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Abstract

Backdoor attack is a type of serious security threat to
deep learning models. An adversary can provide users with
a model trained on poisoned data to manipulate prediction
behavior in test stage using a backdoor. The backdoored
models behave normally on clean images, yet can be acti-
vated and output incorrect prediction if the input is stamped
with a specific trigger pattern. Most existing backdoor at-
tacks focus on manually defining imperceptible triggers in
input space without considering the abnormality of trig-
gers’ latent representations in the poisoned model. These
attacks are susceptible to backdoor detection algorithms
and even visual inspection. In this paper, We propose a
novel and stealthy backdoor attack - DEFEAT. It poisons
the clean data using adaptive imperceptible perturbation
and restricts latent representation during training process
to strengthen our attack’s stealthiness and resistance to de-
fense algorithms. We conduct extensive experiments on mul-
tiple image classifiers using real-world datasets to demon-
strate that our attack can 1) hold against the state-of-the-
art defenses, 2) deceive the victim model with high attack
success without jeopardizing model utility, and 3) provide
practical stealthiness on image data.

1. Introduction

Deep neural networks (DNNs), which can learn efficient
feature representations and model complex predictive tasks
from large-scale data, have been deployed in real-world ap-
plications, such as computer vision [10], and natural lan-
guage processing [34, 36]. But they are vulnerable to back-
door attacks [5, 9] which can secretly embed malicious be-
haviors to manipulate the model in use phase. For example,
an attacker may put a backdoor in a face recognition model
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Figure 1. Visualization of backdoored images. Top: the original
image; backdoored images generated by BadNets, ReFool, Sinu-
soidal signal backdoor (SIG), WaNet, DFST and DEFEAT; Mid-
dle: the residual maps amplified by 2x; Down: feature heat maps
by GradCam [27].

to give authorization to an unauthorized user. This weak-
ness may seriously affect the training results and mean-
while, users may not be aware that the model is corrupted.

Backdoor attacks [5, 9, 18] corrupt a part of the train-
ing data with a specific backdoor trigger and a predefined
target label. The DNNs trained on the poisoned data will
be infected with a backdoor, which leads to misclassifica-
tions on those inputs with the specific trigger pattern. In
practice, users may easily access to backdoors, say, down-
loading public pre-trained models from an untrusted party,
or crawling data from unreliable sources to train their own
models.

A core design of backdoor attacks relies on impercep-
tible trigger. Adversaries should ensure the backdoored
model to behave normally on clean inputs to make the back-
door hard to be noticed. Several techniques to improve the
stealthiness of backdoor attacks have since been proposed,
e.g., blended and patched trigger pattern approaches [2, 9,
18, 19, 40]. Some works have utilized adversarial exam-
ple technology in crafting poisoned images [7, 14, 15]. Re-
cently, WaNet [23] proposed a type of warping-based trig-
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gers to maintain stealthiness. Although the carefully-crafted
backdoor triggers are employed, their attacks have not yet
provided the complete stealthiness as they fail to constrain
the abnormity at the feature level. To address the issue,
one may apply regularization to feature level via adversarial
backdoor embedding [29] and controlled feature detoxifica-
tion [6]. But these approaches may compromise the imper-
ceptibility of the poisoned image in the input space.

Several recent backdoor defense algorithms [3, 4, 8, 16,
17] have been introduced to fight against existing attacks.
A successful defense depends on the identification of mali-
cious inputs at runtime and the backdoored models. Specif-
ically, they generally exploit the distinguishable dissimilar-
ity of latent representations between the clean and poisoned
images. This indicates that a deep-hidden trigger at feature-
level may help us resist against detection.

Motivated by the findings above, we propose a novel
mechanism, DEFEAT, performing a feature stealthy back-
door attack via controlling imperceptible trigger pattern and
the constraints on the latent representation of poisoned sam-
ples. We first build imperceptible backdoor triggers by ex-
ploiting adversarial technique [20, 41] to minimize the loss
from non-target classes to the target class under the distance
constraints. This enables the triggers associated with the
target class to be blended into the clean image “naturally”.
When poisoning training, we use an additional latent classi-
fier to harness the trigger feature anomaly in the backdoored
model and force the model to reduce the latent distinguisha-
bility between the poisoned and clean images. We showcase
various backdoored images in Figure 1.

We demonstrate our attack in three benchmark datasets,
namely CIFAR-10, GTSRB, and ImageNet. Several excel-
lent results are captured in the experiments. First, our de-
sign is viable and effective. We achieve an approaching
100% attack success rate while simultaneously maintain-
ing high model utility. Second, instead of using manually-
defined and fixed-pattern triggers, we take the adaptive
backdoor generation approach, which can construct remark-
ably stealthy backdoor in clean images. This is important to
secretly execute backdoor attacks without being noticed by
regulators in the application phase. Third, the proposed
poisoning training algorithm enables us to use the latent
constraints to execute more robust and invisible backdoor
attacks (than others). In the evaluation, our attack is ex-
tremely difficult to be detected by multiple defense algo-
rithms, e.g., neural cleanse, neural attention distillation.

Our technical contributions are summarized below:

• We explore both the attack effectiveness and the in-
visibility of the trigger at feature level to propose an
adaptive backdoor generation algorithm.

• We design a novel poisoning training algorithm that
uses the latent layer constraints to embed the backdoor

trigger into the victim model more invisibly than exist-
ing attacks.

• We present intensive experiments to show that our de-
sign achieves high attack success rate, and can hold
against multiple backdoor defense algorithms.

2. Related Work
2.1. Backdoor Attacks.

The attacks aim to make a victim model associate a pre-
defined backdoor trigger with a specific target label. When-
ever the trigger is presented in the input instance, the back-
door is activated to induce the model to predict the input as
the target label. The attacks can guarantee the clean samples
to be classified correctly without compromising the utility
of the model. Thus, an attacker may manipulate the be-
havior of the infected model based on its preferences. Ex-
isting backdoor approaches consider either: 1) dirty-label
attacks [5, 18, 19, 35], which modifies the training samples
and sets the corresponding labels as target; or 2) clean-label
attacks [28, 45], which do not replace the original labels.
Dirty-label backdoor attacks. Gu et al. [9] first investi-
gated backdoor attacks in deep learning and proposed Bad-
Nets. It injects the trigger into a small number of randomly
selected inputs in the training set and further labels them as
the target category. After that, various backdoor attacks, fo-
cusing on the design of triggers, have been proposed in the
literature. Chen et al. [5] designed a backdoor attack based
on image blending, in which the triggers are designed as an
additional image or random noise. Jacob et al. [32] utilized
a fixed watermark as a trigger. Liu et al. [19] proposed a re-
flection backdoor attack, using reflections as a trigger for a
victim model. Other works propose effective attacks whilst
diminishing the reliance on training data. Liu et al. [18] in-
troduced an attack framework which can compromise some
neurons in a model so as to generate a global trojan trigger
and then retrain this model with external datasets to inject a
malicious backdoor. Later, Yao et al. [40] proposed a latent
backdoor attack for the transfer learning paradigm.
Clean-label backdoor attacks. Gu et al. [9] proposed a
clean-label backdoor, only requiring to poison some sam-
ples belonging to the target category to successfully implant
the backdoor. Zhao et al. [45] deployed an attack to the
video classification task. Since all the contaminated train-
ing data have the correct label, it is believed that this attack
is more stealthy (than the dirty-label variant).

Bagdasaryan et al. [1] examined the learning vulnerabil-
ities on model-poisoning attacks, which are more harmful
than the standard backdoor attacks. Xie et al. [39] proposed
the distributed backdoor attack by exploiting the distributed
nature in the learning. Sun et al. [33] showed that norm
clipping and weak differential privacy can resist the attacks
without harming overall performance on benign samples.
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(c) Poisoning Training

Figure 2. Overview of DEFEAT. Layers in gray remain fixed,
green layers are being trained.(a) Generate backdoor trigger pat-
tern based on pre-trained classifier. (b) Train additional logits
from intermediate layers. (c) Poisoning training restricted by la-
tent layer features.

Note we focus on local centralized backdoor attacks with-
out considering their extension to federated learning. And
exploring our design to federated learning could be an in-
teresting open problem.

2.2. Backdoor Defense.

Pre-training defenses. There are two classic works in this
field. Chen et al. [3] proposed the activation clustering
method to detect poisoned training samples crafted by ad-
versaries to prevent the model from being attacked. Tran et
al. [35] removed poisoned instances via singular value de-
composition and anomaly detection algorithm.
Post-training defenses. This line focuses on the investiga-
tion after training. Gao et al. [8] intentionally perturbed
the input and observed its randomness of the classifica-
tion probability. If the classification probability is hardly
changed with disturbance, the input instance may be a ma-
liciously attacked sample. Wang et zal. [37] reconstructed
candidate backdoor triggers by reverse engineering, utilized
anomaly detection to determine the most potential backdoor
and adopted a retrain patches strategy to remedy the back-
door’s impact. Qiao et al. [24] developed a algorithm to
clean the triggers in a backdoor attacked model by model-
ing a generator for potential triggers. DeepInspect [4] ap-
plies model inversion and conditional Generative Adversar-
ial Network [21] to mitigate backdoor attacks. Recently,
Neural Attention Distillation [16], motivated by knowledge

distillation, was designed to enable a “teacher” network to
guide the finetuning of the backdoored “student” network
to erase backdoor triggers.

The above defenses strongly depend on a fact that the
triggers are “unnatural” in poisoning samples, so that they
may choose to produce concentrated feature regions highly
correlated with the target label. This is where we place our
approach - generating a natural feature map (which can ef-
fectively hide our triggers) - to defeat these defenses.

2.3. Threat Model

We consider the same threat model as in [6, 7, 23, 26],
assuming adversaries can have full access to the backdoor
training and the victim model. The infected model is then
rendered to the public users who can employ it in applica-
tions after applying a certain backdoor detection algorithm.

3. Our Proposed Model: DEFEAT
3.1. Preliminary

We focus on backdoor attacks on image classification.
Recall that a classifier can be described as a function
Fθ(x) : I → RK that maps the input images to a classifica-
tion result, where θ is the model parameter, I ∈ RC×H×W
is a valid input image domain, K is the number of classes,
H ,W andC are the height, width and channels of an image.
Let Dc = {(xi, yi)|xi ∈ I, yi ∈ RK}Ni=1 indicate the clean
training set containing N images. When poisoning Fθ, fol-
lowing the standard training procedure of backdoor attacks,
we enforce it to train with the combination of the clean and
poisoned data. For a clean image and the corresponding la-
bel (x, y), we create a poisoned sample by transforming it
into (T (x), yt), where T (.) is a backdoor injection function
and yt is the target label. In practice, we randomly select a
small fraction of clean training dataDb to produce poisoned
data. And the injection ratio is defined as η = |Db|/|Dc|.

Our main objective is to learn a stealthy backdoor injec-
tion function T to craft poisoned data and naturally implant
backdoor behavior into a victim model. For a network F
with parameter θ, a backdoor injection function T with pa-
rameter φ, we minimize the following loss function to en-
sure performance on clean data:

Lclean(θ) =
∑

(x,y)∈Dc

Lce(Fθ(x), y), (1)

where Lce denotes the cross-entropy loss. To achieve back-
door attack behavior, we then minimize the following func-
tion on poisoned data:

Ladv(θ) =
∑

(x,y)∈Db

[
Lce(Fθ(Tφ(x), yt)

+ Llf (x, Tφ(x), Fθ)
]
,

(2)
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where Llf is latent feature constraint loss that we introduce.
We can formalize the final objective as a constrained opti-
mization problem:

min
θ

β1Lclean(θ) + β2Ladv(θ)

s.t. φ(θ) = argmin
φ

N∑
i

[
Lce(Fθ(Tφ(xi)), yt)

+ max(d(Tφ(xi), xi)− ε, 0)
]
,

(3)

where Lce is the cross-entropy loss, d is a distance measure-
ment function, β1 and β2 control the mixing strengths of the
loss. In the above bilevel problem, for a learned model Fθ,
we optimize a backdoor injection function Tφ that can gen-
erate stealthy poisoned images. For an optimal Tφ, Fθ is
trained to learn backdoor behavior under the latent feature
constraint Llf (x, Tφ(x), Fθ) so that Fθ correctly predicts
the clean inputs, but incorrectly on the poisoned inputs, and
the latent feature between them are very small distinguisha-
bility. The optimization of the problem in Equation 3 is
a challenging task. We divide our solution into two steps:
trigger generation and backdoor implantation, and execute
them alternately to optimize Fθ and Tφ.

3.2. Trigger Generation

We train a backdoor injection function Tφ based on a
given classifier Fθ. The function should provide two prop-
erties: 1) The resulting poisoned image is not detectable;
and 2) The poisoned images can induce model misclassi-
fication. Inspired by the adversarial perturbation technol-
ogy [7, 20, 22, 41], we design a Tφ that meets the require-
ments. Given a clean image x and the corresponding label
y, we follow the perturbation-based methods to have:

Tφ(x) = x+ φ, (4)

where φ is the universal noise backdoor pattern. The goal
here is to force predictions of Tφ(x) to target class yt.

Given a clean model Fθ trained on clean data, we use the
second optimization term of Equation 3 to learn a satisfac-
tory backdoor injection function Tφ. We set d(Tφ(x), x) =
||Tφ(x) − x||2 which is l2-norm distance on image-pixel
space. And ε is a budget that controls the stealthiness of
poisoned images generated by Tφ(x). An illustration of the
trigger generation is described in Figure 2 (a).

3.3. Backdoor Implantation

Given Tφ(x), our next task is to implant it in the pre-
trained model Fθ effectively. We propose a novel poisoning
training process motivated by latent feature constraints [29,
41] to produce more natural-embed backdoor triggers. The
details are described in Figure 2 (b) and Figure 2 (c) .
Train Additional Logits. Formally, assume the model ar-
chitecture Fθ consists of a sequence of N layers, and it is

defined as:

Fθ(x) = F (N)(· · ·F (2)(F (1)(x)) · · · ), (5)

where F (1), F (2), · · · , F (N) are the sequences of latent
layers in the classifier Fθ. We train an intermediate fea-
ture logits h(l) based on Fθ, and then use it to constrain
the poisoning training process to achieve the feature hiding.
We denote h(l) : RC(l)×H(l)×W (l) → RK as a small aux-
iliary classifier with a global average pooling layer pool :
RC(l)×H(l)×W (l) → RC(l)

followed by a fully-connected
layer for classification:

h(l)(z(l)) = pool(z(l))ψ(l) + ξ(l), (6)

where z(l) denotes the features extracted from the lth layer
in Fθ, and ψ(l) ∈ RC(l)×K and ξ(l) ∈ RK are the parame-
ters to be trained in the function h(l). Note during the train-
ing procedure of h(l), the original model Fθ is used as a
fixed feature extractor. In practice, we use clean training set
Dc and cross-entropy loss function to optimize h(l).
Poisoning Training. We use the poisoned data Db to fine-
tune the classifier to achieve the goal of poisoning training.
To realize the feature stealthy backdoor attack, we leverage
the trained intermediate auxiliary classifier h(l) to constrain
the poisoning training. We define the latent feature con-
straint loss Llf as:

Llfλ = mean(
∑

l∈[1:N ]

λ(l)|h(l)(z(l)x )− h(l)(z(l)Tφ(x))|), (7)

where x is a clean input image, for each layer l ∈ [1 :
N ], λ(l) ∈ [0, 1] assigns a weight to the layers with∑
l∈N λ

(l) = 1. The z(l)x and z
(l)
Tφ(x)

denote the feature
extracted from the lth layer for x and Tφ(x), respectively.
Llf (x, Tφ(x), Fθ) is utilized to measure the difference be-
tween the latent layer features of x and Tφ(x). Given a
weight vector λ = (λ(1) · · ·λ(N)), we use the optimization
of Equation (3) to obtain a backdoored model.

4. Evaluation
Datasets. We evaluate the effectiveness of DEFEAT
on three standard image datasets: CIFAR-10 [13], GT-
SRB [31] and ImageNet [25]. CIFAR-10 contains 60k
(32×32) color images equally divided amongst ten mutu-
ally exclusive classes, in which 50K for training and 10K
for testing. GTSRB consists of over 51.2K (40×40) traf-
fic sign images distributed amongst 43 mutually exclusive
categories. Since the image sizes in the above datasets are
relatively small, we further verify DEFEAT on large-size
images in ImageNet. We only select ten classes from Im-
ageNet randomly for the experiments, because training on
a considerable amount of large-size images does consume
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Table 1. Attack Effectiveness via ASR (%) and TAR (%). We report the results (Mean±SD) averaged over 10 independent runs.

Dataset→ CIFAR-10 GTSRB ImageNet

Model ↓ Attack ↓ TAR ASR TAR ASR TAR ASR
Clean Model 92.91±0.30 - 98.43±0.07 - 85.26±0.30 -

Badnets 90.03±0.43 99.17±0.02 95.43±0.06 100.00±0.00 83.54±0.20 97.69±0.10
SIG 87.33±0.30 99.75±0.01 95.81±0.05 99.85±0.01 82.25±0.12 98.92±0.12

VGG16 ReFool 87.24±0.70 99.58±0.03 94.66±0.05 94.15±0.01 77.90±0.02 98.33±0.02
WaNet 91.87±0.55 99.95±0.02 96.59±0.15 96.41±0.02 83.30±0.30 98.81±0.02
DFST 90.17±0.25 99.80±0.02 96.78±0.25 98.96±0.01 81.38±0.50 99.96±0.02

DEFEAT(Ours) 91.93±0.50 99.30±0.01 96.24±0.05 98.76±0.02 84.97±0.18 99.94±0.01
Clean Model 92.33±0.01 - 98.42±0.06 - 84.66±0.25 -

Badnets 91.73±0.03 99.86±0.01 97.90±0.40 98.91±0.11 79.45±0.16 94.33±0.01
SIG 91.49±0.03 99.38±0.20 98.19±0.06 100.00±0.00 80.37±0.30 97.04±0.01

Resnet34 ReFool 91.09±0.22 99.05±0.10 97.94±0.01 98.47±0.03 74.39±0.24 94.35±0.22
WaNet 92.03±0.30 99.96±0.01 98.19±0.31 99.83±0.01 79.77±0.30 95.31±0.03
DFST 91.21±0.43 99.85±0.03 97.39±0.33 98.99±0.01 80.74±0.37 98.59±0.03

DEFEAT(Ours) 92.25±0.25 99.98±0.02 98.26±0.30 99.01±0.05 82.63±0.22 98.98±0.01
Clean Model 93.35±1.10 - 98.42±0.06 - 85.79±0.10 -

Badnets 92.54±0.03 99.88±0.02 97.39±0.02 99.98±0.01 84.02±0.13 91.61±0.06
SIG 91.73±0.02 99.90±0.01 97.74±0.02 96.99±0.00 82.84±0.22 98.22±0.01

WideResnet ReFool 90.65±0.20 99.80±0.30 97.53±0.13 96.62±0.33 82.57±0.75 95.37±0.01
WaNet 91.63±0.50 99.57±0.30 97.54±0.21 97.56±0.01 83.69±0.60 95.42±0.10
DFST 92.14±0.40 99.85±0.02 97.04±0.33 98.19±0.02 83.92±0.33 99.89±0.02

DEFEAT(Ours) 93.24±0.70 99.98±0.11 98.55±0.01 99.90±0.01 84.08±0.30 99.88±0.14

Algorithm 1 DEFEAT Backdoor Attack

Require: Clean Dataset Dc, Parameters β1, β2 and γ, In-
jection Ratio η, Total Steps R, Stealthiness Budget ε.

Ensure: Backdoored Classifier Fθ and Inject Function Tφ.

1: Train clean model Fθ on Dc.
2: Train additional logits hl for each layer l ∈ [1 : N ]

based on clean model Fθ and clean data Dc.
3: Initialize φ.
4: Sample subset Db from Dc.
5: for i = 1, . . . ,R do
6: Obtain the optimized φ(θ) according to the second

term of the Eq. (3).
7: Compute the loss: β1Lclean(θ) + β2Ladv(θ) as in

Eq. (3).
8: Update θ with stochastic gradient descent.
9: end for

10: return θ, φ

GPU resource and yield serious training overhead1. We col-
lect 10.5K (224×224) training and 1.8K test samples from
ImageNet. All images in datasets are normalized to [0,1].
Network structures. We perform the experiments

1Note using more images will not affect the performance of effective-
ness and robustness but the training overhead.

(a) (b)

Figure 3. Latent layer feature comparison. In subfigure, left and
right columns are the feature saliency map of the clean and poi-
soned samples. (a): BadNets; (b): DEFEAT.

on classic deep convolutional neural networks, namely
VGG16 [30], ResNet34 [11] and WideResNet [42], which
are also used for victim classifiers in [6,19,37]. And we use
the backdoor attacks - BadNets [9], Reflection attack (Re-
Fool) [19], Sinusoidal signal attack (SIG) [2], WaNet [23]
and DFST [6] for comparison.
Implementation. To train the neural networks, we use ini-
tial learning rate 0.01 and schedule it to drop at epochs 50,
100, and 150 by a factor of 0.1. Models are trained by
SGD optimizer with 200 epochs. For poisoning, follow-
ing [41], we select the last five residual blocks for WideRes-
Net, the last three residual blocks for ResNet34, and the
last convolutional layer for VGG16 as the constraint of the
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latent feature. The layer will assign weights λ(.) evenly,
i.e. when the last six residual blocks are selected, we set
λ(N−5:N) = 1/6. We found that if β1 � β2, the back-
doored classifier performs well on the clean data, which is
close to the original clean classifier, but the results on poi-
soned data are not satisfactory. But if β2 � β1, the result
is the other way round. To balance the performance, we
set β1 = 1 and β2 = 0.1 in the experiments. After Tφ is
optimized, we fine-tune the pre-trained clean model Fθ on
the poisoning dataset with a small learning rate of 0.001 to
implant the backdoor. A summary of DEFEAT is given in
Algorithm 1. Note given a Fθ, we train additional logits in
Line 2; in line 6 we optimize Tφ for the current θ. Line 7,
8 are the poisoning Fθ using optimized Tφ. We train the
Fθ and Tφ using the alternating update for 20 epochs, i.e.,
we set R = 20.

4.1. Attack Experiments

Attack Effectiveness. We evaluate attack effectiveness
with attack success rate (ASR), the ratio of backdoored ex-
amples misclassified as the target label, and test accuracy
rate (TAR) on clean samples. To give a fair comparison, we
set the infection rate to 0.1 for each attack method. And
to reduce the time cost of the trigger generation, we ran-
domly select 10K clean samples from the training set (in-
stead of traversing the entire dataset). We conduct attack
experiments in the single-target paradigm, in which the at-
tacked target label yt (class 0) is the same for all compared
models per dataset. The results are presented in Table 1.
In CIFAR-10, DEFEAT achieves the highest TAR values,
while maintaining great ASR scores (≥ 99.30 ± 0.01). As
for the TAR on GTSRB, we obtain the best performance
for Resnet34 and WideResnet, and get very close (nearly
0.35) to the best result (WaNet) for VGG16. Meanwhile,
our ASR values are satisfactory, ≥ 98.76 ± 0.02. In Ima-
geNet, we are also the best in TAR and present great ASR,
e.g., around 99.94 (VGG16). Although the ASR results can-
not always surpass others, they are all above 98.70, which
is sufficient to make one successfully implant backdoors.
We will further show that DEFEAT is more “invisible” and
“natural” than others in the poisoned samples.
Attack Stealthiness. We consider the differences between
clean and poisoned samples from the perspective of fea-
ture and input level. We thus use the following simi-
larity metrics: learned perceptual image patch similarity
(LPIPS) [44], structural similarity index (SSIM) [38] and
peak-signal-to-noise-ratio (PSNR) [12]. LPIPS adopts the
features of the pre-trained AlexNet to identify similarity,
while SSIM and PSNR are calculated based on the statis-
tical similarity at the pixel level. There exists a clear re-
lationship between the values of SSIM, PSNR and LPIPS
and the performance of the invisibility. Specifically, if the
values of SSIM and PSNR are increased, the stealthiness

will get enhanced, meaning that the poisoned sample looks
“more” stealthy. But for LPIPS, that is the other way round.

For each dataset, we randomly select 500 sample images
from the testing set to evaluate the stealthiness. The results
are given in Table 2. DEFEAT achieves excellent stealthi-
ness. Specifically, in CIFAR-10, it does outperform others,
in which its PSNR is around 1.2 above that of BadNets,
LPIPS is nearly 20% of improvement to that of BadNets,
and SSIM is the highest, 0.9813; in GTSRB and ImageNet,
our attack is right after WaNet and BadNets w.r.t. SSIM and
LPIPS, and has the best PSNR (30.25, and 37.50).

The stealthiness of BadNets on GTSRB and ImageNet is
better than ours. This is because BadNets uses a square pat-
tern as a trigger. And if the image size is increased, the ratio
of pattern to clean images will become relatively small. But
using this pattern will make the original image look “unnat-
ural”. To prove that, we give examples in Figure 3 to com-
pare the stealthiness between BadNets and DEFEAT. As
compared to (a), DEFEAT’s salient feature area (b) gathers
on the main object and almost overlaps with that produced
by the clean sample, which gives better attack stealthiness.

Clean SIG

DEFEAT(Ours)

BadNets ReFool

WaNet DFST

Figure 4. Trigger patterns optimized by Neural Cleanse.

4.2. Defense Experiments

We test our attack against the state-of-the-art defense al-
gorithms, including STRIP [8], Neural Cleanse [37], Fine-
Prunning [17] and Neural Attention Distillation [16].
Resistance to STRIP. The STRIP assumes that the predict
result output by a backdoored model on a poisoned sample
is firm and not easily disturbed. And it can detect poisoned
samples by analyzing the entropy of the classification prob-
ability after superimposing some random samples. We test
the performance of BadNets and DEFEAT with Resnet34
classifier. And we report the entropy probability density
of clean and poisoned samples in Figure 5(a). The overlap
of the distributions indicates the difficulty of identifying the
backdoored input. In Fig.5, DEFEAT outperforms BadNets,
especially in CIFAR-10 and GTSRB, in which the distribu-
tions of clean and backdoored data having a high coinci-
dence are almost indistinguishable.
Resistance to Neural Cleanse. Neural cleanse identi-
fies whether there is a backdoor in the model by reverse-
engineering the triggers. In Figure 5(b), we report the re-
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Table 2. Experimental results on attack stealthiness (PSNR ↑, SSIM ↑ and LPIPS ↓).

Dataset Metric BadNets ReFool SIG WaNet DFST DEFEAT(Ours)

CIFAR-10
SSIM 0.9763 0.6542 0.9578 0.8854 0.7210 0.9813
LPIPS 0.0012 0.0697 0.0015 0.0090 0.0881 0.0009
PSNR 20.06 18.37 25.23 19.30 16.79 21.31

GTSRB
SSIM 0.9501 0.7418 0.7103 0.9669 0.7594 0.9171
LPIPS 0.0303 0.3097 0.0850 0.0584 0.2510 0.0427
PSNR 23.41 20.57 25.28 30.11 21.58 30.25

ImageNet
SSIM 0.9955 0.8564 0.8680 0.9359 0.7129 0.9765
LPIPS 0.0062 0.4574 0.0573 0.0360 0.2105 0.0159
PSNR 32.95 20.42 25.30 29.59 23.01 37.50

sults using the defense on three datasets with Resnet34 clas-
sifier. Successful detection may be related to the anomaly
index. The default 2 (anomaly index value) is the detection
threshold. BadNets and SIG suffer from the worst (approx.
3.84 and 2.27 on ImageNet). Since the trigger used in the
BadNets is unnatrual in the original image, it is the easi-
est to be detected. Note this confirms our statements on the
square patterns. Our attack is below the threshold.

We also display the reversed trigger patterns on Ima-
geNet dataset optimized by Neural Cleanse for the attack-
ing class on Imagenet in Figure 4. In BadNets and SIG,
the reversed triggers are roughly similar to the original ones
(Patch-based square and Sinusoidal signal as in Figure 1),
revealing that such simple triggers may be vulnerable to re-
verse engineering. ReFool uses reflective backgrounds as
trigger patterns, which are not easily reverse-engineered ac-
curately. But it also increases the amplitude of changes to
the clean sample, which impairs the stealthiness. Compared
with others, pixels in our reversed trigger have no obvious
regularity and are highly similar to the clean model. This is
because: (1) the trigger is generated based on the optimiza-
tion strategy to have better stealthiness; (2) the latent feature
constraint also reduces the trigger’s abnormality in the fea-
ture space, making it more difficult to be distinguished.
Resistance to Fine-pruning. The defense weakens the
ability of the attacks by pruning dominant neurons in neural
network to decrease the effect brought by the backdoored
model. We do the test with VGG16 classifier, and report the
results under various pruning rates of neurons in the final
convolutional layer (Figure 5(c)). When the rate increases
to 95%: the ASR is still above 90, while the TAR on clean
data reduces significantly to about 60%, indicating our ex-
cellent robustness against the defense.
Resistance to Neural Attention Distillation. Neural atten-
tion distillation utilizes a teacher network to guide the fine-
tuning of the backdoored student network on a small clean
subset of data so that the intermediate-layer attention of the
two networks can become aligned. We test the attacks with
different iteration times on ImageNet with Resnet34. To

avoid over-fitting caused by long training time, we set 20 it-
erations and report performance per 5 times. The results are
shown in Table 3. DEFEAT outperforms others at Epochs
#5, 10, and 15. At #20, the TAR is slightly smaller than that
of DFST (approx. 0.32). As for TAR, DEFEAT shows a sta-
ble performance (after the first drop), around 80, as the in-
crease of iteration; but for ASR, it suffers from a downward
trend, from 98.98 to 79.99. The is because the defense uses
part of the clean training data to fine-tune the victim model
via distillation. This slightly affects the model performance
on clean samples, but seriously harms the ASR values.

Our method can achieve a more stealthy trigger than
other methods, without significantly reducing correlation
between pixels. While being against the frequency-based
defense [43], we also have distinct advantages over others.

4.3. Hyperparameter Analysis

Influence of injection ratio η. We investigate our attack
effectiveness under the pollution rate η. We set the ratio
= 10% as default. In Table 4, we have the performance with
various pollution rates on GTSRB with Resnet34. DEFEAT
still works well, obtaining above 97.53 (TAR) and 99.21
(ASR) with 15% injection. We note that increasing the ratio
may improve ASR, but harm TAR and raise the attack cost.
Influence of stealthiness budget ε. We visualize the impact
of stealthiness budget ε on the input samples (Figure 6). The
ε restrains the imperceptibility of the poisoned image in the
input space. A smaller ε makes the trigger less noticeable.
For example, when ε = 2 in the second row, the trigger
pattern is almost invisible in the clean sample. We further
show the influence of ε on TAR and ASR with Resnet34 in
Table 5. It is clear that increasing ε brings better results. The
trigger is directly attached to the clean sample to create the
poisoned one, and thus a larger εmakes the samples produce
a larger distance in the input space. This benefits the model
to distinguish them more easily and learn backdoor behav-
ior with smaller performance loss on clean samples. But
that also exposes the poisoned samples invisibility. After
several attempts, we found that ε should be set differently
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Table 3. Experimental results of Neural Attention Distillation.

Original Epochs #5 Epochs #10 Epochs #15 Epochs #20

Attack TAR ASR TAR ASR TAR ASR TAR ASR TAR ASR
BadNets 79.45 94.33 62.78 14.79 75.31 14.42 75.52 13.99 74.72 7.48
ReFool 80.37 97.04 67.89 34.48 76.65 18.24 76.49 14.47 76.44 14.52

SIG 74.39 94.35 73.86 45.45 74.19 35.50 74.77 31.87 74.93 28.28
WaNet 79.77 95.31 66.93 36.42 57.28 35.13 69.57 32.99 69.71 36.01
DFST 80.74 98.59 77.97 50.78 76.90 42.01 79.13 36.06 79.85 31.71

DEFEAT(ours) 82.63 98.98 80.90 86.71 82.46 81.53 77.89 82.21 79.53 79.99

Figure 5. Experimental results of the defense test.

Table 4. Injection ratio and attack effectiveness.

Injection Ratio TAR ASR

1% 98.79±0.07 93.66±0.24
5% 98.56±0.05 96.72±0.14

10% 98.26±0.30 99.01±0.05
15% 97.53±0.03 99.21±0.02
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Figure 6. DEFEAT’s poisoned samples.

according to the various sizes of images to obtain practical
invisibility. We then set ε = 1, 2, 3 for CIFAR-10, GTSRB
and ImageNet as default, respectively.

5. Conclusion

We develop a novel deeply hidden feature backdoor at-
tack on DNNs. We optimize adaptive backdoor triggers
and actively constrain feature learning during the poisoning

Table 5. Stealthiness budget ε and attack effectiveness.

Dataset ε TAR ASR

CIFAR-10
2 92.65±0.22 99.63±0.01
1 92.25±0.25 99.98±0.02
0.5 91.05±0.20 97.93±0.02

GTSRB
3 98.41±0.11 99.61±0.01
2 98.26±0.30 99.01±0.05
1 98.13±0.47 98.59±0.06

ImageNet
5 84.29±0.40 99.91±0.03
3 82.63±0.22 98.98±0.01
1 81.64±0.33 99.62±0.01

training process. Empirical experiments show that our de-
sign can provide imperceptible poisoned samples and great
attacking performance. We hope this paper may promote
further studies in developing robust and reliable DNNs.
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