of semantic concepts that are invariant to
nuisance factors and generalizable across domains. Compre-
hensive experiments on popular benchmarks show that DDG
can achieve competitive OOD performance and uncover
interpretable salient structures within data.

1. Introduction
Learning representations that can reflect intrinsic class

semantics and also render strong invariance to cross-domain
variation is of great significance to robustness and general-
ization in deep learning. Despite being empirically effective
on many visual recognition benchmarks [65], modern neu-
ral networks are still prone to learning shortcuts that stem
from spurious correlations [24], resulting in poor out-of-
distribution (OOD) generalization. To tackle this challenge,
domain generalization (DG) has emerged as an increasingly
important task where the goal is to learn invariant repre-
sentations over source domains that are generalizable to
distributions different from those seen during training [55].

In order to improve OOD generalization, efforts have

Code repository: https://github.com/hlzhang109/DDG
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Figure 1. An illustration of DDG based on disentanglement of digit labels
(semantics) and rotated angles (variation across domains). DDG seeks to
minimize the semantic difference of the generated samples from the same
class while diversifying the variation across source domains.

been made from a diverse set of directions, such as domain
adaptation [5, 6, 23, 84], self-supervised learning [12, 29],
causal inference [56, 61, 67, 81], invariant risk regularization
[3, 42, 51], angular alignment regularization [18, 48, 49], dis-
tributionally robust optimization [7] and data augmentation
[4, 77, 82]. However, having no access to target domain data
poses great challenges. Two main lines of research seek to
address this. First, training domain labels are assumed to be
available in [3, 23, 47, 60, 66] such that the divergence to
different domains can be minimized. However, these domain
labels are often impractical or prohibitively expensive to
obtain [28]. Moreover, it is non-trivial to minimize domain
divergence with domain adversarial training which is notori-
ously hard to converge [63]. The second line of works tries
to model the cross-domain distribution shifts and capture the
semantic invariance [37, 62, 78]. However, it has been found
in [27] that this goal can be very difficult to achieve. What
makes the problem even more challenging is the inconsis-
tency of the evaluation protocol. Surprisingly, [27] shows
that even the standard empirical risk minimization could
outperform many recently proposed models under certain
conditions. Motivated by these challenges, we aim to disen-
tangle variations and semantics in a principled way, and then
verify the effectiveness of our method under a consistent
evaluation protocol [27].

A key desideratum for DG is to ensure the invariance of
learned representations to all possible inter-class variations.
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Therefore, our intuition is to first diversify the inter-class
variation by modeling potential seen or unseen variations,
and then minimize the discrepancy of the inter-class varia-
tion on a representation space where the target is to predict
semantic labels. To this end, we first formalize distribution
shifts and invariance based on disentanglement. Concretely,
we formulate the disentanglement between class semantics
and both intra- and inter-domain variations as constraints
to the DG problem. Then we propose a novel framework
called Disentanglement-constrained Domain Generalization
(DDG). An illustration of DDG is given in Fig. 1. When the
semantic (i.e. the labels of digits) and variation factors (i.e.
rotating angles �60�, 0�, 60�, 120�) are well disentangled,
we expect that learned representations can be effectively
constrained to be invariant to inter-class variation. In order
to achieve such a non-trivial goal, we first derive a con-
strained optimization problem and then propose a principled
algorithm based on primal-dual iterations to solve it. To
understand how well the transformed solution approximates
the solution to the original problem, we provide comprehen-
sive theoretical guarantees for the parameterization gap and
empirical gap. We also verify the empirical effectiveness of
DDG by showing that it can consistently outperform current
popular DG methods by a considerable margin.

As a useful side product, DDG simultaneously obtains
an automated, domain-agnostic data augmentation network
based on learned disentangled representations. This requires
no usage of domain-specific knowledge or gradient estima-
tion [4, 77]. The intuition why such a data augmentation
network is useful comes from the fact that the learned vari-
ation encoder can well approximate some of the intrinsic
intra- and inter-domain variations. It also serves as feature
removal since more training examples augmented by specific
variation factors lead to more invariant representations for
those variations. Moreover, the increased diversity of source
domain data improves the likelihood that an unseen distribu-
tion lies within the convex hull of source domains [2]. For
example, in Fig. 1, the original dataset can be augmented via
a learned manipulator by composing a diverse combination
of semantic and variation factors. Such a disentanglement
can be a good predictor for OOD generalization according
to [21]. We highlight the following advantages of DDG:

• DDG adopts a principled constrained learning formulation
based on disentanglement, yielding rigorous theoretical
guarantees on the empirical duality gap.

• Our algorithm is conceptually simple yet effective. DDG
promotes semantic invariance via a constrained optimiza-
tion setup. This is done without the usage of adversarial
training and domain labels. Moreover, there is no addi-
tional computational overhead for modeling variations.

• Our framework can be viewed as a controllable and inter-
pretable data generation paradigm for DG. Data manipu-

lation under domain transformation can be challenging in
settings where domain-specific signals like image styles
vary greatly across domains, constituting more compli-
cated superficial variation factors. Yet DDG can uncover
salient structure within data by imposing constraints on
the semantic and variation factors.

• Comprehensive experiments are conducted under a con-
sistent evaluation protocol to verify the effectiveness of
DDG. We show that DDG is able to produce interpretable
qualitative results and achieve competitive performance
on a number of challenging DG benchmarks including
RotatedMNIST, VLCS, PACS and WILDS.

2. Related Work
Domain Generalization. Domain/Out-of-distribution

generalization [55] aims to learn representations that are in-
variant across domains so that the model can extrapolate well
in unseen domains. Invariant Risk Minimization (IRM) [3],
which extends [56], and its variants [1, 42, 51] are proposed
to tackle this challenge. However, IRM entails challenging
bi-level optimization and can fail catastrophically unless the
test data are sufficiently similar to the training distribution
[62]. DG via domain alignment [2, 18, 55] aims to mini-
mize the difference between source domains for learning
domain-invariant representations. The motivation is straight-
forward: features that are invariant to the source domain
shift should also be robust to any unseen target domain shift.
The main difference is that we propose to learn invariant rep-
resentations by reconstructing images from various domains
and class semantics to simulate variations and minimize
domain divergence. PAC constrained learning [15, 16] is
adopted for modeling cross-domain variations under domain
transformation in MBDG [60]. We highlight several major
differences between our approach and MBDG below: (1)
DDG imposes weaker assumptions; (2) MBDG consumes
additional domain labels, which are often hard to obtain in
many applications, while DDG does not; (3) DDG enforces
invariance constraints via parameterizing semantic and vari-
ation encoders, which does not belong to a model-based
approach. In contrast, MBDG requires a pre-trained domain
transformation model (e.g., CycleGAN) during training. Ap-
pendix D provides the detailed comparison to MBDG.

Disentangled Representation Learning. The goal of
disentangled representation learning is to model distinct and
explanatory factors of variation in the data [8, 68]. [21]
shows that disentanglement is a good predictor for out-of-
distribution (OOD) tasks. [64] proposes to disentangle the
semantic latent variables and the domain latent variables for
stronger generalization performance in domain adaptation.
[54] shows that existing disentangled learning models are
not sufficient to support compositional generalization and
extrapolation while hypothesizing that the richness of the
training domain matters more. However, previous works
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[19, 31, 39] are limited to single-dimensional latent codes
and developed with different purposes like generation and
interpretability. Thus they are hard to scale well beyond toy
datasets and adapt to complicated DG tasks [54]. In con-
trast, we harness the disentangled effects to learn invariant
representations for realistic OOD generalization tasks.

Data Augmentation. The diversity of the training dis-
tribution is of great importance in improving DG perfor-
mance [2, 27, 29, 75, 82]. Data augmentation is an effective
way to increase data diversity [79] and it can therefore im-
prove OOD generalization as well as robustness to spurious
correlations [4, 38]. In particular, [14] devises an active
learning scheme to learn causal manipulations on images,
which enriches the dataset from observational data and im-
proves generalization on both causal and predictive learning
tasks. In contrast, DDG seeks to learn underlying causal
features by approximating the data manipulation function.
This is done without a task-specific metric to differentiate
the augmented data and the oracle. Our work introduces a
simple yet effective approach for augmenting training data,
which reinforces the importance of data diversity in DG.

Fairness. Fairness research [22, 28, 52] aims to develop
a model that performs well under group assignments accord-
ing to some fairness criteria for addressing the underperfor-
mance in minority subgroups. Learning fair representations
can be naturally translated to a constrained optimization
problem [15, 16, 43]. There are also exchanging lessons be-
tween algorithmic fairness and domain generalization [20],
showing that both fields are optimizing similar statistics for
common goals. DDG well aligns with the formulation and
goals of fairness without demographics [28] and has the
potential to improve context-specific fairness without prior
knowledge about domains or demographics.

3. Disentanglement-constrained Optimization
for Domain Generalization

Notations. We consider a classification problem from
feature space X 2 Rd to label space Y 2 {0, 1} where
(X,Y ) ⇠ P(X,Y ). The infinite-dimensional functional
space and finite-dimensional hypothesis space are denoted
as F and H ✓ Rp, respectively. The parameterized latent
spaces for semantic and variation factors are denoted as S
and V , respectively. x̃ denotes a different sample with x
from the training distribution P. d(·, ·) denotes a distance
metric over X ⇥ X .

Problem setting. Suppose we observe a dataset denoted
as {(xi, yi)}

n
i=1 ⇢ Ddata where (xi, yi) is a realization of

random vector (X,Y ) with support (X ⇥Y). We consider a
set of domains {di}

nd

i=1 ⇢ D of size nd, where each domain
corresponds to a distinct data distribution Ddi over some
input and label space. The set of domains D is partitioned
into multiple training domains DS ⇢ D and a test domain
DU 2 D which is inaccessible during training.

Our formulation generally follows prior works of PAC
constrained learning [15, 16, 58, 60], but we use a more flex-
ible parameterization and derive a new algorithm to solve
the resulting constrained optimization problem. More specif-
ically, we emphasize that DDG, motivated by an analysis
of the multi-source domain adaptation upper bound (Ap-
pendix B), requires no domain labels and pre-trained domain
transformation models during training. DDG can also be
trained in an end-to-end manner, yielding a more flexible
and potentially better solution.

3.1. Formulation
The basic idea of DDG is to learn disentangled representa-

tions by imposing invariant constraints in the semantic space
S and variation space V . Such a disentanglement can also
be applicable for augmenting the training data so that the
learned representations can be more invariant to both inter-
and intra-domain variations. To formalize this, we begin by
introducing some necessary definitions and assumptions.

Definition 1 (Invariance based on disentanglement).
Given a decoder D :S⇥V!X , a semantic featurizer fs
is invariant if for all domains di2D and a variation fea-
turizer fv, x=D(fs(x; ✓), fv(x̃;�)) holds almost surely
when x, x̃⇠P (X).

The property enforces the invariance of the original input
x and the one D(fs(x; ✓), fv(x̃;�)) that reconstructs jointly
from semantic and variation latent spaces when semantic
factors remain constant while variation factors vary.

Assumption 1 (Domain shift based on disentanglement)
Denote fs(x; ✓) as the semantic factor of input x and
fv(x̃;�) as the variation factor of any other one x̃. Similar
to the covariate shift assumption [71], we assume the
domain/distribution shift stems from the variation of the
marginal distribution P (X) and the following invariance
condition holds with the proposed fs, fv and D

P (Y = y|X= x) = P (Y = y|X=D(fs(x; ✓), fv(x̃;�)). (1)

This assumption shows that the prediction depends only
on the semantic factor fs(x; ✓) regardless of the variation
one fv(x̃;�). It also subsumes as a special case the do-
main shifts based on domain labels, i.e., P (Y =y|X=x)=
P (Y d=y|Xd=G(X=x, d)) given a domain transforma-
tion model [59, 60], since our variation factors includes both
inter- and intra-domain variations.

Note that the above assumptions follow the formulation in
[60]. To elaborate this, we introduce the notion of invariance
based on a decoder D taking as input the disentanglement
results fs(x; ✓) and fv(x̃;�). In practice, D can be parame-
terized as a pre-trained model or a trainable component D 

updated in the primal step as in our implementation.
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Assumption 2 (Regularity conditions) The loss function
` and distance metric d are convex, non-negative, B-
bounded. ` is a L`-Lipschitz function, the distance metric
is also a Ld-Lipschitz function.

Assumption 3 (Feasibility) There exist semantic and vari-
ation featurizers fs, fv 2 F such that Lcon(fs, fv) <
��max{L`✏s, Ld✏g} = ��m with ✏-parameterization.

Definition 2 (Domain generalization problem). Similar
to prior works [60, 66, 72, 78], we formulate domain gen-
eralization as a minimax optimization problem, optimizing
the worst-domain risk over the entire family of domains D

min
fs2F

max
d2D

EP(X,Y )`(fs(D(X, d)), Y ). (2)

The above formulation (2) requires the availability of
domain labels and is hard to optimize. However, the do-
main labels are expensive or even impossible to obtain in
part due to privacy and fairness issues [28]. Therefore, un-
der the disentanglement-based invariance and domain shift
assumptions, we constrain the model to be invariant with
respect to variation factors, then the problem is converted to
an inequality-constrained optimization problem:

Definition 3 (Constrained domain generalization prob-
lem) Given a fixed margin � > 0, with Assumption 3 and
enforcing the invariance on the semantic featurizer fs, we
transform the vanilla formulation Eq. (2) to the following
inequality-constrained optimization

P? , min
fs2F

L(fs) , EP(X,Y )`(fs(X), Y ),

s.t. d(x, D(fs(x; ✓), fv(x̃;�)))  �, a.e. x, x̃ ⇠ P(X).
(3)

One intriguing property of Eq. (3) is that learning with
inequality constraints1 does not produce additional sample
complexity overhead under some regularity conditions on
the loss function ` [15]. However, it is difficult to satisfy the
strictness and provide theoretical guarantees for learning in
practical cases. In the following section, with the parameteri-
zation and saddle-point condition, we can relax the invariant
constraint and obtain a version that is amenable to a provable
PAC learning framework.

3.2. Parameterization
We first discuss how to parameterize the learnable compo-

nents in DDG. The DG problem (Eq. (3)) yields an infinite-
dimensional optimization. A de facto way to enable tractable
optimization is using finite-dimensional parameterization of
F like neural networks [33] or reproducing kernel Hilbert
spaces (RKHS) [9]. To further discuss the parameterization
gap, we formalize the approximation power of such parame-
terization by the following definition of ✏-parameterization.

1We simply enforce one constraint based on prior knowledge about
semantic invariance and leave other design choices as future work.

Definition 4 (✏-parameterization) Let H ✓ Rp be a finite-
dimensional parameter space. For ✏ > 0, a function h :
H ⇥ X ! Y is an ✏-parameterization of F if for each
fs, fv 2 F , there exist parameters ✓,� 2 H such that

Ex⇠P (X)khs(x; ✓)� fs(x)k1  ✏s,

Ex⇠P (X)khv(x;�)� fv(x)k1  ✏v,

Ex,x̃⇠P (X)kD(hs(x; ✓), hv(x̃;�))�D(fs(x), fv(x̃))k2  ✏g.

With the help of ✏-parameterization, tractable optimiza-
tion can be performed over finite-dimensional parameterized
space. Note that a regularity condition about D is introduced
to allow DDG to faithfully reconstruct inputs under finite-
dimensional parameterization. With the above formulation
and to provide guarantees for the DG problem, we consider
a corresponding saddle-point problem as follows:

D⇤

✏ (�) , max
�

min
✓,�2H

L(✓) + �Lcon(✓,�), (4)

where the constraint-related risk is defined as

Lcon(✓,�) = Ex,x̃⇠P (X)[d(x, D(hs(x; ✓), hv(x̃;�)))� �].

The challenge for the parameterized problem (4) is the in-
accessability of the ground truth data distribution P(X,Y ).
To address it, we resort to a corresponding empirical dual
problem using finite n empirical training samples:

D⇤

✏,n(�) , max
�

min
✓,�2H

L(✓,�, �) , L̂(✓) + �L̂con(✓,�)

= max
�

min
✓,�2H

nX

i=1

`(fs(xi), yi)+

�
nX

i=1

nX

j 6=i

[d (xi, D (hs(xi; ✓), hv(xj;�)))� �] ,

(5)

which gives us the final optimization objective for DDG.
Compared to the previous optimization problems, this is
much easier and more tractable to solve.

3.3. Algorithm
Motivated by the above analysis, we use a primal-dual

algorithm for efficient optimization [15, 17, 58, 60]. The al-
gorithm alternates between optimizing ✓ (and/or �) via mini-
mizing the empirical Lagrangian with fixed dual variable �
and updating the dual variable according to the minimizer:

✓(t+1)
 argmin

✓
L(✓(t),�(t), �) + ⇢,

�(t+1)
 argmin

✓
L(✓(t),�(t), �) + ⇢,

�(t+1)
 max

nh
�(t) + ⌘2

⇣
L̂con � �

⌘i
, 0
o
,

(6)

where the ⌘2 denotes the learning rate of the dual step.
The primal-dual iteration has clear advantages over

stochastic gradient descent in solving constrained optimiza-
tion problems. Specifically, it avoids introducing extra bal-
ancing hyperparameters. Moreover, it provides convergence
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Algorithm 1: DDG: Disentanglement-constrained
Optimization for Domain Generalization

Input: DS = {(x1, y1) , ..., (xn, yn)}, batch size B,
primal and dual learning rate ⌘1, ⌘2, Adam
hyperparameters �1, �2, initial coefficients �,
margin �

Initial: Parameters of DDG (i.e. parameters ✓, � and
 for semantic encoder hs, variation encoder hv

and decoder D.)
repeat

for i, j = 1, . . . , B, i 6= j do
L
i
con =

max
n
kxi �D (hs(xi)� hv(xj))kl1 � �, 0

o

L
i
ERM = `(hs(xi), yi)

Li = L
i
ERM + �Li

con

if Data Augmentation then
x⇤ = D (hs(xi)� hv(xj))
L
⇤

ERM = `(hs(x⇤), yi)
Li = Li + L

⇤

ERM
end

end
Primal step
✓  Adam

⇣
1
B

PB
i=1 Li, ✓, ⌘1,�1,�2

⌘

� Adam
⇣

1
B

PB
i=1 L

i
con,�, ⌘1,�1,�2

⌘

if Training D then
  Adam

⇣
1
B

PB
i=1 L

i
con, , ⌘1,�1,�2

⌘

end
Dual step
� max

nh
�+ ⌘2

⇣
1
B

PB
i=1 L

i
con � �

⌘i
, 0
o

until ✓ is converged or DS = ;;

guarantees once we have sufficient iterations and a suffi-
ciently small step size. We refer readers to [17, 60] for more
in-depth and complete discussions of related conditions and
convergence bounds.

One intriguing property of disentanglement is that it can
be applicable for augmenting the training data. Based on this,
DDG approximates a manipulator function by learning “hard”
data points from fictitious target distributions for promoting
invariance and improving generalization.

We give the detailed procedure of our DDG learning algo-
rithm in Algorithm 1, where ` denotes the cross entropy loss
and � denotes the concatenation in the implementation. We
also use l1 norm as the distance metric d in the experiments.

3.4. Theoretical Insights and Guarantees
In this subsection, we provide a comprehensive analysis

of the statistical guarantees of our solution (Eq. (5)). In order

to derive the bound on the final empirical duality gap, we
start by proving two lemmas on the parameterization gap and
empirical gap. Specifically, they elaborate the corresponding
approximation gaps of two transformations (i.e. Eq. (4) and
(5)) in above sections.

We first discuss the gap between the finite-dimensional
model parameterization (e.g. neural networks) and the model
over infinite functional space F .

Lemma 1 (Parameterization gap) With Assumption 2
about ` and d, the gap between optimum of a statistical
problem and its finite dimensional, deterministic version
D?
" (�)� P? can be bounded as

0  D?
" (�)� P?


�
1 + |�?

p|
�
max {L`✏s, Ld✏g} , (7)

where �?p is the dual variable with a tighter constraint
� �max {L`✏s, Ld✏g} in Eq. (3).

The upper bound indicates that the parameterization gap
is dominated by both the semantic function parameterization
and the reconstruction-based transformation on perturbed
inputs, which makes intuitive senses and also emphasizes
the important role of disentanglement.

Then we compare Eq. (7) to the parameterization gap of
MBDG which is shown as follows:

0  D?
✏ (�)� P?

 (1 + |�?
p|)max{L`, Ld}✏s, (8)

and the parameterization gap in [16]:

0  D?
✏ (�)� P?

 (1 + |�?
p|)L`✏s. (9)

From the comparison, we notice that our formulation and
analysis are closely connected to Proposition 1 (with m = 1)
in [16]. We shall also see that in a perfect case where repre-
sentations are well disentangled, i.e., ✏g ! 0, our bound will
become

�
1 + |�?p|

�
L`✏s. We note that this bound is strictly

tighter than that in Eq. (8).
In practice, we approximate the expectation by its em-

pirical average. By the classical VC-dimension bound, the
following bound on the empirical gap holds:

Lemma 2 (Empirical gap) Denote dV C as the VC-
dimension of the hypothesis class H✓. Assume that ` and d
obey the regularity condition in Assumption 2. Then given
n samples, with probability 1� �, we can upper bound the
deviation |D?

✏ (�)� D?
",n(�)| with

��D?
✏ (�)� D?

",n(�)
��  2B

s
1
n


1 + log

✓
4(2n)dvc

�

◆�
. (10)

With the above heavy lifting, we start deriving the empir-
ical duality gap, which is our ultimate goal of the theoretical
analysis. The empirical duality gap includes the above two
components. Combining the above bounds on two gaps,
we can bound the deviation between P? and D⇤

✏,n(�) (i.e.,
|P? � D⇤

✏,n(�)|) under some mild conditions.
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Semantics Variation Generated Images with Intepolated Variation Factors
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Figure 2. Interpolation disentanglement results. Different proportions of variation factors are mixed to generate the image by varying i 2 {1.0, 0.9, . . . , 0.1}.

Theorem 1 (Empirical duality gap) When Assumption 2
holds, by denoting max {L`✏s, Ld✏g} as m, we have

��P?
� D?

",n(�)
��  (1 + |�|)m+O(

r
log(n)

n
). (11)

The final bound tells us that the quality of the empirical,
dual approximation of the primal problem is determined by
the sample size, the hardness of the learning problem, and
the richness of parameterization. The proof can be easily
shown using triangle inequality as in Appendix A.3. As
suggested by Theorem 1, we can improve the performance of
our algorithm by using neural networks with larger capacity
or training our model with more data.

4. Experiments
Datasets. We consider the following four datasets: Ro-

tated MNIST [25], PACS [45], VLCS [74] and WILDS [41]
to evaluate DDG against previous methods. We include the
visualization of datasets in Appendix C.2.

Rotated MNIST [25] consists of 10,000 digits in MNIST
with different rotated angles d such that each domain is
determined by the degree d 2 {0, 15, 30, 45, 60, 75}.

PACS [45] includes 9, 991 images with 7 classes y 2 {

dog, elephant, giraffe, guitar, horse, house, person } from 4
domains d 2 { art, cartoons, photos, sketches }.

VLCS [74] is composed of 10,729 images, 5 classes
y 2 {bird, car, chair, dog, person} from domains d 2
{Caltech101, LabelMe, SUN09, VOC2007}.

Camelyon17-WILDS [11, 41] is about tumor detection
in tissues. This dataset is composed of 455,954 images from
5 different medical centers/domains in total, which defines a
binary classification problem about whether the patch image
contains a tumor or not.

Baselines. We compare our model with ERM [76], IRM

[3], GDRO [66], Mixup [80], MLDG [44], CORAL [73],
MMD [46], DANN [23], CDANN [47], AugMix [30].

All the baselines in DG tasks are implemented using the
codebase of Domainbed [27]. We adapt AugMix for ablation
studies using the official implementations as indicated in
[30]. The two-sample classifier, implemented as a RBF
kernel SVM using Scikit-learn, is used for calculating the
generalization error for A-distance.

Hyperparameter search. Following the experimental
settings in [27], we conduct a random search of 20 trials over
the hyperparameter distribution for each algorithm and test
domain. Specifically, we split the data from each domain
into 80% and 20% proportions, where the larger split is
used for training and evaluation, and the smaller one is for
selecting hyperparameters. We repeat the entire experiment
twice using different seeds to reduce the randomness. Finally,
we report the mean over these repetitions as well as their
estimated standard error.

Model selection. The model selection in domain gen-
eralization is intrinsically a learning problem, and we use
test-domain validation, one of the three selection methods
in [27]. This strategy is an oracle-selection one since we
choose the model maximizing the accuracy on a validation
set that follows the same distribution of the test domain.

Model architectures. Following [27], we use as encoders
ConvNet for RotatedMNIST (detailed in Appdendix D.1 in
[27]) and ResNet-50 for the remaining datasets.

Motivated by the observation that GAN is able to improve
image quality for evaluating the disentanglement effects in
the latent spaces [57, 69, 70], we use adversarial training
[26] on real samples x against fake ones D(hs(x)� hv(x̃))
to attain high-quality images x0:

LGAN = logDisc(x) + log(1�Disc(x0)). (12)

In practice, we can train the generator using adversarial train-
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RotatedMNIST Camelyon17-WILDS
Domain 0� 15� 30� 45� 60� 75� Avg d1 d2 d3 d4 d5 Avg
ERM [76] 96.0 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 96.8 ± 0.1 98.1 96.8 ± 0.3 94.9 ± 0.2 95.9 ± 0.2 95.8 ± 0.2 94.8 ± 0.3 95.6
IRM [3] 96.0 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.1 98.9 ± 0.1 95.7 ± 0.3 97.9 95.0 ± 0.7 92.0 ± 0.2 95.2 ± 0.3 94.3 ± 0.1 93.3 ± 0.6 94.0
GDRO [66] 96.2 ± 0.1 98.9 ± 0.0 99.0 ± 0.1 98.7 ± 0.1 99.1 ± 0.0 96.8 ± 0.1 98.1 96.5 ± 0.1 95.0 ± 0.3 95.9 ± 0.9 96.0 ± 0.1 95.7 ± 0.4 95.8
MIXUP [80] 95.8 ± 0.3 98.9 ± 0.1 99.0 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 96.5 ± 0.1 98.0 96.2 ± 0.0 94.3 ± 0.1 95.7 ± 0.4 96.7 ± 0.0 95.1 ± 0.1 95.6
MLDG [44] 96.2 ± 0.1 99.0 ± 0.0 99.0 ± 0.1 98.9 ± 0.1 99.0 ± 0.1 96.1 ± 0.2 98.0 97.0 ± 0.1 95.0 ± 0.3 96.6 ± 0.5 96.0 ± 0.2 96.1 ± 0.3 96.1
CORAL [73] 96.4 ± 0.1 99.0 ± 0.0 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 96.8 ± 0.2 98.2 96.5 ± 0.2 95.2 ± 0.1 96.9 ± 0.1 96.8 ± 0.3 94.8 ± 0.3 96.0
MMD [46] 95.7 ± 0.4 98.8 ± 0.0 98.9 ± 0.1 98.8 ± 0.1 99.0 ± 0.0 96.3 ± 0.2 97.9 96.3 ± 0.1 94.9 ± 0.1 96.8 ± 0.1 96.5 ± 0.2 93.3 ± 0.1 95.6
DANN [23] 96.0 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 98.7 ± 0.1 98.8 ± 0.1 96.4 ± 0.1 97.9 93.9 ± 0.3 89.6 ± 1.0 94.5 ± 0.1 93.9 ± 0.5 92.0 ± 0.2 92.8
CDANN [47] 95.8 ± 0.2 98.8 ± 0.0 98.9 ± 0.0 98.6 ± 0.1 98.8 ± 0.1 96.1 ± 0.2 97.8 94.3 ± 0.1 91.7 ± 0.7 95.0 ± 0.1 94.7 ± 0.2 92.9 ± 0.5 93.7
DDG 96.6± 0.1 99.0± 0.1 99.0± 0.2 99.1± 0.2 99.1± 0.2 97.4± 0.4 98.4 97.4±0.2 95.4±0.2 96.8±0.1 96.8±0.1 96.6±0.3 96.6
DDG W/ AUG 96.7± 0.4 99.0± 0.3 99.1± 0.2 99.2± 0.2 99.0± 0.3 97.4± 0.3 98.4 97.7±0.4 96.6±0.2 96.9±0.1 97.2±0.3 96.9±0.1 96.9

PACS VLCS
Domain A C P S Avg C L S V Avg
ERM [76] 87.8 ± 0.4 82.8 ± 0.5 97.6 ± 0.4 80.4 ± 0.6 87.2 97.7 ± 0.3 65.2 ± 0.4 73.2 ± 0.7 75.2 ± 0.4 77.8
IRM [3] 85.7 ± 1.0 79.3 ± 1.1 97.6 ± 0.4 75.9 ± 1.0 84.6 97.6 ± 0.5 64.7 ± 1.1 69.7 ± 0.5 76.6 ± 0.7 77.2
GDRO [66] 88.2 ± 0.7 82.4 ± 0.8 97.7 ± 0.2 80.6 ± 0.9 87.2 97.8 ± 0.0 66.4 ± 0.5 68.7 ± 1.2 76.8 ± 1.0 77.4
MIXUP [80] 87.4 ± 1.0 80.7 ± 1.0 97.9 ± 0.2 79.7 ± 1.0 86.4 98.3 ± 0.3 66.7 ± 0.5 73.3 ± 1.1 76.3 ± 0.8 78.7
MLDG [44] 87.1 ± 0.9 81.3 ± 1.5 97.6 ± 0.4 81.2 ± 1.0 86.8 98.4 ± 0.2 65.9 ± 0.5 70.7 ± 0.8 76.1 ± 0.6 77.8
CORAL [73] 87.4 ± 0.6 82.2 ± 0.3 97.6 ± 0.1 80.2 ± 0.4 86.9 98.1 ± 0.1 67.1 ± 0.8 70.1 ± 0.6 75.8 ± 0.5 77.8
MMD [46] 87.6 ± 1.2 83.0 ± 0.4 97.8 ± 0.1 80.1 ± 1.0 87.1 98.1 ± 0.3 66.2 ± 0.2 70.5 ± 1.0 77.2 ± 0.6 78.0
DANN [23] 86.4 ± 1.4 80.6 ± 1.0 97.7 ± 0.2 77.1 ± 1.3 85.5 95.3 ± 1.8 61.3 ± 1.8 74.3 ± 1.0 79.7 ± 0.9 77.7
CDANN [47] 87.0 ± 1.2 80.8 ± 0.9 97.4 ± 0.5 77.6 ± 0.1 85.7 98.9 ± 0.3 68.8 ± 0.6 73.7 ± 0.6 79.3 ± 0.6 80.2
DDG 88.9 ± 0.6 85.0 ± 1.9 97.2 ± 1.2 84.3 ± 0.7 88.9 99.1 ± 0.6 66.5 ± 0.3 73.3 ± 0.6 80.9 ± 0.6 80.0
DDG W/ AUG 89.0 ± 0.3 86.3 ± 0.3 97.0 ± 0.5 84.8 ± 1.1 89.3 99.4 ± 0.2 68.9 ± 2.3 73.4 ± 1.1 81.2 ± 0.3 80.7

Table 1. Domain generalization accuracies (%) on RotatedMNIST, PACS, VLCS and WILDS.

ing. In this stage, we employ an adversarial objective LGAN

and an additional cycle consistency constraint. With a slight
abuse of notation, we denote hs(·) and hv(·) for hs(·; ✓) and
hv(·;�), respectively. The detail of the cycle consistency
constraint is that: we encode x and x̃ into the latent space
as hs(x), hs(x̃), hv(x), hs(x̃). We then swap their variation
factors and generate xx!x̃ = D(hs(x)� hv(x̃)),xx̃!x =
D(hs(x̃) � hv(x)). Again, the generated images will be
encoded, and their variation factors will be swapped and
used to generate xx!x̃!x and xx̃!x!x̃. Finally, the cycle
consistency constraint for x is implemented by the proposed
reconstruction loss (also similarly for x̃):

Lcyc = d (xx!x̃!x,x)

= d(D(hs(D(hs(x))� hv(x̃))))�

hv(D(hv(x̃))� hv(x))))),x)

(13)

In most experiments, the generator is a simple autoen-
coder, which converts the concatenation of [hs(x), hv(x)]
to x0. For qualitative evaluation and data augmentation ex-
periments, the main idea of our generator follows [35, 85].
The decoder uses four MLPs to produce a set of AdaIN [34]
parameters from the semantic factor. The variation factor
is then processed by four residual blocks and four convo-
lutional layers with these AdaIN parameters. Finally, the
processed latent vector is decoded to the image space by
upsampling and convolutional layers. The discriminator D
follows the popular multi-scale PatchGAN [36] on three in-
put image scales: 14⇥14, 28⇥28 and 56⇥56. The gradient
punishment [53] is also applied when updating D.

See Appendix C for full details of all experimental set-

tings including datasets statistics and visualization, baselines
and its implementation, hyperparameter search and model
selection protocols. See Appendix D for many more results.

Semantics Variation Output

� �

� �

� �

� �

Semantics Variation Output

� �

� �

� �

� �

Figure 3. Qualitative disentanglement results. Swapping semantic and
variation codes enables controllable generation for qualitative evaluation.

4.1. Qualitative Studies
We showcase some of the reconstructed images train-

ing with GAN in Fig. 2 and Fig. 3 (see appendix for many
more similar results). The results show that the represen-
tations are disentangled with respect to various variation
factors like background, color etc, which supports diverse
manipulations for enriching training datasets. Moreover,
DDG captures proper semantics over data, which allows
diverse manipulations on variation factors like object colors
and backgrounds without changing object semantics. For
example, DDG changes the color of a dog in the first panel
of Fig. 3 but retains the same color of its nose and eyes. Such
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disentanglement enables flexible and controllable generation
by manipulating semantic and variation factors via swapping
(Fig. 3) or interpolation (Fig. 2).

Interpolation details. In order to better understand
the learned semantic and variation representations, we fur-
ther perform a linear interpolation experiment between
two variation factors and generate the corresponding im-
ages as shown in Fig.2. We denote the variation code
of the first and second column as hv(x̃), hv(x), respec-
tively. The images from 4 � 13 column are generated
by D(hs(x) � (i ⇥ hv(x) + (1 � i) ⇥ hv(x̃))) where
i 2 {1.0, 0.9, . . . , 0.1}. These interpolation results verify
the smoothness and continuity in the variation space, and
also show that our model is able to generalize in the em-
bedding space instead of simply memorizing existing visual
information. As a complementary study, we also generate
images by linearly interpolating between two semantic fac-
tors while keeping the variation factors intact. We provide
additional qualitative results in Appendix D.

4.2. Numerical Results
Comprehensive experiments show that DDG consistently

outperforms all the baselines by a considerable margin. From
Table 1, we observe that DDG achieves better DG results
both in most single domains and on average. In particular,
the performance gain is greater in the worst-case scenario
like the C and S domain in PACS. This is particularly impor-
tant since average performance is not an effective indicator
of OOD generalization, and bad worst-case performance
is tightly connected to issues like disparity amplification
[28]. The performance gain of DDG is larger under the
variation-rich dataset PACS. This makes intuitive senses be-
cause DDG is able to better capture inter-domain variations
for improving OOD generalization.

4.3. Empirical Analyses and Ablations

A C P S Avg
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Figure 4. Data augmentation on PACS
with different target domain.

Effect of data augmen-
tation. We first evaluate the
effect of data augmentation
by comparing our learned
data augmentation network
with a heuristic-based aug-
mentation method AugMix
[30]. Fig. 4 shows that
the constraints optimization
brings great performance
gain over vanilla ERM and
a data augmentation heuristics Augmix, especially the worst-
case (i.e. the S domain in PACS) performance. The ef-
fectiveness of the data augmentation procedure in DDG is
well connected to many empirical evidence in [29, 75, 82]
and also validates the hypothesis in [54] that the richness of
training domain data is crucial for extrapolation.
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Figure 5. Convergence comparison.

Convergence analysis.
We investigate the training
dynamics of DDG and sev-
eral baselines over WILDS,
where the target domain is
d5. The learning curves in
Fig. 5 show that domain ad-
versarial training methods
like DANN, CDANN are
unstable and hard to con-
verge due to their adversarial training nature. IRM has a
similar pattern yet is more stable. Thanks to the primal-dual
algorithm, DDG can converge much better than the above
methods, bear a resemblance to the ERM counterpart.
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Figure 6. A-distance on learned fea-
tures for different generalization tasks.

Evaluation of domain
divergence. We use the A-
distance to measure domain
discrepancy [5]. This can
be approximated as dA=
2(1�2�), where � is the er-
ror of a two-sample classi-
fier distinguishing features
of samples from source and
target domains [50]. Fig. 6
shows that DDG can learn
more invariant features to minimize the divergence between
source and target domains than IRM and ERM.

Qualitative comparison with AugMix. Both Fig. 3 and
Fig. 10b in Appendix D show that DDG produces samples
with diverse styles. In contrast, Fig. 8 in Appendix D shows
that it is much more difficult for heuristic-based methods
such as AugMix to generate samples with diverse styles for
training. The qualitative results validate the effectiveness of
DDG as an automatic data augmentation method.

5. Concluding Remarks
We propose a novel disentangled learning framework for

domain generalization, with both theoretical analyses and
practical algorithmic implementation. By separating seman-
tic and variation representations into different subspaces
while enforcing invariance constraints, DDG yields superior
OOD performance with improved empirical convergence
and also yields interpretable and controllable generative re-
sults. In this work, we only consider the disentangled effects
between semantic and variation factors since it is hard to
provide known generative variation factors that manifest the
distribution shifts precisely. It remains an open problem
to improve the disentanglement between different variation
factors with limited supervision and evaluate the treatment
effects of data augmentation in a controllable manner [83].
Acknowledgement. WL is supported by a Cambridge-Tübingen Fellow-
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