
Convolution of Convolution: Let Kernels Spatially Collaborate

Rongzhen Zhao Jian Li Zhenzhi Wu∗

Lynxi Technologies
Beijing, China, 100097

{rongzhen.zhao, jian.li, zhenzhi.wu}@lynxi.com

Abstract

In the biological visual pathway especially the retina,
neurons are tiled along spatial dimensions with the electri-
cal coupling as their local association, while in a convolu-
tion layer, kernels are placed along the channel dimension
singly. We propose convolution of convolution, associat-
ing kernels in a layer and letting them collaborate spatially.
With this method, a layer can provide feature maps with ex-
tra transformations and learn its kernels together instead
of isolatedly. It is only used during training, bringing in
negligible extra costs; then it can be re-parameterized to
common convolution before testing, boosting performance
gratuitously in tasks like classification, detection and seg-
mentation. Our method works even better when larger re-
ceptive fields are demanded. The code is available on site:
https://github.com/Genera1Z/ConvolutionOfConvolution.

1. Introduction

In the most recent decades, deep learning methods
have been greatly promoting the performance of algorithms
on various computation vision (CV) tasks. Particularly,
the convolution operation in convolution neural networks
(CNNs) is of great importance because of its powerful ca-
pability in feature extraction.

For gains in performance or efficiency, various ways
have been tried to improve the convolution operation. The
very early efforts are light convolution, by lowering connec-
tivities in the channel [1,10,30] or space [19,31,33], or both
[34]. The following trials are increasing the freedom of ker-
nel shape or value [5, 17, 42]. The most recent are dynamic
weights generated by the inputs [18, 27, 40]. Some draw
attention or multi-scale into convolution [4, 9, 12, 22, 39],
which are more like blocks.

In modeling the retina and subsequent visual pathway, as
shown in Fig. 1 [11,36], these methods are no different from
the standard convolution: different populations of neurons

∗Corresponding author.

kernels are
shared spatially

co
n
v2

co
n
v1

rod cell

cone cell

bipolar cell

amakrine cell

…

retin
a

… …

chemical synapse

d
if

fe
re

n
t

ke
rn

el
s/

ch
an

n
el

s

kernels are
shared spatially

co
n
v2

co
n
v1

rod cell

cone cell

bipolar cell

amakrine cell

…

retin
a

… …

chemical synapse

d
if

fe
re

n
t

ke
rn

el
s/

ch
an

n
el

s

Figure 1. Current convolutions succeed in modeling many key
features of the retina, except the electrical synapses. The electrical
synapses among close neurons of different types have not been
realized yet. We address this by employing the spatial association
(vertical red arrows on the left) on kernels within a layer.

are modeled as different convolution layers; connections be-
tween populations, i.e., chemical synapses, are modeled as
weights connecting different layers; different neuron types
within a population are modeled by different kernels within
a layer, while neurons of the same type are modeled by one
same kernel shared over spatial dimensions; the electrical
synapses among close neurons (red arrows on Fig. 1 right),
however, is not well handled.

The electrical sysnapses provide the electrical coupling
effect that neural signals are transduced instantly in local ar-
eas. And such an effect also plays an important role in coor-
dinating neighboring neurons to perform visual perception
all together [11,36], which we believe should not be ignored
in CNNs’ implementation.

The electrical synapses among close neurons of the same
type, in current methods, are implicated in the spatial over-
lap of those neighboring convolution sliding windows (hor-
izontal red arrows on Fig. 1 left) of one single kernel within
a layer; the electrical sysnapses among close neurons of dif-

651

ferent types have not been realized yet.
Inspired by this, we propose the method “convolution of

convolution” (CoC), where spatial associations among ker-
nels (vertical red arrows on Fig. 1 left) within a layer are
employed to let them collaborate spatially. It can seam-
lessly replace current kinds of convolution layers. It only
brings in negligible extra costs during training, then can be
re-parameterized to the original convolution version once
finished, which gives various networks re-built of CoC gra-
tuitous performance gains during testing.

Our contributions are:
(1) Proposing method CoC, opening up a new way of

thinking for other works to follow up;
(2) Realizing an association to let kernels collaborate

spatially for better feature extraction;
(3) Conducting detailed ablation studies on how hyper-

parameters affect CoC’s performance;
(4) Evaluating CoC on various backbones and vision

tasks to demonstrate its superiority.

2. Related Works

Existing convolution techniques can be roughly catego-
rized to ones lowering connectivity, ones adjusting statistics
and ones liberalizing shape or value.

“Lonely” Kernels
Works lowering kernels’ connectivity do not provide

constraints that joint kernels. The ingeniously handcrafted
topology of light convolutions, like GWC, CWC, 1D-Conv,
PSConv and MixConv [1, 10, 19, 33, 34], provides no asso-
ciation among kernels in a layer. It is the same with those
sparse convolutions based on L0 regularization or pruning
techniques, such as SSL and DeepR [3, 37].

Works liberalizing kernels’ shape or value pay no at-
tention to the association. Neither DeformConv, Active-
Conv [5,17,42] or alike, which deform shape and modulate
weights by extra feature maps, nor WeightNet, DyNet, In-
volution [18,27,40] and so on, which dynamically generate
weights by inputs, focus on other aspects like the associa-
tion, except the liberalization of convolution.

Associated Kernels
Some of those works that adjust kernels’ statistics indeed

take into account how to learn kernels together. Representa-
tive ones, including SO, SN and OCNN [2,26,35], supervise
kernels in a layer to converge to orthogonal states with extra
loss, such that kernels are diverse and weights are made full
use. Works standardizing weights by normalizing and/or
centering, for instance, WN, CWN and WS [16,28,29], are
not necessarily doing the association, but worth referring to.

Association vs. Diversity
That we use another convolution to associate kernels

in a convolution usually do harm to kernel’s diversity due
to convolution’s smoothing effect and linear correlation.

The association and diversity are thus a pair of contradic-
tions. Typical solutions include skip connections and dila-
tion [14, 20, 38]. The aforementioned standardization and
orthogonalization are also possible choices.

Re-Parameterization
Works of re-parameterization [6–8] may not have much

to do with the topic of association, but their characteristic
use-in-train-fuse-in-test is worth learning from – You just
pay a price for the performance in training then enjoy the
benefits in testing without any loss of efficiency.

3. Proposed Method
Our method Convolution of Convolution (CoC) is firstly

presented and then analyzed mathematically, followed by
implementation details.

3.1. Convolution of Convolution

Two definitions here – Basic Convolution: correspond-
ing to a standard convolution; Super Convolution: extra
convolution imposing spatial association on the basic con-
volution kernels.

associated
kernels

super
kernels

output
"features"

input
"features"

basic
kernels

…

…

…

…

…

(1) re-arrange-into

(2) super-convolve

(3) re-arrange-back

k

co

2k

co/4

co/4

ks

* *

associated
kernels

super
kernels

output
"features"

input
"features"

basic
kernels

…

…

…

…

…

(1) re-arrange-into

(2) super-convolve

(3) re-arrange-back

k

co

2k

co/4

co/4

ks

* *

Figure 2. Associate kernels spatially. (1) Re-arrange each group
of the basic kernels along width and height into “input features”;
(2) Convolve each “feature” with a specific super kernel; (3) Re-
arrange the “output features” of the super convolution back.

Let Kernels Collaborate in Spatial Dimensions
As drawn in Fig. 2, given a basic convolution, of which

the kernels’ tensor is in shape (co, ci, k, k). (0) Divide
them into groups, e.g., every four kernels as a group,
and if co cannot be exactly divided then pad zeros. (1)
Re-arrange each group along width and height into shape
(co/4, ci, 2k, 2k), and treat them as “input features”. (2)
For the “input features”, each in shape (ci, 1, 2k, 2k) is con-
volved with a specific super kernel in shape (1, 1, ks, ks),

652

which is shared over the “batch” dimension ci times. (3)
Re-arrange the “output features” back and spatially associ-
ated kernels are obtained. (4) Lastly, common convolution
can be computed with these kernels.

During training, steps (1˜3) are executed at every itera-
tion to keep the associated kernels update-to-date; every-
thing else is no different from the common case. Dur-
ing testing, steps (1˜3) are calculated in advance, i.e., re-
parameterizing CoC back to common convolution, so that
the model can enjoy performance gains gratuitously.

Please do not confuse our dividing kernels into groups
with the grouped convolution technique. Also DO NOT
mix up our re-arranging each group along width and height
with increasing the kernel size manyfold.

How CoC exactly works in the forward and backward
propagation? The mathematical analyses are followed.

Forward: Provide Extra Transformations among the
Output Channels

In the forward propagation, CoC’s spatial association is
equivalent to providing extra transformations among fea-
ture’s output channels.

Suppose a CoC layer with basic kernels b0 and super ker-
nels s; the “re-arrange-into” operation is denoted as ξ in
Fig. 2 and “re-arrange-back” is ξ−1; input and output fea-
tures are fi and fo respectively.

can be
re-parameterized
after training

ξ -1ξ -1

*

*

b0b0b0

ξ bξ bξ bξ

ss

b1b1b1

fofofo

fififi

can be
re-parameterized
after training

ξ -1

*

*

b0

ξ bξ

s

b1

fo

fi

ξ -1ξ -1

*

*

b0b0b0

fofofo

ss

repeat sliding...
one sliding window

repeat sliding...
one sliding window

slide in such way

fififi

fbfbfb
ξ

ξ -1

*

*

b0

fo

s

repeat sliding...
one sliding window

slide in such way

fi

fb
ξ

can be
re-parameterized
after training

ξ -1

*

*

b0

ξ bξ

s

b1

fo

fi

ξ -1

*

*

b0

fo

s

repeat sliding...
one sliding window

slide in such way

fi

fb
ξ

Figure 3. The upper is a CoC layer following steps (0˜4), where
the super convolution is done the first; the lower is its equivalence,
where the super convolution is done the last, i.e., extra transfor-
mations are provided among the output channels. Here basic ker-
nels are b0 and super kernels are s; the “re-arrange-into” and “re-
arrange-back” operations are ξ and ξ−1; input and output features
are fi and fo.

As shown in Fig. 3 the upper, a CoC operation following
steps (0˜4) mentioned above can be formulated as

fo = Fcoc(fi) = ξ−1(s ∗ ξ(b0)) ∗ fi (1)

where s∗ξ(b0) is the step (2) super convolution, and ξ−1(s∗
ξ(b0)) is steps (1˜3), i.e. spatial association.

As shown in Fig. 3 the lower, given CoC super convolu-
tion is linear, the CoC operation can be equivalent to

fo = Fcoc(fi) = ξ−1(s ∗ ξ(b0 ∗ fi)) (2)

where b0 ∗ fi is actually the common convolution

fo = Fstd(fi) = b0 ∗ fi (3)

and the remaining part in Eq. (2) means the extra transfor-
mation among the output channels.

Note: the extra transformation is what common convo-
lutions do not have, and more importantly, it can be re-
parameterized as common convolution after training so its
computation burden will not present during testing.

Further, the extra transformation in Eq. (2) takes place
in every “super sliding” window, where four neighboring
common sliding windows share sides, as shown in Fig. 3
the cyan box. So Eq. (2) can be re-formulated as

fo = θ(ξ−1(s ∗ ξ(b0 ∗ fu,v
i))) = θ(fu,v

o) (4)

for all possible u and v, where θ(·) is the super sliding op-
eration, and fu,vi is the input feature patches in the (u, v)th
super sliding window; fu,vo is the output super patch:

fu,v
o = ξ−1(s *©ξ(b0 ∗ fu,v

i))

= ξ−1(s ∗ ξ({k1 ∗ pai , k2 ∗ pbi , k3 ∗ pci , k4 ∗ pdi }))

= ξ−1(s ∗ ξ({p1ab , p2bb , p3cb , p4db }))

= ξ−1(s ∗ ξ(fu,v
b))

(5)

where operator *© is a convolution performed within each
sub-patch instead of the super patch; k1˜k4 are the basic ker-
nels b0; pai ˜pdi are sub-patches composing the super patch
fu,vi ; p1ab ˜p4db consist of fu,vb , as shown in Fig. 4.

ss

2a 2b
3a 3b
4a 4b

2d
3d
4d1a 1b

1c 1d

2a 2b
3a 3b
4a 4b

2d
3d
4d1a 1b

1c 1d

fbfb

(u,v)th super
sliding window

out of

1a 2b

3c 4d

1a 2b

3c 4d

super patch

ξ -1ξ -1*
c d

a b

c d

a b *

b0b0b0

f if i

(u,v)th super
sliding window

out of

(2) super-convolve

4d4d
3c3c

1a1a
2b2b

4d
3c

1a
2b

(1) re-arrange-into
(3) re-arrange-back

4d4d
3c3c

1a1a
2b2b

fofo

(u,v)th super
sliding window

out of

ξ

f i
u,vf i
u,v

fb
u,vfb
u,v

fo
u,vfo
u,v

s

2a 2b
3a 3b
4a 4b

2d
3d
4d1a 1b

1c 1d

fb

(u,v)th super
sliding window

out of

1a 2b

3c 4d

super patch

ξ -1*
c d

a b *

b0

f i

(u,v)th super
sliding window

out of

(2) super-convolve

4d
3c

1a
2b

(1) re-arrange-into
(3) re-arrange-back

4d
3c

1a
2b

fo

(u,v)th super
sliding window

out of

ξ

f i
u,v

fb
u,v

fo
u,v

Figure 4. The meaning of the extra transformation that Eq. (5) de-
scribes. For the current super sliding window, (1) Re-arrange sub-
patches p1ab ˜p4db into a super patch; (2) Convolve the super patch
with the super kernel; (3) Re-arrange the returned patch back to
the original places. Here fu,v

i is the super patch out of fi, where
pai ˜pdi are its sub-patches. Note: the padding-zero routine is re-
placed by padding the feature contents surrounding current super
sliding window.

Now the meaning of this extra transformation is clear:
For the current super sliding window, (1) output feature

653

patches p1ab , p2bb , p3cb and p4db are re-arranged into a cross-
channel super patch by ξ(·); (2) this super patch is then con-
volved by s, producing a new super patch, which is of the
same size; (3) the new super patch is re-arranged back by
ξ−1(·) to the original shape.

Proof of Eq. (2). For the (u, v)th super sliding,

fu,v
o = ξ−1(s ∗ ξ(b0 ∗ fu,v

i))

= ξ−1(s ∗ ξ({k1 ∗ pai , k2 ∗ pbi , k3 ∗ pci , k4 ∗ pdi }))

= ξ−1(s ∗
[
k1 ∗ pai k2 ∗ pbi
k3 ∗ pci k4 ∗ pdi

]
)

= ξ−1(s ∗ (
[
k1 ∗ pai k2 ∗ 0
k3 ∗ 0 k4 ∗ 0

]
+ ...

[
k1 ∗ 0 k2 ∗ 0
k3 ∗ 0 k4 ∗ pdi

]
))

= ξ−1(s ∗ (
[
k1 k2
k3 k4

]
*©(

[
pai 0
0 0

]
+ ...

[
0 0

0 pdi

]
)))

= ξ−1(s ∗
[
k1 k2
k3 k4

]
*©
[
pai pbi
pci pdi

]
)

= ξ−1(s ∗
[
k1 k2
k3 k4

]
) ∗ {pai , pdi , pci , pdi }

= ξ−1(s ∗ ξ(b0)) ∗ fu,v
i

(6)

where *© is a convolution operated in each sub-patch intead
of the super patch, which means it is linear to both s∗� and
ξ−1(·) and thus can be moved out and reduced to ∗.

Substitute Eq. (6) into Eq. (4) and the proof is done.
Backward: Learn Kernels within a Layer by Refer-

ring to One Another
In the backward propagation, CoC’s association makes

kernels learnt by referring to each other.
Suppose two layers conv1 and conv2 and their input,

intermediate and output features x, y and z, and the gradient
accumulated to features y is denoted as G.

For common convolution in Fig. 5 the upper, according
to the chain rule, kernel k1’s gradient in layer conv1 is

g1 = G× ∂y

∂k1
= G× ∂(k1 ∗ x, k2 ∗ x, . . . k4 ∗ x)

∂k1

= G× x
(7)

where G is the accumulated gradient, dependent on current
training examples and the model’s weights, of course in-
cluding k1˜k4 in conv1, which empirically contribute mi-
nor to G; ∂y/∂k1 is the derivative of conv1’s output over
k1, which is independent of conv1’s other kernels. Briefly,
common convolution kernels are roughly learnt solely.

For CoC drawn in Fig. 5 the lower, denote the aforemen-
tioned spatial association as α(·) = ξ−1(s∗ξ(·)). Then k1’s
gradient in conv1 is

g1 = G× ∂y

∂k1
= G× ∂(k′1 ∗ x, k′2 ∗ x, . . . k′4 ∗ x)

∂k1

= G× (
∂α(k1; k2, . . . k4) + . . . α(k4; k1, . . . k3)

∂k1
∗ x)

(8)

conv1 conv2x y z

…

k1k1

k2k2

k3k3

k4k4

…

k5k5

…

k1

k2

k3

k4

…

k5

…

k1k1

k2k2

k3k3

k4k4

…

k5k5

…

k1

k2

k3

k4

…

k5

gradient

gradientgradientgradient

conv1 conv2x y z

…

k1

k2

k3

k4

…

k5

…

k1

k2

k3

k4

…

k5

gradient

gradientgradient

Figure 5. The upper is the gradient flow of a common convolution,
where kernel k1’s gradient is roughly up to the accumulated gra-
dient and features y only; the lower is the gradient flow of a CoC
layer, where k1’s gradient is also up to other kernels in conv1 –
CoC kernels are learnt by referring to one another. Here x, y and
z are the input, intermediate and output features of layers conv1
and conv2.

where k′i = α(ki; kj |j 6= i) is the ith associated kernel, of
which both the value and gradient are explicitly dependent
on other kernels in this layer. Briefly, CoC kernels are learnt
by referring to one another.

3.2. Implementation Details

The naive implementation is shown in Fig. 6. The most
tricky part is step (2) “super-convolve”: each of the co/4
“input features” is convolved by a specific super kernel,
whose weights are shared ci times. Note the lines marked
by XXX.

__init__

co4 = out_channels // 2 ** 2
weight1 = Tensor(out_channels, in_channels, *kernel_size)
co, ci, kh, kw = weight1.shape

0 # create super conv
self.conv_super = Conv2d(co4, co4, super_kernel_size, super_stride,
 super_padding, super_dilation, groups=co4) # XXX

1 # rearrange basic kernels for spatial association
weight2 = rearrange(weight1, '(co4 2 2) ci kh kw -> co4 ci (2 kh) (2 kw)')
weight3 = weight2.permute(1, 0, 2, 3) # XXX
self.weight = Parameter(weight3)

forward

2 # use super conv to associate the rearranged basic kernels
weight4 = self.conv_super(self.weight) # XXX

3 # rearrange back to get the associated kernels
weight5 = weight4.permute(1, 0, 2, 3) # XXX
weight6 = rearrange(weight5, 'co4 ci (2 kh) (2 kw) -> (co4 2 2) ci kh kw')

4 # use the associated kernels to do the common convolution
xo = F.conv2d(xi, weight6, self.bias, stride, padding, dilation)

Figure 6. Pseudo-code of CoC during training. For testing, step
#2/3 is moved into init for re-parameterization.

Configurable Hyper-Parameters

654

50

50.5

51

51.5

52

52.5

53

sa

101-201-401-801 121-221-421-821

skp (no dilat)

201-221-241 421-441-461

sl

221-222 201-202

skip | dilat | orth | stnd | c1x1

221 no_skip no_dilat no_orth no_stnd c1x1 naive

original ShuffleNetV2-1x

55

55.5

56

56.5

57

57.5

58

sa

101-201-401-801 121-221-421-821

skp (no dilat)

201-221-241 421-441-461

sl

221-222 201-202

skip | dilat | orth | stnd | c1x1

221 no_skip no_dilat no_orth no_stnd c1x1 naive

original ResNet18

coc

super

*

ws

sa

stnd

skip

T|F..

basic

wb

Δ

+

xo

Δ

xi

dilat

0,2,4..skp

sl

1,2,3..

1,2,3..

c1x1

T|F

T|F

T|F

orth T|F

Δ

*
+

rearrangement

convolution-2d
elem-wise-sum

wb: basic kernels
ws: super kernels

*

Figure 7. Hyper-parameters of CoC. On the left are the configurable hyper-parameters: sa, spatial association; skp, super kernel plus; sl,
number of super layers; skip, skip connection; dilat, dilation; stnd, standardizing; orth, orthogonalizing; c1x1, replace conv1x1.
On the right are CoC-rebuilt networks’ performance on Tiny-ImageNet: x-axes are different settings and y-axes are val acc%; digits like
201 mean sa/skp/sl successively; identifiers like no skip means skip=false and the default is true.

For optimization, some hyper-parameters or auxiliary
techniques need to consider, as shown in Fig. 7 the left.

(1) Spatial association sa: the number (square root) of
kernels grouped together for association. E.g., if sa=2 then
four kernels are associated together;

(2) Super kernel plus skp: how much super kernel size
expands or dilates upon basic kernel size. Given basic ker-
nel size 3×3, if skp=2 then super kernel size is 5×5;

(3) Number of super layers sl: the number of layers
used as the super convolution part;

(4) Association vs. diversity. As discussed in Sec. 2,
methods like skip connection skip, dilation dilat, or-
thogonalization orth [35], standardization stnd [28]
could ensure kernels’ diversity under the association;

(5) Replacing conv1x1 c1x1: replace convolution lay-
ers of kernel size 1×1 with CoC or not.

Note: Since the association is convolution, points like
skp, sl, skip and dilat should be taken as intrinsic
parts of CoC, but orth and stnd are not, because they are
actually our competitors yet compatiable with CoC.

Please refer to Sec. 4.1 for more information.

4. Experiments
How CoC’s hyper-parameters affect the networks’ per-

formance is expounded here, so that readers could under-
stand our way of thinking better and avoid detours in their
further explorations. Then comes the evaluation of our

method on typical tasks under the optimal setting of those
hyper-parameters.

4.1. Determine Hyper-Parameters

The codebase we use is mmcls 1. The dataset we use
is Tiny-ImageNet 2, sub-set of ImageNet with 200 classes
and 100k examples, of which the images are resized to
128×128 from 64×64. The backbones are ResNet18 and
ShuffleNetV2-1x, representing (a) standard and (b) light-
weight models respectively. Other training settings are ex-
actly identical. Results are shown in Fig. 7 the right.

Analysis
(1) sa: different settings get similar results and sa=2

seems to be the best. This is because super convolution can
only provide the association within its receptive field, and
thus too large samakes no essential difference. Please refer
to Fig. 8 for visual explanation;

(2) skp: should be greater than 0, namely, super kernel
size had better be larger than basic kernel size, but too large
undermines the performance. This can be explained as too
large super kernels may correlate the basic weights overly.
Please also refer to Fig. 8;

(3) sl: not the larger the better. Considering the gap be-
tween train/val accuracy in our experiments, the more super
layers there are, the easier it gets over-fitting;

1https://github.com/open-mmlab/mmclassification
2http://cs231n.stanford.edu/tiny-imagenet-200.zip

655

sa=2 sa=4

… … … …

…

…

sa=2 sa=4

… … … …

…

…

skp=2; no dilat skp=2; dilat

sa=2 sa=4

… … … …

…

…

skp=0; no dilat

sa=2 sa=4

… … … …

…

…

sa=2 sa=4

… … … …

…

…

skp=2; no dilat skp=2; dilat

sa=2 sa=4

… … … …

…

…

skp=0; no dilat

Figure 8. Analysis of sa, skp & dilat. Suppose basic kernel
(green˜blue˜purple) size is 3×3; super kernel (orange) size is de-
pendent on skp. Left: if skp=0, the associated area is 3×3 at
most, so it “saturates” when sa>2. Center: if skp=2, the asso-
ciated area is 5×5, and it saturates when sa>3. Besides, when
skp>0 and dilat=false, the super kernels linearly correlate al-
most every element in the basic kernels, which harms kernels’ di-
versity. Right: if dilat is enabled, the over-correlation will be
effective alleviated.

(4, 5) skip, dilat: always beneficial. They indeed
alleviate over-association and retain kernels’ diversity;

(6) orth [35]: always beneficial, especially for standard
models. This is due to that orthogonalization indeed makes
full use of models’ weights;

(7) stnd [28]: good for standard models but bad for
light models. The reason could be that light models have
limited weights thus need some outliers to enrich kernel di-
versity, which is suppressed by weight standardization;

(8) c1x1: replacing conv1x1 with CoC is harmful be-
cause conv1x1 is originally designed for channel projection
rather than spatial transformation.

Summary
First of all, our CoC is even compatible with its competi-

tors like orth and stnd, and joint use of CoC with them
would likely create more benefits.

The optimal setting of our CoC is: sa=2, skp=2, sl=1,
skip=true, dilat=true and c1x1=false.

For standard models, it is better to use CoC and orthog-
onalization together; yet for light-weight models, it is quite
necessary to discard standardization.

4.2. Evaluate on Typical Tasks

Under the optimal setting mentioned above, we evalu-
ate our CoC on multiple typical vision tasks. We carry out
these experiments all under their widely recognized settings
without special customization.

Image Classification
The codebase we use is mmcls. The dataset is Im-

ageNet 3 and input size is 224×224. The backbones
are ResNet18/50, HRNet18/18small, MobileNetV3small
and ShuffleNetV2-1x [14, 15, 25, 32], representing main-
stream architectures, i.e. (1) simple-feed-forward, (2) multi-
branch-interact and (3) light-weight respectively.

3https://image-net.org/challenges/LSVRC/2012/index.php

For simple feed-forward and multi-branch-interact mod-
els, the optimizer is SGD with lr0=0.1, nesterov=true, mo-
mentum=0.9, and weight-decay=1e-4; The learning-rate
decays in “step” mode of ratio=0.1 at epoches #30/60/90,
and the maximum number of epoches is 100.

For light-weight models, the optimizer is SGD
with lr0=0.5, momentum=0.9, weight-decay=4e-5; The
learning-rate decays in “poly” mode of power=0.9 and min-
lr=1e-4, and the maximum number of epoches is 300.

All of these models are trained at batch-size=64 on four
GPUs of type RTX3090, with identical data augmentation,
i.e., resize-crop and random-flip.

Table 1. Image classification results on ImageNet/val.

backbone coc orth stnd acc % ± %
1 70.01 0.014
2 X 70.40 0.018
3 X 70.38 0.020
4 X 70.65 0.009
5

ResNet18

X X 71.20 0.019
6 76.25 0.040
7 X 76.45 0.041
8

ResNet50
X X 77.07 0.037

9 74.03 0.010
10 X 74.25 0.015
11 X 74.34 0.082
12 X 74.59 0.009
13

HRNet18-s

X X 75.14 0.023
14 75.82 0.015
15 X 76.07 0.016
16

HRNet18
X X 76.98 0.010

17 69.59 0.062
18

ShuffleV2-1.0x
X 70.24 0.064

19 66.34 0.058
20

MobileV3-small
X 66.84 0.061

According to results Tab. 1 #1/2/3/4 and #9/10/11/12, ex-
clusive use of CoC can surely improve the performance but
the advantage is not obvious, just 0.2˜0.6%. But accord-
ing to #2/3/5, #7/8, #10/11/13 and #15/16, CoC with orth
or stnd can reach the effect of “one plus one greater than
two”, up to 0.8˜1.2% of performance gain. Therefore, our
method is competitive to some degree if over-association is
overcome and kernel diversity is ensured.

Object Detection & Instance Segmentation
The codebase we use is mmdet 4. The dataset is COCO

2017 5 and input size is 1333×800. The detection model
is RetinaNet-ResNet50 [21], and the instance segmenta-
tion model is MaskRCNN-HRNet18 [13]. The pretrained
weights are loaded from the above classification tasks, i.e.
Tab. 1 #7/15.

4https://github.com/open-mmlab/mmdetection
5https://cocodataset.org/#detection-2017

656

Table 2. Object detection & instance segmentation results on COCO2017/val.

network mAP mAP50 mAP75 mAPS mAPM mAPL

1 RetinaNet-r50 36.3 55.1 38.8 20.1 40.1 47.8
2 RetinaNet-r50-stnd 37.9 56.9 40.6 21.3 42.1 50.0
3 RetinaNet-r50-orth 37.6 56.4 40.7 21.0 41.9 49.9
4 RetinaNet-r50-coc 38.1 57.0 40.8 21.5 42.0 50.1

bbox
5 MaskRCNN-hr18 33.9 54.3 36.3 18.9 36.4 45.8
6 MaskRCNN-hr18-stnd 34.9 56.0 37.4 19.9 37.9 47.2
7 MaskRCNN-hr18-orth 35.1 55.8 37.9 20.0 37.6 47.5
8 MaskRCNN-hr18-coc 35.6 56.2 38.2 20.3 38.1 47.8

m
ask

For both object detection and instance segmentation,
the optimizer is SGD with lr0=0.01, momentum=0.9 and
weight-decay=1e-4; The learning-rate decays in “step”
mode of ratio=0.1 at epoches #8/11, and the maximum
number of epoches is 12.

All of these models are trained at batch-size=4 on four
GPUs of type RTX3090, with identical data augmentation,
i.e., random-flip only.

According to Tab. 2, the larger objects or instances
are, the better our method performs. Our method im-
proves the detection of small/medium/large objects by
1.4/1.9/2.3 mAP respectively, and improves the segmenta-
tion of small/medium/large instances by 1.4/1.7/2.0 mAP
respectively.

Semantic Segmentation
The codebase we use is mmseg 6. The dataset is Pas-

cal VOC 0712 7 and input size is 512×512. The models
are FCN-R50d8 [23] and HRNet-W18 [32]. The pretrained
weights are loaded from the above classification tasks, i.e.
Tab. 1 #7/15.

The optimizer is SGD with lr0=0.01, momentum=0.9,
weight-decay=5e-4; The learning-rate decays in “poly”
mode of power=0.9 and min-lr=1e-4, and the maximum
number of iters is 20k.

All of these models are trained at batch-size=4 on four
GPUs of type RTX3090, with identical data augmentation,
i.e., random-crop, random-flip and photo-metric-distortion.

According to Tab. 3, our CoC always improves their per-
formance. The mIoU and mAcc of both FCN and HRNet
get nearly 3.0- and 3.5-points’ promotion respectively.

What If No Pretrain
To eliminate interferences due to the performance gap of

pretraining, experiments trained from scratch are also con-
ducted, in which condition CoC’s advantages remain as be-
fore. According to Tab. 3 #2/6, CoC boosts FCN’s mIoU
by 10.72 and mAcc by 14.12; And according to #8/12, CoC
boosts HRNet’s mIoU by 6.16 and mAcc by 9.07.

Note: Further training iterations may narrow the gap be-
tween the experiments with and without pre-training, but

6https://github.com/open-mmlab/mmsegmentation
7http://host.robots.ox.ac.uk/pascal/VOC

Table 3. Semantic segmentation results on VOC0712/val.

network pretrain mIoU mAcc aAcc
1

FCN-r50d8
X 66.97 75.99 92.16

2 23.53 32.23 80.20
3 FCN-r50d8-stnd X 69.16 78.42 92.65
4 FCN-r50d8-orth X 69.01 78.36 92.62
5

FCN-r50d8-coc
X 69.52 79.14 92.83

6 34.25 46.35 83.17
7

HRNet-w18
X 72.13 82.33 93.59

8 35.23 49.74 82.28
9 HRNet-w18-stnd X 74.34 84.87 93.91

10 HRNet-w18-orth X 74.17 84.84 93.88
11

HRNet-w18-coc
X 74.81 85.65 93.97

12 41.39 58.81 83.28

this will not change the fact that our method speeds up the
convergence.

Extra Costs CoC Introduces
During training, CoC generally brings in negilible extra

costs to these networks: less than 0.5% memory and 5˜10%
time. During testing, there is definitely no extra cost com-
pared with their original versions.

Summary
Our method’s advantage on classification tasks is NOT

very ideal – The accuracies of our method are only im-
proved slightly and even not as competitive as existing
methods. However, on tasks demanding larger receptive
fields like detection and segmentation, CoC is clearly a su-
perior method. We try to explain this in Sec. 5.

5. Discussions

What Kernels Are Learnt Under Our Spatial Associ-
ation?

We visualize ResNet’s first convolution kernels, follow-
ing [1], to intuitively understand what kernels are learnt un-
der our spatial association.

We choose models of ResNet50 and its CoC variant, cor-
responding to Tab. 1 #6/7. For a consistent comparison,
these kernels are normalized by (w − w.min)/(w.max −
w.min), wherew is the kernels. Then kernels learnt in CoC

657

are drawn in the unit of the spatial association group, as
shown in Fig. 9 the right – every four kernels are tiled along
the width and height, just like how they were spatially asso-
ciated, and the left corner is their super kernel who produced
them. The common convolution kernels, as shown in Fig. 9
the left, are drawn in a similar way.

Figure 9. First layers’ kernels of ResNet50 (the left) and its CoC
variant (the right). On the right, every four is an association, at
which the top left corner is their super kernel.

According to Fig. 9, in the common convolution of
ResNet50, the patterns of different styles, e.g., grey vs.
color, stripe vs. plane, scatter among these 64 channels
irregularly. By contrast, the patterns learnt in CoC are al-
ways similar but complementary within each spatial asso-
ciation group. Besides, the spatial distribution of the four
sub-patterns within a group clearly echoes their super ker-
nel’s pattern.

Specially, in the red box, the two patterns in the first col-
umn are stripes that are shade-light-shade and light-shade-
light respectively; the second column has similar looks.
From another perspective, this group is vertically symmet-
ric, and their super kernel’s pattern is vertically symmetric
too. In the purple box, the sub-patterns are colorful stripes,
grey stripes, grey grids and a colorful plane, which some-
how “breaks” the aforementioned law that intra-group pat-
terns have similar styles; however, these four sub-patterns
possess the symmetry along the main diagonal, and so is
their super kernel. These reflect the spatial collaboration
that we claim.

Why It’s Relatively Better When Larger Receptive
Fields Needed?

This phenomenon suggests that our method offers larger
effective receptive fields (RF), which can be visually proven
by the class activation map (CAM) [41] technique.

We choose models of ResNet50 and its CoC variant, cor-
responding to Tab. 1 #6/7, where the former’s theoretical RF
(TRF) is 427 and effective RF (ERF) is empirically 1/4˜1/3
[24], as shown in Fig. 10 the pink squares. Images that con-
tain objects of different scales are selected from VOC12 test
set, and are resized and padded into 1024×768, so that there
are object scales both within and beyond the models’ ERF,
as shown in Fig. 10 the original images. Tool torch-cam

8 is used to extract CAMs, where the top 10 class maps are
fused together via maximum to cover the quasi-correct clas-
sifications, as shown in Fig. 10 the right two columns.

According to Fig. 10, ResNet50 fully perceives small ob-
jects that fall into its ERF while partially perceives the large
that exceed its ERF; our ResNet50-CoC works much better
as shown in Fig. 10 due to its larger ERF and better feature
extraction.

1024 px

7
6

8
 p

x

ResNet50-CoC's CAMResNet50's CAM
V

O
C

1
2

/2
0

0
8

_
0

0
0

0
0

5
.jp

g
V

O
C1

2/
20

08
_0

00
0

86
.jp

g

effective RF of ResNet50 theoretical RF of ResNet50

original images

1024 px

7
6

8
 p

x

ResNet50-CoC's CAMResNet50's CAM
V

O
C

1
2

/2
0

0
8

_
0

0
0

0
0

5
.jp

g
V

O
C1

2/
20

08
_0

00
0

86
.jp

g

effective RF of ResNet50 theoretical RF of ResNet50

original images

Figure 10. CAM of standard ResNet50 (2nd column) and its CoC
variant (3rd column).

Specifically, the small boat or cow, which are within
standard ResNet50’s effective RF, are fully perceived; but
for the large boat or cow, which are beyond ResNet50’s ef-
fective RF, only the top and right angles of the large boat
or the right horn and eye are perceived. By contrast, our
ResNet50- CoC activates the most area of the large boat or
almost all the head region of the large cow, reflecting its
larger effective RF.

6. Conclusion
A novel method named “convolution of convolution”

(CoC) is proposed and explored. It can seamlessly re-
place current convolution operations and significantly im-
prove models’ capability of extracting spatial patterns with
its larger effective receptive field. The ablation study shows
how to use such a technique and the evaluation on typical
tasks presents how well it may improve current models. It
works in training and can be re-parameterized before testing
so that considerable performance gains are obtained with no
efficiency loss in deployment.

As for future works, we believe similar ways of think-
ing are also worth exploring: spatial/channel attention for
pruning and cross-layer connections among kernels rather
than activation features, etc.

Acknowledgement This work was supported by Beijing
Science & Technology Plan, China (Z191100007519009)
and Science & Technology Innovation 2030 - Key Project
of “New Generation of AI” (2020AAA0109100).

8https://github.com/frgfm/torch-cam, default settings

658

References
[1] K. Alex, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), 2012.
1, 2, 7

[2] N. Bansal, X. Chen, and Z. Wang. Can we gain more from or-
thogonality regularizations in training deep networks? In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2018. 2

[3] G. Bellec, D. Kappel, W. Maass, and R. Legenstein. Deep
rewiring: Training very sparse deep networks. In Inter-
national Conference on Learning Representations (ICLR),
2018. 2

[4] J. Chen, X. Wang, Z. Guo, X. Zhang, and J. Sun. Dynamic
region-aware convolution. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 1

[5] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.
Deformable convolutional networks. In IEEE International
Conference on Computer Vision (ICCV), 2017. 1, 2

[6] X. Ding, Y. Guo, G. Ding, and J. Han. Acnet: Strength-
ening the kernel skeletons for powerful cnn via asymmetric
convolution blocks. In IEEE International Conference on
Computer Vision (ICCV), 2019. 2

[7] X. Ding, X. Zhang, J. Han, and G. Ding. Repmlp: Re-
parameterizing convolutions into fully-connected layers for
image recognition, 2021. 2

[8] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun.
Repvgg: Making vgg-style convnets great again. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. 2

[9] F. Feng, W. Guan, Y. Qiao, and C. Dong. Exploring multi-
scale feature propagation and communication for image su-
per resolution, 2020. 1

[10] H. Gao, Z. Wang, and S. Ji. Channelnets: Compact and ef-
ficient convolutional neural networks via channel-wise con-
volutions. In Advances in Neural Information Processing
Systems (NeurIPS), 2018. 1, 2

[11] J. Gao. Physiology (bilingual). China Press of Traditional
Chinese Medicine, 2018. 1

[12] S. Gao, Y. Tan, M. Cheng, C. Lu, Y. Chen, and S. Yan.
Highly efficient salient object detection with 100k parame-
ters. In European Conference on Computer Vision (ECCV),
2020. 1

[13] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-
cnn. In IEEE International Conference on Computer Vision
(ICCV), 2017. 6

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 2, 6

[15] A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H.
Adam. Searching for mobilenetv3. In IEEE International
Conference on Computer Vision (ICCV), 2019. 6

[16] L. Huang, X. Liu, Y. Liu, B. Lang, and D. Tao. Centered
weight normalization in accelerating training of deep neural
networks. In IEEE International Conference on Computer
Vision (ICCV), 2017. 2

[17] Y. Jeon and J. Kim. Active convolution: Learning the shape
of convolution for image classification. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.
1, 2

[18] D. Li, J. Hu, C. Wang, X. Li, Q. She, L. Zhu, T. Zhang, and
Q. Chen. Involution: Inverting the inherence of convolution
for visual recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 1, 2

[19] D. Li, A. Yao, and Chen Q. Psconv: Squeezing feature pyra-
mid into one compact poly-scale convolutional layer. In Eu-
ropean Conference on Computer Vision (ECCV), 2019. 1,
2

[20] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns: Can
gcns go as deep as cnns? In IEEE International Conference
on Computer Vision (ICCV), October 2019. 2

[21] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal loss
for dense object detection. In IEEE International Conference
on Computer Vision (ICCV), 2017. 6

[22] J. Liu, Q. Hou, M. Cheng, C. Wang, and J. Feng. Improving
convolutional networks with self-calibrated convolutions. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 1

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. 7

[24] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding
the effective receptive field in deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2016. 8

[25] N. Ma, X. Zhang, H. Zheng, and J. Sun. Shufflenet v2: Prac-
tical guidelines for efficient cnn architecture design. In Eu-
ropean Conference on Computer Vision (ECCV), 2018. 6

[26] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spec-
tral normalization for generative adversarial networks. In In-
ternational Conference on Learning Representations (ICLR),
2018. 2

[27] Jiawei Huang Ningning Ma, Xiangyu Zhang and Jian Sun.
Weightnet: Revisiting the design space of weight networks.
In European Conference on Computer Vision (ECCV), 2020.
1, 2

[28] S. Qiao, H. Wang, C. Liu, W. Shen, and A. Yuille. Micro-
batch training with batch-channel normalization and weight
standardization, 2020. 2, 5, 6

[29] T. Salimans and D. P. Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep neu-
ral networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2016. 2

[30] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 1

[31] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. Het-
conv: Heterogeneous kernel-based convolutions for deep
cnns. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1

659

[32] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu,
X. Wang, W. Liu, and J. Wang. High-resolution representa-
tions for labeling pixels and regions, 2020. 6, 7

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 1, 2

[34] M Tan and Q. V. Le. Mixconv: Mixed depthwise con-
volutional kernels. In British Machine Vision Conference
(BMVC), 2019. 1, 2

[35] J. Wang, Y. Chen, R. Chakraborty, and X. Yu. Orthogonal
convolutional neural networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 2, 5, 6

[36] T. Wang. Physiology (9th Ed.). People’s Medical Publishing
House, 2018. 1

[37] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning
structured sparsity in deep neural networks. In Advances in
Neural Information Processing Systems (NeurIPS), 2016. 2

[38] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In International Conference on Learning
Representations (ICLR), 2016. 2

[39] Q. Zhang, Z. Jiang, Q. Lu, J. Han, Z. Zeng, S. Gao, and A.
Men. Split to be slim: An overlooked redundancy in vanilla
convolution. In International Joint Conferences on Artificial
Intelligence (IJCAI), 2020. 1

[40] Y. Zhang, J. Zhang, Q. Wang, and Z. Zhong. Dynet: Dy-
namic convolution for accelerating convolutional neural net-
works, 2020. 1, 2

[41] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localization.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. 8

[42] X. Zhu, H. Hu, S. Lin, and J. Dai. Deformable convnets
v2: More deformable, better results. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 1,
2

660

