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Abstract

Slow shutter speed and long exposure time of frame-
based cameras often cause visual blur and loss of inter-
frame information, degenerating the overall quality of cap-
tured videos. To this end, we present a unified framework of
event-based motion deblurring and frame interpolation for
blurry video enhancement, where the extremely low latency
of events is leveraged to alleviate motion blur and facilitate
intermediate frame prediction. Specifically, the mapping re-
lation between blurry frames and sharp latent images is first
predicted by a learnable double integral network, and a fu-
sion network is then proposed to refine the coarse results via
utilizing the information from consecutive blurry inputs and
the concurrent events. By exploring the mutual constraints
among blurry frames, latent images, and event streams,
we further propose a self-supervised learning framework
to enable network training with real-world blurry videos
and events. Extensive experiments demonstrate that our
method compares favorably against the state-of-the-art ap-
proaches and achieves remarkable performance on both
synthetic and real-world datasets. Codes are available at
https://github.com/XiangZ-0/EVDI.

1. Introduction
Highly dynamic scenes, e.g., fast-moving targets or non-

linear motions, pose challenges for high-quality video gen-
eration as the captured frame is often blurred and target in-
formation is missing between consecutive frames [29]. Ex-
isting frame-based methods attempt to tackle these prob-
lems by developing motion deblurring [11], frame interpo-
lation [1] or blurry video enhancement techniques [10, 25].
However, it is difficult for frame-based deblurring methods
to predict sharp latent frames from severely blurred videos
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Figure 1. Illustrative examples of video deblurring and interpola-
tion via the state-of-the-art deblurring approach LEVS [11], inter-
polation approach Time Lens [30] and our EVDI method.

because of motion ambiguities and the erasure of intensity
textures [11]. Besides, current frame-based interpolation
approaches generally assume the motion between neigh-
boring frames to be linear [1], which is not always valid
in real-world scenarios especially when encountering non-
linear motions, thus often leading to incorrect predictions.

Recent works have revealed the advantages of event
cameras [5] in motion deblurring and frame interpolation.
On one hand, the output of event camera inherently embeds
precise motions and sharp edges [2] since it reports asyn-
chronous event data with extremely low latency (in the or-
der of µs) [5, 13], which is effective in alleviating motion
blur [14, 21, 22, 31, 34]. On the other hand, event camera
is able to record almost continuous brightness changes to
compensate the missing information between consecutive
frames, making it feasible to recover accurate intermedi-
ate frames even under non-linear motions [14, 30]. How-
ever, existing works generally treat motion deblurring and
frame interpolation as separate tasks, while the problems of
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motion blur and missing information between frames have
strong co-occurrence in real scenes and thus need to be con-
sidered simultaneously. In real-world scenarios, the afore-
mentioned methods face two main challenges as follows.

• Limitations of Separate Tasks: The performance of
interpolation methods [30] is often highly dependent
on the quality of reference frames, and it is difficult to
interpolate clear results when the reference frames are
degraded by motion blur. For deblurring task, most
methods [31, 34] focus on recovering sharp images
inside the exposure time of blurry inputs, neglecting
these latent images between blurry frames (see Fig. 1).

• Data Inconsistency: Most previous works employ
well-labeled synthetic datasets for supervised [30, 31]
or semi-supervised learning [34], which often causes
performance drop in real scenes due to the inconsis-
tency between synthetic and real-world data [34].

In this paper, we present a unified framework of Event-
based Video Deblurring and Interpolation (EVDI) for blurry
video enhancement. The proposed method consists of two
main modules: a learnable double integral (LDI) network
and a fusion network. The LDI network is designed to
automatically predict the mapping relation between blurry
frames and sharp latent images from the corresponding
events, where the timestamp of the latent image can be cho-
sen arbitrarily inside the exposure time of blurry frames (de-
blurring task) or between consecutive blurry frames (inter-
polation task). The fusion network receives the coarse re-
construction of latent images and generates a fine result by
utilizing all the information from consecutive blurry frames
and event streams. For training, we take advantage of the
mutual constraints among blurry frames, sharp latent im-
ages and event streams, and propose a fully self-supervised
learning framework to help the network fit the distribution
of real-world data without the need of ground truth images.

The main contributions of this paper are three-fold:
• We present a unified framework of event-based video

deblurring and interpolation that generates arbitrarily
high frame-rate sharp videos from blurry inputs.

• We propose a fully self-supervised framework to en-
able network training in real-world scenarios without
any labeled data.

• Experiments on both synthetic and real-world datasets
show that our method achieves state-of-the-art results
while maintaining an efficient network design.

2. Related Work
2.1. Frame Interpolation

Existing frame-based interpolation methods can be
roughly categorized into two classes: warping-based and
kernel-based approaches. Warping-based approaches [1, 9,

18, 35] generally combine optical flow [8, 28] with image
warping to predict intermediate frames, and several tech-
niques have been proposed to enhance the interpolation per-
formance, e.g., forward warping [18], spatial transformer
networks [35], and depth information [1]. However, these
methods often assume linear motion and brightness con-
stancy between two reference frames, thus failing to handle
arbitrary motions. Rather than warping reference frames
with optical flow, kernel-based methods [19, 20] model the
frame interpolation as local convolution on the reference
frames, where the kernel is directly estimated from the in-
put frames. Despite kernel-based methods are more robust
to complex motions and brightness changes, their scalabil-
ity is often limited by the fixed sizes of convolution kernels.

The common challenge of frame-based interpolation is
the missing information between reference frames, which
can be alleviated by leveraging the extremely low latency of
events. Recent approach [30] takes the merits of frames and
events and achieves excellent interpolation results even un-
der non-linear motions, but its performance is also closely
related to the quality of reference frames and thus cannot be
directly applied for blurry video enhancement.

2.2. Motion Deblurring

One of the most popular frame-based deblurring meth-
ods is to employ neural networks to learn the blur feature
and predict sharp images from blurry inputs [7, 11, 17, 37].
Several techniques have been developed to exploit the tem-
poral information inside blurry frames, including dynamic
temporal blending mechanism [7], spatio-temporal filter
adaptive networks [37], and intra-frame iterations [17]. Re-
cent works have also revealed the potential of events in mo-
tion deblurring. Event streams inherently embed motion in-
formation and sharp edges, which can be exploited to tackle
the temporal ambiguity and texture erasure caused by mo-
tion blur. Pioneer event-based methods achieve motion de-
blurring by relating blurry frames, sharp latent images and
the corresponding events according to the physical event
generation model [21, 22], but their performance is often
degraded due to the imperfection of physical circuits, e.g.,
intrinsic camera noises. To alleviate this, learning-based ap-
proaches [31, 34] have been proposed to fit the distribution
of event data, achieving better deblurring performance.

However, most deblurring methods focus solely on
restoring sharp latent images inside the exposure time of
blurry frames, while the information between blurry frames
is also important in practical applications, motivating the
combination of deblurring and interpolation.

2.3. Joint Deblurring and Interpolation

Previous frame-based methods have approached the joint
deblurring and interpolation task [10, 25]. The work of
[10] performs frame interpolation based on the keyframes
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pre-processed by a deblurring module, and the work of
[25] treats deblurring and interpolation as a unified task
and achieves better enhancement performance. For event-
based methods, LEDVDI is the closest related work [14],
but LEDVDI is categorized into the cascaded scheme as it
achieves deblurring and interpolation with different stages.
Besides, all the aforementioned methods require supervised
training on the synthetic datasets, limiting their perfor-
mance on real-world scenarios due to data inconsistency.

Exploiting the information from both frames and events,
our method achieves blurry video enhancement without dis-
tinguishing the deblurring and interpolation tasks. More-
over, a self-supervised learning framework is proposed to
enable network training with real events and blurry videos,
guaranteeing the performance in real-world scenarios.

3. Problem Statement
Videoing highly dynamic scenes often suffers from

blurry artifacts and the Blurry Video Enhancement (BVE)
plays an important role for visual perception. Existing
frame-based methods often struggle to achieve BVE due
to motion ambiguity and loss of inter-frame information,
while this can be effectively mitigated with the aid of events.
Given two consecutive blurry frames Bi, Bi+1 captured
within the exposure time Ti, Ti+1 and the corresponding
event streams E i

i+1 triggered inside T i
i+1, where T i

i+1 ≜
Ti∪Ti→i+1∪Ti+1 with Ti→i+1 indicating the time interval
between Bi and Bi+1, the task of EVDI is to achieve BVE
directly from blurry inputs, i.e.,

L(t) = EVDI(t;Bi, Bi+1, E i
i+1), ∀t ∈ T i

i+1, (1)

where L(t) indicates the latent image of arbitrary time
t ∈ T i

i+1. According to Eq. (1), EVDI degrades to Motion
Deblurring (MD) when t ∈ Ti or Ti+1, or Frame Interpo-
lation (FI) when t ∈ Ti→i+1. Thus, EVDI is more general
than MD and FI, and provides a unified formulation to the
task of BVE.
EVDI vs. Frame Interpolation. Conventional FI task aims
at recovering the intermediate latent images {L(t)}t∈Ti→i+1

from sharp reference frames Ii, Ii+1. Providing the concur-
rent event streams Ei→i+1 emitted within Ti→i+1, we have

L(t) = Interp(t; Ii, Ii+1, Ei→i+1), t ∈ Ti→i+1, (2)

where Interp(·) represents an FI operator. Most FI meth-
ods [1, 9, 30] are designed to restore inter-frame latent im-
ages from high-quality (sharp and clear) reference frames
Ii, Ii+1, while EVDI directly accepts blurry inputs, which
is more challenging than conventional FI.
EVDI vs. Motion Deblurring. The MD aims at recon-
structing the sharp latent images {L(t)}t∈Ti

from the corre-
sponding blurry frame Bi. Providing the concurrent event

streams Ei triggered within Ti, we have

L(t) = Deblur(t;Bi, Ei), t ∈ Ti, (3)

where Deblur(·) indicates an MD operator. Existing de-
blurring methods [4, 27] mainly focus on recovering the
latent frames inside the exposure time Ti, while EVDI is
able to predict the latent images of time instance both inside
the exposure time Ti (or Ti+1) and between blurry frames
Ti→i+1, as shown in Fig. 1.

Ideally, EVDI can approach the BVE task by unifying
MD and FI in Eq. (1). However, to efficiently realize EVDI
in real-world scenarios, challenges still exist.

• MD and FI should be simultaneously addressed in a
unified framework to fulfill the EVDI. Previous at-
tempts for BVE [10, 14] employ a cascaded scheme
that performs frame interpolation after deblurring, but
this approach often propagates deblurring error to the
interpolation stage, leading to sub-optimal results.

• Existing related methods are generally developed
within a supervised learning framework [10,14,25], of
which the supervision is usually provided by synthetic
blurry images and events. Thus the performance might
degrade in real scenes due to the different distribution
between synthetic and real-world data.

4. Method
In this work, we propose to approximate the optimal

EVDI model with trainable neural networks, and develop
a self-supervised learning framework by exploiting the mu-
tual constraints among blurry frames, sharp latent frames
and event streams.

4.1. Unified Deblurring and Interpolation

We first review the physical generation model of events,
which are triggered whenever the log-scale brightness
change exceeds the event threshold c > 0, i.e.,

log(L(t,x))− log(L(τ,x)) = p · c, (4)

where L(t,x) and L(τ,x) denote the instantaneous inten-
sity at time t and τ at the pixel position x, and polarity
p ∈ {+1,−1} indicates the direction of brightness changes.
With the aid of events, we can formulate the following rela-
tion (the pixel position is omitted for readability):

L(t) = L(f) exp(c

∫ t

f

e(s)ds), (5)

where L(t) and L(f) are latent images at instant time t and
f , and e(t) ≜ p · δ(t− τ) denotes the continuous represen-
tation of events with δ(·) indicating the Dirac function. On
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Figure 2. Example of the pre-processing operation. The left event
subset experiences time shift, flip and polarity reversal, i.e., R(·),
since ts − f < 0, and the right subset is processed by the operator
of time shift, i.e., S(·), as ts + T − f ≥ 0.

the other hand, the blurry images can be formulated as the
average of latent images within the exposure time [3], i.e.,

B =
1

T

∫
t∈T

L(t)dt (6)

with T denoting the duration of exposure period T . Com-
bining Eq. (5) and Eq. (6), one can obtain

L(f) =
B

E(f, T )
, with (7)

E(f, T ) =
1

T

∫
t∈T

exp(c

∫ t

f

e(s)ds)dt (8)

representing the relation between blurry frames B and latent
images L(f) from the perspective of events, which is also
known as event-based double integral (EDI) [22].

4.1.1 Feasibility Analysis

Previous works of [21,22] focus on exploiting Eq. (7) to re-
store the sharp latent image inside the exposure period T ,
while this formulation can be also extended to recover the
latent frames at arbitrary time outside T (please see the sup-
plementary material for proof). However, direct applying
Eq. (7) for unified deblurring and interpolation often meets
the following obstacles: First, the computation of E(f, T )
requires the knowledge of event threshold c, which is criti-
cal to the recovery performance [22] but hard to accurately
estimate due to its temporal instability. Second, real-world
events are noisy due to the non-ideality of physical sensors
[5], e.g., limited read-out bandwidth, and thus often lead to
degraded results, especially when encountering long-term
integral of events where E(f, T ) is severely contaminated
by noises. Hence, we propose to employ learning-based ap-
proaches to fit the statistics of real-world events.

4.1.2 Network Architecture

Our network receives a latent image timestamp f ∈ T i
i+1,

two consecutive blurry frames Bi, Bi+1 and the corre-
sponding event streams E i

i+1 as input, and outputs a sharp

latent image L(f). There are two main modules in our net-
work: a learnable double integral (LDI) network and a fu-
sion network, where the LDI network learns to approximate
the double integral behavior of Eq. (8) and the fusion net-
work is designed to refine the results generated by the blurry
images and the outputs of LDI network, as shown in Fig. 3.
LDI Network. Suppose the LDI network is trained to ap-
proximate a specific case E(0, T[0,T ]) ≈ LDI(E[0,T ]) i.e.,

LDI(E[0,T ]) ≈
1

T

∫ T

0

exp(c

∫ t

0

e(s)ds)dt, (9)

where T[0,T ] indicates the time interval from 0 to T > 0 and
E[0,T ] is the corresponding event streams. Now we consider
a more general case of E(f, T ), which can be written as

E(f, T ) =
1

T

∫ f

ts

exp(c

∫ t

f

e(s)ds)dt

+
1

T

∫ ts+T

f

exp(c

∫ t

f

e(s)ds)dt,

(10)

where ts indicates the starting time of T . Applying t′ =
t− f and s′ = s− f to Eq. (10), we have

E(f, T ) =− 1

T

∫ ts−f

0

exp(c

∫ t′

0

e(s′ + f)ds′)dt′

+
1

T

∫ ts+T−f

0

exp(c

∫ t′

0

e(s′ + f)ds′)dt′

=w1G(E[f,ts]) + w2G(E[f,ts+T ]),
(11)

where w1 = (f − ts)/T, w2 = (ts+T −f)/T are weights
and G(·) is a general formula defined as

G(E[f,tr]) =
1

tr − f

∫ tr−f

0

exp(c

∫ t

0

e(s+ f)ds)dt (12)

and tr denotes the reference time. Based on the above defi-
nition, we can calculate E(f, T ) by approximating Eq. (12)
with the LDI network, i.e., Eq. (9). For the case of tr −f ≥
0, G(·) can be directly approximated by

G(E[f,tr]) ≈ LDI(S(E[f,tr])) (13)

with S(E[f,tr]) ≜ {e(t + f), t ∈ [0, tr − f ]} representing
the event operator of time shift. For the case of tr − f < 0,

G(E[f,tr]) =
1

f − tr

∫ f−tr

0

exp(c

∫ t

0

−e(−s+ f)ds)dt

≈ LDI(R(E[f,tr])),
(14)

where R(E[f,tr]) ≜ {−e(−t+ f), t ∈ [0, f − tr]} indicates
the event operator composed of time shift, flip and polarity
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reversal, as shown in Fig. 2. For simplicity, we define a
unified pre-processing operator P(·) as follows.

P(E[f,tr]) =
{

S(E[f,tr]) if tr ≥ f,
R(E[f,tr]) if tr < f.

(15)

Thus, Eq. (11) can be reformulated as

E(f, T ) ≈ w1 LDI(P(E[f,ts])) + w2 LDI(P(E[f,ts+T ])),
(16)

meaning that arbitrary E(f, T ) can be approximated by a
weighted combination of LDI outputs, where the LDI net-
work only needs to be trained once to fit the case of Eq. (9).

For the input of LDI network, we introduce a spatio-
temporal event representation. With a pre-defined number,
e.g., N , we fairly divide N temporal bins from t = 0 to
t = T i

i+1 where T i
i+1 denotes the total duration of T i

i+1.
We then accumulate the events pre-processed by P(·) in-
side each temporal bin, and form a 2N ×H ×W tensor as
the LDI input with 2, H,W indicating event polarity, image
height and width, respectively. Therefore, our event rep-
resentation enables flexible choice of the target timestamp
f while maintaining a fixed input format, which allows net-
work to restore the latent images L(f) at arbitrary f ∈ T i

i+1

without any network modification or re-training process.
Fusion Network. After obtaining E(f, T ) from LDI net-
work, the latent image L(f) can be coarsely restored by
Eq. (7). We denote the latent images reconstructed from
Bi, Bi+1 as Li(f), Li+1(f), respectively, and manually
generate an extra result Li

i+1(f) by

Li
i+1(f) = ω(f)Li(f) + (1− ω(f))Li+1(f), (17)

where the weighting function ω(f) with f ∈ [0, T i
i+1] is

defined as

ω(f) =


1 if f ∈ Ti,
1− f

T i
i+1

if f ∈ Ti→i+1,

0 if f ∈ Ti+1,

(18)

since a weighted reconstruction is helpful for frame inter-
polation in our observation. Finally, our fusion network re-
ceives Li(f), Li+1(f), L

i
i+1(f), E(f, Ti), E(f, Ti+1) and

produces the final latent image L̄(f), as illustrated in Fig. 3.

4.2. Self-supervised Learning Framework

The proposed self-supervised learning framework con-
sists of three different losses which are formulated based
on the mutual constraints among blurry frames, sharp latent
images and event streams.
Blurry-event Loss. The double integral of events E(f, T )
corresponds to the mapping relation between blurry frames
and sharp latent images. For multiple blurry inputs, we pro-
pose to formulate the consistency between the latent images
reconstructed from different blurry frames, e.g., Li(f) =

Figure 3. Data flow of the proposed method. With two consec-
utive blurry frames Bi, Bi+1 and the concurrent events Ei

i+1, we
first split the events into four subsets according to the target times-
tamp f , and then feed the events pre-processed by P(·) to four
weight-sharing LDI networks. Following that, three coarse results
Li(f), Li+1(f), L

i
i+1(f) are generated based on Bi, Bi+1 and

the corresponding double integral of events E(f, Ti), E(f, Ti+1),
and the final result L̄(f) is produced by refining them with the fu-
sion network.

Li+1(f). Considering the quantization error which might
be accumulated in E(f, T ), we rewrite the consistency as

Bi

E(f, Ti)
≈ Bi+1

E(f, Ti+1)
, (19)

where E(f, Ti), E(f, Ti+1) are generated by the LDI net-
work. We convert Eq. (19) to the logarithmic domain and
rewrite it as the blurry-event loss LB-E ,

LB-E = ∥(B̃i+1− B̃i)− (Ẽ(f, Ti+1)− Ẽ(f, Ti))∥1, (20)

where the top tilde denotes logarithm, e.g., B̃i = log(Bi).
With the blurry-event constraint, the LDI network can
learn to perform event double integral through utilizing the
brightness difference between blurry frames.
Blurry-sharp Loss. Providing the reconstructed latent im-
ages L̄(t) with t ∈ Ti, the blurring process Eq. (6) can be
reformulated as the discrete version, i.e.,

B̄i =
1

T

∫
t∈Ti

L̄(t)dt ≈ 1

M

M−1∑
m=0

L̄i[m], (21)
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Left blurry LEVS

LEVS

EDI

EDI

LEDVDI

LEDVDI

Right blurry eSL-Net

eSL-Net

RED

RED

Ours

Ours

Figure 4. Qualitative comparisons of the deblurring task on the RBE dataset. Details are zoomed in for a better view.

Table 1. Quantitative comparisons of the proposed method to the state-of-the-arts on the deblurring task. Note that LEDVDI only produces
6 frames for each blurry frame while the others output 7 frames. The number of network parameters (#Param.) is also provided.

Method
GoPro HQF

#Param.
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LEVS [11] 20.84 0.5473 0.1111 20.08 0.5629 0.0998 18.21M
EDI [22] 21.29 0.6402 0.1104 19.65 0.5909 0.1173 -
LEDVDI [14] 25.38 0.8567 0.0280 22.58 0.7472 0.0578 4.996M
eSL-Net [31] 17.80 0.5655 0.1141 21.36 0.6659 0.0644 0.188M
RED [34] 25.14 0.8587 0.0425 24.48 0.7572 0.0475 9.762M
EVDI (Ours) 30.40 0.9058 0.0144 24.77 0.7664 0.0423 0.393M

where L̄i[m] indicates the m-th latent image inside the ex-
posure time of Bi and M is the total number of reconstruc-
tion. Previous attempts reduce the discretization error by as-
suming linear [3] or piece-wise linear motion [34] between
latent frames and interpolating more intermediate frames,
while this assumption might be violated in real-world sce-
narios especially in the case of complex non-linear motions.
In contrast, we restore L̄i[m] all by our network to exploit
the real motion embedded in the event streams, and formu-
late the blurry-sharp loss LB-S between the reblurred im-
ages B̄i, B̄i+1 and the original blurry inputs Bi, Bi+1 as

LB-S = ∥B̄i −Bi∥1 + ∥B̄i+1 −Bi+1∥1, (22)

which guarantees the brightness consistency by learning
from the blurry inputs.
Sharp-event Loss. Apart from the above constraints, the
relation between sharp latent images and events can be also
leveraged to supervise the reconstruction of consecutive la-
tent frames. Based on Eq. (5), we have

N (∆L̃) = N (J), (23)

where ∆L̃ ≜ L̃(t) − L̃(f), J ≜
∫ t

f
e(s)ds and N (·) is the

min/max normalization operator adopted in [23]. There-
fore, we can avoid the estimation of threshold c and formu-

late the sharp-event loss LS-E as

LS-E = ∥M(N (∆L̃))−M(N (J))∥1, (24)

where M(·) denotes a pixel-wise masking operator for
M(·) = 0 only when there are no events. Finally, the total
self-supervised framework can be summarized as follows.

L = αLB-E + βLB-S + γLS-E , (25)

with α, β, γ denoting the balancing parameters.

5. Experiments and Analysis
5.1. Experimental Settings

Datasets. We evaluate the proposed method with three dif-
ferent datasets, including synthetic and real-world ones.

GoPro: We build a purely synthetic dataset based on
the REDS dataset [16]. We first downsample and crop the
images to size 160 × 320 and then increase the frame rate
by interpolating 7 images between consecutive frames us-
ing RIFE [6]. Finally, we generate both blurry frames and
events based on the high frame-rate sequences, where the
blurry frames are obtained by averaging a specific number
of sharp images, and events are simulated by ESIM [24].

HQF: The HQF dataset [26] contains real-world events
and high-quality frames captured simultaneously by a
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Left blurry Jin

Jin
BIN

BIN
DAIN

DAIN

Right blurry LEDVDI

LEDVDI
Time Lens

Time Lens
Ours

OursFigure 5. Qualitative comparisons of the interpolation task on the RBE dataset. Details are zoomed in for a better view.

Table 2. Quantitative results on the interpolation task. We compute PSNR and SSIM on the reconstruction results of the skipped frames,
and use the official models provided by the authors for comparison. The column #Param. indicates the number of network parameters.

Method
1 frame skip 3 frame skips

#Param.GoPro HQF GoPro HQF
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Jin [10] 20.47 0.5244 20.48 0.5958 19.50 0.4730 18.78 0.5160 10.81M
BIN [25] 19.54 0.4645 18.25 0.4576 - - - - 11.44M
DAIN [1] 20.89 0.5297 20.97 0.5980 20.48 0.5102 20.46 0.5848 24.03M
EDI [22] 18.72 0.5059 16.62 0.4266 18.49 0.4862 16.58 0.4219 -
LEDVDI [14] 24.42 0.8198 19.24 0.6034 23.57 0.7992 18.57 0.5651 4.996M
Time Lens [30] 21.56 0.5809 21.21 0.6090 21.47 0.5870 20.96 0.6060 79.20M
EVDI (Ours) 29.17 0.8797 23.09 0.6929 28.77 0.8731 22.24 0.6670 0.393M

DAVIS240C camera where the images are minimally
blurred. We up-convert the frame rate and synthesize blurry
frames using the same manner as the GoPro dataset, and
form a semi-synthetic dataset of blurry videos.

RBE: The RBE dataset [34] employs a DAVIS346 cam-
era to collect real-world blurry videos and the correspond-
ing event streams, which can be used for training with the
proposed self-supervised learning framework and verifying
the performance of our method in real-world scenarios.

Implementation details. We implement the LDI network
with 5 convolution layers and the fusion network with 6
convolution layers, 2 residual blocks and 1 CBAM [33]
block, forming a lightweight network architecture (detailed
in the supplementary material). Our network is imple-
mented using Pytorch and trained on NVIDIA GeForce
RTX 2080 Ti GPUs with batch size 4 by default. The
Adam optimizer [12] is employed accompanied with the
SGDR [15] schedule where the parameter Tmax is set to
100 (reset the learning rate every 100 epochs). We set the
number of temporal bins N = 16 for LDI inputs and ran-
domly crop the images to 128 × 128 patches for training.
The training process is divided into two stages: We first
train our model in the deblurring setting with the weighting

factors [α, β, γ] = [512, 1, 1×10−1] and the initial learning
rate 1×10−3 for 100 epochs, and then continue training un-
der the setting of unified deblurring and interpolation with
the weighting factors [α, β, γ] = [128, 1, 1× 10−1] and the
initial learning rate 1 × 10−4 for another 100 epochs. We
train a model for each dataset and evaluate it on the cor-
responding dataset, which is convenient as we do not need
ground-truth images for supervision.

5.2. Results of Deblurring

For the setting of deblurring, we synthesize 1 blurry im-
age using 49 frames on the GoPro and HQF datasets and
evaluate the performance by restoring 7 original frames (be-
fore up-converting the frame rate) per blurry image. We
compare to the state-of-the-art frame-based deblurring ap-
proach LEVS [11] and event-based methods including EDI
[22], LEDVDI [14], eSL-Net [31], RED [34], and evaluate
the results by metrics PSNR, SSIM [32] and LPIPS [36].

As demonstrated in Tab. 1, the proposed method
achieves remarkable deblurring results compared to the
state-of-the-arts. The performance of LEVS is limited un-
der highly dynamic scenes, e.g., Fig. 4, due to the motion
ambiguity. For event-based approaches, the model-driven
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Figure 6. Visual results of EVDI trained with different losses.

method EDI provides comparable performance to LEVS by
exploiting the precise motion embedded in events. LED-
VDI further enhances this advantage on the GoPro dataset
through introducing learning-based techniques, but this
overwhelming performance is not maintained in the HQF
dataset due to the inconsistency between datasets. RED
achieves the most competing results with semi-supervised
learning, but it still pays performance losses to balance dif-
ferent data distributions. Our EVDI method tackles this
problem by fitting the particular data distribution with the
self-supervised framework, and thus achieves the best per-
formance on each dataset. Meanwhile, our model only con-
tains 0.393M network parameters, which is an order of mag-
nitude smaller than other methods except eSL-Net. Note
that eSL-Net requires 122.8G FLOPs to infer a 160 × 320
image due to its recursive structure, while our model only
needs 13.45G FLOPs, maintaining the overall efficiency.

5.3. Results of Interpolation

For the task of interpolation, we collect consecutive 97
frames (which are 13 original frames before up-converting)
as a set of input, and synthesize 1 blurry images using 41
frames at both ends, leaving 1 latent original frame in the
middle for evaluation (noted as 1 frame skip). Similarly,
we design another case of 3 frame skips by synthesizing 1
blurry image with 33 frames and leaving 3 original middle
frames. The frame-based interpolation methods Jin’s work
[10], BIN [25], DAIN [1] and event-based approaches EDI
[22], LEDVDI [14], Time Lens [30] are compared.

The results in Fig. 5 and Tab. 2 demonstrate the difficulty
of blurry video interpolation for frame-based approaches.
The optical flow used in DAIN often projects motion blur
to the interpolation results as shown in Fig. 5. Jin’s work
employs a cascaded scheme for deblurring and interpola-
tion, which tends to propagate the deblurring error to the
interpolation stage. Despite BIN achieves joint deblurring
and interpolation, it is difficult to synthesize the accurate in-
termediate frames due to the missing information between
frames. For event-based methods, LEDVDI and Time Lens
are able to correctly estimate the intermediate frames using
the precise motion inside events. However, the performance
of Time Lens is highly dependent on the quality of reference
frames, and LEDVDI often faces performance drop when
inferring on other datasets due to data inconsistency. The
proposed EVDI method utilizes both frames and events to
guarantee the interpolation quality, and tackles the inconsis-
tency problem by learning on the target scenarios with the
self-supervised framework, thus producing better results.

Table 3. Ablation study of the proposed self-supervised frame-
work and the fusion network. We train these models under the
setting of 1 frame skip on the GoPro dataset but evaluate them by
computing metrics on all frames of the test set, including the re-
construction results within and between blurry frames, for a com-
prehensive analysis of unified deblurring and interpolation.
LB-S LB-E LS-E Fusion PSNR / SSIM / LPIPS
✓ ✓ 22.66 / 0.6769 / 0.0954

✓ ✓ 9.152 / -0.0631 / 0.3213
✓ ✓ 6.847 / 0.0192 / 0.7840

✓ ✓ ✓ 29.97 / 0.8998 / 0.0182
✓ ✓ ✓ 28.07 / 0.8734 / 0.0274
✓ ✓ ✓ 29.36 / 0.8924 / 0.0221
✓ ✓ ✓ ✓ 30.15 / 0.9026 / 0.0162

5.4. Ablation Study

We study the importance of each loss in our self-
supervised framework and investigate the contribution of
the fusion network. The following conclusions are drawn:

Necessity of loss combination. As depicted in Fig. 6,
blurry-sharp loss LB-S contributes to brightness consis-
tency but cannot produce sharp results. Blurry-event loss
LB-E and sharp-event loss LS-E are able to deal with mo-
tion ambiguity by gaining supervision from blurry frames
and events, respectively, but do not constrain brightness.
With the combination of loss functions, the brightness in-
consistency and motion ambiguity can be simultaneously
addressed by taking the complementary advantage of LB-S
and LB-E ,LS-E .

Importance of information fusion. Although LB-E
and LS-E are both capable of tackling motion ambiguity,
their supervision comes from different information sources:
LB-E exploits blurry frames Bi, Bi+1 to supervise the esti-
mation of E(f, Ti), E(f, Ti+1), while LS-E utilizes events
to constrain the generation of L̄(f). Hence, combing LB-E
and LS-E will achieve the best performance, as demon-
strated in Tab. 3. Moreover, the fusion network also im-
proves the results by fusing the information from different
blurry frames and events.

6. Conclusion

This paper introduces a unified framework of event-
based video deblurring and interpolation that generates
high frame-rate sharp videos from low-frame-rate blurry
inputs. Through analyzing the mutual constraints among
blurry frames, sharp latent images and events, a self-
supervised learning framework is also proposed to enable
network training in real-world scenarios without any la-
beled data. Evaluation on both synthetic and real-world
datasets demonstrates that our method competes favorably
against state-of-the-arts while maintaining an efficient net-
work design, showing potential for practical applications.
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