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Abstract

Guided depth super-resolution (GDSR) is an essential
topic in multi-modal image processing, which reconstructs
high-resolution (HR) depth maps from low-resolution ones
collected with suboptimal conditions with the help of HR
RGB images of the same scene. To solve the challenges in
interpreting the working mechanism, extracting cross-modal
features and RGB texture over-transferred, we propose a
novel Discrete Cosine Transform Network (DCTNet) to alle-
viate the problems from three aspects. First, the Discrete Co-
sine Transform (DCT) module reconstructs the multi-channel
HR depth features by using DCT to solve the channel-wise
optimization problem derived from the image domain. Sec-
ond, we introduce a semi-coupled feature extraction module
that uses shared convolutional kernels to extract common
information and private kernels to extract modality-specific
information. Third, we employ an edge attention mechanism
to highlight the contours informative for guided upsampling.
Extensive quantitative and qualitative evaluations demon-
strate the effectiveness of our DCTNet, which outperforms
previous state-of-the-art methods with a relatively small
number of parameters. The code is available at https://
github.com/Zhaozixiang1228/GDSR-DCTNet.

1. Introduction
With the popularity of consumer-oriented depth estima-

tion sensors, e.g., Time-of-Flight (ToF) and Kinect cameras,
depth maps have promoted advancements in autonomous
driving [24, 37], pose estimation [42, 56], virtual reality
[20, 28], and scene understanding [10, 64]. Unfortunately,
due to the technical limitations and suboptimal imaging con-
ditions, depth images are often low-resolution (LR) and
noisy. However, high-resolution (HR) RGB images (or in-
tensity images) are relatively easy to obtain in the same scene
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Figure 1. Overview of DCTNet. First, the SCFE module extracts
shared and private features from the depth (LR) and RGB (HR)
images. The GESA module employs the RGB feature to obtain
edge attention weights useful for SR. The multi-modal features and
attention weights are then processed by the DCT module, where
DCT is utilized in each channel to get HR depth features. Finally,
the reconstruction module outputs the SR depth map.

when acquiring depth maps. Therefore, guided depth map
super-resolution (GDSR) with RGB images has become an
essential topic in multi-modal image processing and multi-
modal super-resolution (SR). Our research is based on the
assumption that there are statistical co-occurrences between
the texture edges of RGB images and the discontinuities of
depth maps [40]. In this way, information in RGB images
can be utilized to restore HR depth maps when the LR depth
maps are unsatisfactory for downstream applications.

For image SR, deep neural networks have become the
de facto methodology due to their ability in modeling the
mapping from LR to HR images [5,25,62]. However, image
SR mainly focuses on reconstructing fine details and tex-
tures, while depth SR models need to infer textureless and
piecewise affine regions that have sharp depth discontinu-
ities [40]. Besides, depth maps can be noisy and suffer from
a lower tolerance for artifacts in real-world applications [54].
Therefore, we can hardly adopt the methods for image SR
without appraising the unique characteristics of depth SR.
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Conventional methods for GDSR can be divided into
three categories, i.e., filter- [27, 29, 30, 33], optimization-
[4,6,23,35,59] and learning-based [8,54,55] methods. Filter-
based (or local) methods focus on preserving sharp depth
edges under the guidance of the intensity image. However,
for texture-rich RGB images, irrelevant edges may be trans-
ferred to depth images (known as texture over-transferred).
In addition, the explicitly defined filters can only model a
specific visual task and lack flexibility. Optimization-based
(or global) methods design energy functions based on diverse
data prior, with data-fidelity regularization terms constraint
the solution space [38,63]. However, natural priors are often
challenging to be explicitly represented and learned. The
third category contains learning-based methods, which em-
ploy data-driven pipelines to learn the dependency between
multi-modal inputs. Representative works in this category
use sparse dictionary learning [15, 19, 51], which learn dic-
tionaries in a group learning manner and set constraints on
the sparse representations of different modalities [2, 63].

Deep learning (DL) models are introduced to learn the
mapping from LR to HR images [44, 47, 49, 50, 52, 61], but
they still often cooperate classic methods for depth upsam-
pling. For example, learnable filter [16, 53] (combination of
DL and filter-based methods) and algorithm unrolling [3,58]
(DL with optimization-based methods) have shown promis-
ing results. However, there are still challenges in conven-
tional methods, including edge mismatch and texture over-
transferred between the RGB/depth images, difficulty to
learn of natural priors effectively, and limited interpretability
for the internal mechanism of DL architectures.

To this end, we propose a Discrete Cosine Transform
Network (DCTNet) for the GDSR task, inspired by cou-
pled dictionary learning and physics-based modeling. It
consists of four components: semi-coupled feature extrac-
tion (SCFE), guided edge spatial attention (GESA), discrete
cosine transform (DCT) module, and a depth reconstruc-
tion (DR) module. The workflow is illustrated in Figure 1.
Our contributions can be summarized as follows:

First, we propose the semi-coupled residual blocks to
leverage the correlation between the intensity edge in RGB
images and the depth discontinuities in depth images, but still
preserve the unique properties like detailed texture and seg-
ment smoothness in two modalities. In each convolutional
layer of this block, half of the kernels are responsible for
extracting shared information in depth/RGB images, which
is applied to both modalities. The rest half of the convo-
lution kernels are designed to extract unique information
in the depth and RGB images, respectively. Parameters in
the private kernel are not shared. Thus the feature extractor
with semi-coupled blocks can effectively extract informative
features for GDSR from input image pairs.

Second, we propose a novel DCT module to improve the
explainability of working mechanisms in the empirically-

designed DL architectures. This component utilizes DCT
to solve a well-designed optimization model for GDSR and
inserts it in the DL model as a module to acquire HR depth
map features guided by RGB features in the multi-channel
feature domain. Therefore, besides learning the LR-to-HR
mapping, our DCTNet focuses more on feature extraction
and edge weight highlighting. Although recent works have
used DCT for recognition [57] and image SR [32], we are
the first to use it in restoring degraded depth maps to the best
of our knowledge. We further make the tuning parameters in
the DCT module learnable to improve model flexibility.

Third, to overcome the issue that texture details in RGB
images are over-transferred, we employ the enhanced spa-
tial attention (ESA) block from RFANet [26] in our GESA
module to highlight the edges in RGB features useful for
GDSR. In this way, part of the intensity edges is activated
and associated with the depth discontinuities, achieving the
adaptive transfer from the texture structure in guided images.

We conduct comprehensive evaluations on four pop-
ular RGBD datasets, including NYU v2 [43], Middle-
bury [13, 41], Lu [31] and RGBDD [12]. The quantitative
and qualitative results show that our DCTNet can achieve
state-of-the-art performance in GDSR with a relatively small
number of parameters.

2. Related Work
Super-resolution is a basic computer vision topic with

many sub-fields and numerous approaches. Here we only
discuss methods for GDSR.

2.1. Conventional GDSR methods

Filter-based methods. The filter-based (local) methods aim
to use the RGB image to guide the joint filter to perceive
the edge in depth map. Starting from joint bilateral upsam-
pling [18] and its variants [1, 60], RGB images guide the
acquisition of bilateral weights. Liu et al. [27] replace the
Euclidean distance with the geodesic distances to maintain
the discontinuities of the depth image. Weighted mode fil-
ter [33], guided filtering [11] and its variants [30,48] are also
widely used in the upsampling process. Lu et al. [29] use
the smoothing method to process the image parts obtained
by the depth map guided RGB image segmentation to solve
the texture transferring issue.
Optimization-based methods. The optimization-based
(global) methods model the interdependency between color
images and depth maps by Markov Random Field [4], nonlo-
cal means filtering [35], pixel-wise adaptive auto-regressive
model [59], total generalized variation [6] and multi-pass
optimization framework [23], respectively.
Learning-based methods. Earlier methods like bimodal
co-sparse analysis [15] and joint dictionaries learning [51]
capture the interdependency of the RGB and depth images.
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A multi-scale dictionary learning strategy with RGB-D struc-
tural similarity measure and a robust coupled dictionary
learning algorithm with local coordinate constraints are em-
ployed by Kwon et al. [19] and Xie et al. [55] to solve over-
smoothing and over-fitting problems in information transfer,
respectively. Gu et al. [8] establish a task-driven learning
method to learn the dynamic guidance by a weighted analy-
sis representation model. Xie et al. [54] learn an HR edge
map inference method from external HR/LR image pair.

2.2. Deep Learning GDSR Methods

GDSR performance is further promoted with the powerful
feature extraction capability of neural networks. Riegler et
al. [39] adopt the first-order primal-dual algorithm and unroll
the optimization processing to a network structure, estab-
lishing the relationship between the DL-based methods and
the optimization-based methods. Li et al. [21, 22] use a two-
stream end-to-end network with skip connection to learn the
mapping of LR to HR depth maps. Hui et al. [14] propose
multi-scale guidance for edge transfer. Similarly, Guo et
al. [9] use the residual U-Net structure to learn the resid-
ual information between bicubic interpolation upsampling
and ground truth under multi-scale guidance. CoIAST [2],
which is based on the iterative shrinkage thresholding al-
gorithm (ISTA) [7], regard the estimation of HR depth
map as a linear combination of two LISTA branches. CU-
Net [3] uses two modules to separate common/unique fea-
tures by multi-modal convolutional sparse coding and elabo-
rate the model interpretability. More recently, DKN [16] and
FDSR [12] achieve adaptive filtering neighbors/weight cal-
culation and high-frequency guided feature decomposition
through spatially-variant kernels learning and octave convo-
lution, respectively. They outperform previous state-of-the-
art (SOTA) methods in synthetic and real scene datasets.

2.3. Comparison with existing approaches

Our proposed DCTNet is closely related to the
optimization-based and DL-based coupled dictionary learn-
ing methods. (1) The DCT module in our model obtains the
depth map features of HR by solving an optimization prob-
lem, and we are the first to use DCT to solve the problem to
our knowledge. In addition, the DCT module is integrated
into the DL framework to complete the multi-channel fea-
ture acquisition. The learnable parameters further enhance
the flexibility of the optimization function in this module.
(2) For the RGB texture over-transferred challenge, com-
pared to local/global methods, we use the ESA module [26]
to adaptively learn the edges attention weights in a data-
driven manner. (3) Our feature extraction encoder is inspired
by coupled dictionary learning, but we do not need to learn
the dictionary explicitly. Instead, the private/shared feature
extraction is accomplished by limiting whether the parame-
ters are shared between the convolution kernels.

3. Method
In this section, we will elaborate on the details of our

proposed DCTNet. We first show how to use discrete cosine
transform (DCT) to solve an optimization problem for the
GDSR task in the image domain. We then describe the
architectural units and training objectives of DCTNet.

3.1. Problem formulation

We first define some important symbols for clarity. In
the GDSR task, a model is expected to take the HR RGB
image R∈RM×N×3 and the LR depth image L̃∈Rm×n as
inputs, where {M,N} and {m,n} are the height and width
of input RGB and depth images, respectively. We aim to
obtain the HR depth image H∈RM×N under the guidance
of R. We also perform some preprocessing to get R̃ and L,
where R̃ ∈RM×N denotes the Y channel in YCrCb color
space of R and L∈RM×N is the upsampled image of L̃. If
R and L̃ in the same scene are given, H can be obtained by
minimizing the following energy function:

F =
1

2
∥H − L∥22 +

λ

2
∥L(H)− L(R̃) ◦W(R̃)∥22, (1)

where L(·) is the Laplacian filter, W(·) can be regarded as a
given threshold function to select the edges useful for GDSR.
◦ denotes element-wise multiplication, and λ is a parameter
controlling the contribution of the second term. The optimal
solution can be achieved when ∂F

∂H = 0, and we have

H + λL2(H) = λL
(
L(R̃) ◦W(R̃)

)
+ L. (2)

Eq. (2) can be treated as a 2D Poisson’s equation (PE). Here
we assume a “reflection padding” extension at the boundary
of the image when performing convolution operations, which
makes zero gradients on the image boundary. Thus, PE
Eq. (2) is with the Neumann boundary condition (NBC).
Technically, PE with the NBC can be solved via DCT [45].
Then we set λL(L(R̃) ◦ W(R̃)) + L ≜ E, and implement
DCT operation on both sides of the equation:

Fc(H) + λK2 ◦ Fc(H) = Fc(E), (3)

where Fc(·) is the DCT operation, Kij = cos
(
i−1
M π

)
+

cos
(
j−1
N π

)
and 1 ≤ i ≤ M, 1 ≤ j ≤ N . Finally, the HR

depth images can be calculated by:

H = F−1
c

{
Fc(E)⊘

(
I + λK2

)}
, (4)

where F−1
c (·) is the inverse DCT operation, ⊘ denotes the

element-wise division, and I is the identity matrix. Due
to space limitations, we refer readers to the supplementary
material for the detailed derivation of the equation.

The above method has the following problems: (a) Al-
though H can be solved by optimization, it requires addi-
tional edge perception methods to determine W(·). (b) The
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Figure 2. Detailed illustration of DCTNet workflow. Sub-figures (a)-(c) are the specific structures of SCFE, GESA, and DR modules in
Fig. 1, which aims to extract cross-modality features, highlight RGB edge information, and reconstruct the HR depth map, respectively.

λ is manually given in Eq. (2), which restricts the model
flexibility. (c) Optimizing a single channel in the image do-
main is difficult to effectively model the cross-modal internal
feature correlation. Combining the challenges discussed in
Sec. 1, e.g., RGB texture over-transferred and the difficulty
of natural prior learning, we propose a novel DCTNet in the
following part to alleviate the above issues.

3.2. DCTNet

Our proposed DCTNet consists of four components in-
cluding semi-coupled feature extraction (SCFE), guided
edge spatial attention (GESA), discrete cosine trans-
form (DCT) and depth reconstruction (DR) modules. The
detailed illustrations are shown in Fig. 1 and 2.

We give an overview of the model. First, given a pair of L
and R, the semi-coupled residual blocks extract shared and
private features from the source images. The GESA module
then processes the RGB feature to obtain the attention edge
weights useful for SR. Subsequently, multi-channel RGB
and depth features and the attention edge weights are input
into the DCT module to acquire HR depth features. Finally,
the depth reconstruction module outputs the SR depth map.
The details of the modules are explained next.

3.2.1 Semi-coupled feature extraction

The RGB and depth maps in the same scene can have redun-
dant information (e.g., shape and edges) and complementary
information (e.g., RGB texture details and depth disconti-
nuities). At the same time, based on the basic assumptions
of the GDSR that some of the features in the cross-modal
image should be interdependent, while other are modality-
specific. Therefore, our SCFE module is designed to achieve
cross-modal extraction of shared and private features.

As shown in Fig. 2(a), we can build the SCFE module as
an encoder for feature extraction. The internal convolutions
are two initial convolutions and P semi-coupled residual
blocks. Here we denote the initial convolution layers corre-
sponding to {L,R} as {SL

0 ,SR
0 }, and the qth convolution

layer in the pth semi-coupled residual block corresponding
to {L,R} is denoted as {SL

pq,SR
pq}, where p = 1, 2, · · · , P

and q = 1, 2. The output features of {SL
pq,SR

pq} are de-
noted by {ΦL

pq,Φ
R
pq} ∈ RM×N×C , where C is the number

of kernels in {SL
pq,SR

pq}. P and C are determined in Sec 4.2.
Note that when q = 2, {ΦL

pq,Φ
R
pq} can be simplified as

{ΦL
p ,Φ

R
p }. The initialization layer generates ΦR

0 = SR
0 (R),

ΦL
0 = SL

0 (L). Then taking the first convolution kernel in
the pth semi-coupled residual block as an example, the semi-
coupled convolution operation can be expressed as

SR
p1(Φ

R
p−1) = ΦR

p−1 ∗ C(ksharedp1 , kR priv
p1 ), (5)

SL
p1(Φ

L
p−1) = ΦL

p−1 ∗ C(ksharedp1 , kL priv
p1 ), (6)

where ∗ denotes convolution, {ksharedp1 , kR priv
p1 , kL priv

p1 } de-
note the shared convolution kernels and the private ones
corresponding to R and L, respectively. C(·, ·) denotes the
concatenation over the channel dimension. Then, the output
feature ΦR

p of R in the pth residual block becomes

ΦR
p = ReLU

{
SR
p2(ReLU(SR

p1(Φ
R
p−1))) + ΦR

p−1

}
, (7)

and that of ΦL
p is similar to Eq. (7), only the superscript

needs to be replaced from R to L. Finally, the outputs of
SCFE module are ΦL

P and ΦR
P , which contain both the shared

and the private features in the cross-modal image pair.
Compared with fully-shared or independent settings, the

semi-coupled convolution kernels in the SCFE module can
learn the shared/private parts of their respective input fea-
tures, which extract features more effectively. The effective-
ness of the SCFE module is demonstrated in Sec. 4.4.

3.2.2 Guided edge spatial attention

To prevent the problem that irrelevant textures are transferred
to the SR depth map H when the guide RGB image contains
rich textures, we adopt the ESA block from RFANet [26]
that achieves excellent results in single image SR into our
GESA module, as shown in Fig. 2(b). The ESA block can
highlight the attention weight in a lightweight and efficient
manner, facilitating the learning of discriminative features.
This motivation meets our requirements for the GESA mod-
ule. We use A(·) to represent the operation in this module,
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and the guided edge attention weight can be obtained by

W̃R = A(ΦR
P ) ∈ RM×N×C . (8)

This module replaces the operation of obtaining W(R̃)
by manually giving W(·) in Eq. (1). Thus, part of the edges
in intensity features can be highlighted. Compared with
conventional methods that manually design criteria to extract
edge weights useful for upsampling, data-driven strategies
can achieve adaptive extraction of attention weights.

3.2.3 Discrete cosine transform

In the above subsections, we have acquired the multi-channel
features ΦR and ΦL corresponding to R, L1, and guided
edge attention weight W̃R. In this subsection, we will
use them to accomplish the depth feature upsampling. In
Eq. (4), we illustrate that given a pair of L, R and a threshold
functions W(·), the HR depth image can be reconstructed
through DCT operation. Thus we consider the DCT algo-
rithm as a module, which can be integrated into our DCTNet
framework. Furthermore, it can be expanded to obtain the
multi-channel HR depth map features by completing the
DCT operation on each feature channel. Mathematically, the
calculation of the DCT module, denoted as DCT (·, ·, ·), is

ΦH = DCT (ΦR,ΦL, W̃R), (9)

where ΦH ∈ RM×N×C is the guided upsampling feature of
depth map L. More specifically, DCT (·, ·, ·) calculates

ΦE [c] ≜ λ̃cL
(
L(ΦR[c]) ◦ W̃R[c]

)
+ΦL[c], (10)

ΦH [c] = F−1
c

{
Fc(Φ

E [c])⊘
(
I + λ̃cK

2
)}

, (11)

where ΦH [c]∈RM×N is the cth channel feature map of ΦH .
We want to emphasize that, compared with the manually
given λ in Eq. (1) and Eq. (4), the λ̃∈RC in Eq. (10) is set
to be learnable. The channel-wise parameters are updated
with the training progress, improving model flexibility.

To summarize, there are two main advantages of using
the DCT module. First, besides λ̃ ∈ RC , the acquisition
of the feature map ΦH is learning-free, which can reduce
the network size with less learnable weights. Second, using
the DCT operation to directly calculate the output features
makes this component more interpretable than a neural net-
work that usually works like a black box.

3.2.4 Depth reconstruction

Finally, the depth reconstruction module aims to predict
the HR depth map from its feature map ΦH , which is the
output of the DCT module. The detailed structure is shown

1We denote {ΦL
P ,ΦR

P } as {ΦL,ΦR} for simplicity.

Impact of network depth P (C = 64)
Setting 2 3 4 5 6

×4 2.378 1.989 1.544 1.521 1.527
×8 4.644 3.963 3.152 3.174 3.166
×16 8.245 6.904 5.764 5.787 5.776

Impact of network width C (P = 4)
Setting 8 16 32 64 128

×4 2.798 2.300 1.992 1.544 1.529
×8 5.694 4.476 3.808 3.152 3.171
×16 9.531 7.695 6.976 5.764 5.734

Table 1. The impacts of depth P and width C on the DCTNet using
the validation set. Bold indicates the best RMSE result.

in Fig. 2(c). Specifically, the function R(·) of this module
can be expressed as Ĥ = R(ΦH), where Ĥ∈RM×N is the
predicted HR depth map of DCTNet.

3.2.5 Training loss

Consistent with recent works [3, 21, 22], we choose ℓ2-loss
as the training objective. That is, D(Ĥi, Hi) =

∑N
i=1 ∥Ĥi−

Hi∥22, where Hi is the ground truth HR depth map.

4. Experiment
In this section, we conduct comprehensive quantitative

and qualitative experiments on several datasets to demon-
strate the effectiveness of our proposed DCTNet.

4.1. Setup

Datasets. We use popular GDSR benchmarks following
the protocol in recent works [16, 21, 22, 46]. Specifically,
we select the first 1000 pairs of NYU v2 dataset [43] as
the training set (900 pairs for training the network and 100
pairs for validation), and the last 449 pairs as a test set. We
also utilize Middlebury [13, 41] (30 pairs) and Lu [31] (6
pairs) provided by Lu et al. [31] as the test sets. In addition,
405 pairs of images in the RGBDD dataset [12] are incorpo-
rated for evaluation. We train our DCTNet on the NYU v2
dataset [43] and test on the four datasets mentioned above.

In our experiments, all the LR depth images are synthe-
sized by applying bicubic down-sampling of the HR depth
maps. Finally, to verify the generalization ability of our mod-
els in natural scenes, we test them on the real-world branch
of the RGBDD dataset2 [12]. Please refer to the supplemen-
tary material for more descriptions of all the datasets.
Metric and implementation details. The training samples
are resized to 256×256 in the pre-processing stage. The
network is trained for 1000 epochs with a mini-batch size of

2This branch dataset contains 2215/405 pairs of RGBD images as train-
ing/test set. The LR depth maps and target HR depth maps are all acquired
in real scenes, with the sizes of 192×144 and 512×384, respectively.
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Figure 3. Visual results of (left) highlighted edge attention weights and (right) the changing curves of learnable λ. Left: (1)-(3): Input R,
ground truth H and Input L, respectively. (4)-(8): Representative highlighted edge weights produced by the GESA module. Right: the
values of the learnable parameters λ̃ against iterations during training. Different colored lines denote λ̃c corresponding to different channels.

64. We use the Adam [17] optimizer with a learning rate of
10−3. In the test phase, we follow common practice and use
the root-mean-square error (RMSE) to measure the depth
SR performance against the ground-truth maps. A smaller
RMSE implies a better quality of predicted depth images.
The scripts are mainly implemented with Pytorch [36]. The
training and testing are carried out on a PC with two NVIDIA
GeForce RTX 3090 GPUs. We randomly initialize the learn-
able parameter λ̃ to eθ, where θ ∼ N (0.1, 0.3). The number
of semi-coupled residual blocks P and the kernel numbers
C of semi-coupled filters in each convolution layer are set to
4 and 64, respectively. The choices of P and C are verified
using the validation set in Sec. 4.2.

4.2. Validation experiments

Impact of network depth and width. For our proposed
DCTNet, the network depth P and the width C play an
important role in the effectiveness of super-resolution. We
show the results among different combinations of {P,C}
on the validation set. We first fix C = 64, and calculate the
prediction quality when P = 2, 3, 4, 5, 6 on the validation
set. Then we verify the SR results for C = 8, 16, 32, 64, 128
when fixing P = 4. The results are demonstrated in Ta-
ble 1. When P < 4, the model capability is restricted.
When P > 4, increasing the depth does not achieve obvious
performance gain but makes the model heavier. Similarly,
when C exceeds 64, there is no significant performance im-
provement but increases the training cost. To have a good
balance of model performance and computational cost, we
set {P = 4, C = 64} for the following experiments.

Highlighting edge attention weights. We visualize the first
three and last two channels of the guided edge attention
weights W̃R in Eq. (8) from a representative sample pair
(Fig. 3). We can clearly see that after the weight attention
operation in the GESA module, the contour of the object is
effectively highlighted, and the texture information inside
the object is smoothed, which can alleviate the issue for

texture over-transferred and benefit the GDSR task.

Evolution of the learnable parameters in DCT. One of our
contributions is to make the tuning parameter λ̃ in Eq. (10)
a list of channel-wise learnable parameters to improve the
flexibility of DCTNet. Here we show the changing curve of λ̃
in each channel against the iteration number during training
(Fig. 3). The plot shows that under the data-driven setting,
λ̃ can adaptively adjust the importance between the fidelity
term and the regular term. Compared with the manually
given λ in Eq. (4), our design is more capable of leveraging
the characteristics of different data domains.

4.3. Comparison with the state-of-the-arts

In this section, we test our DCTNet on the NYU v2,
Middlebury, Lu and RGBDD benchmarks, and compare
the results with state-of-the-art methods including DJF [21],
DJFR [22], PAC [46], CUNet [3], DKN [16], FDKN [16]
and FDSR [12] to demonstrate its performance.

Qualitative Comparison. We show the comparison of error
maps for the SR depth maps in Fig. 4 and 5. Qualitatively, the
depth predictions of DCTNet have lower prediction errors
and are closer to the ground truth images. More visual
comparisons are shown in the supplementary material.

Quantitative Comparison. The quantitative results on four
test sets with scaling factors ×4, ×8, and ×16 are shown
in Tab. 2. Compared with existing approaches that only
perform well on a certain dataset or super-resolution factor,
our DCTNet achieves the best or second-best performance
for multiple datasets and different super-resolution scales.
This shows the advantage of our model upon previous state-
of-the-arts. Moreover, following [12], for the real-world
branch of RGBDD dataset, we use the ×4 models trained
in Tab. 2 to verify their generalization ability in real-world
scenes. All the models are tested directly without additional
finetuning. The quantitative results are shown in Table 3.
Our proposed DCTNet achieves lower RMSE than previous
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(a) RGB (b) HR/LR Depth map (c) DJF [21] (d) DJFR [22] (e) PAC [46]

(f) CUNet [3] (g) DKN [16] (h) FDKN [16] (i) FDSR [12] (j) DCTNet (Ours)

Figure 4. Visual comparison of error maps for “Image 1365” in the NYU v2 dataset for 8× super-resolution.

(a) RGB (b) HR/LR Depth map (c) DJF [21] (d) DJFR [22] (e) PAC [46]

(f) CUNet [3] (g) DKN [16] (h) FDKN [16] (i) FDSR [12] (j) DCTNet (Ours)

Figure 5. Visual comparison of error maps for “05-Art” in the Middlebury dataset for 16× super-resolution.

methods, demonstrating its generalization ability.

Parameter Comparison. We discussed in Sec. 3 that the
semi-coupled feature extraction (SCFE) module and the DCT
module can reduce the number of learnable parameters while
improving the interpretability of the model. Therefore, we
show the number of model parameters vs. RMSE on the
NYU v2 dataset in Fig. 6. Our model compares favorably
against existing approaches with a relatively small number
of parameters, demonstrating promising future directions in
building lightweight network architectures.

4.4. Ablation Studies

We further validate the design choices of our DCTNet
through ablation experiments (Tab. 4). Due to space limi-
tations, we refer readers to the supplementary material for
details about the network structures in Exp. III and V.

Semi-coupled filters. Besides the default semi-coupled fil-
ters in the SCFE module, we also tested independent (Exp. I)
or fully-coupled (Exp. II) cases, where the parameters in each
residual block are not shared or fully-shared, respectively.
Exp. I result shows that the ability of independent kernels in

extracting features is weaker than that of the semi-coupled
filters, which demonstrates the necessity of using shared ker-
nels to extract common features. On the other hand, Exp. II
shows fully-shared filters lead to worse performance than
the semi-coupled ones, which indicates the importance of
considering the disparity between two modalities.

The DCT module. In Exp. III, we remove the DCT module
and use a three-layer CNN to learn the mapping in Eq. (9).
Removing the DCT module not only increases the number
of learnable parameters but also reduces the prediction qual-
ity, which proves the effectiveness of the DCT module that
follows the optimization-based methodology.

Learnable parameters λ̃. Instead of using learnable ones,
we fix λ̃ to e0.1 in Exp. IV (the mean of their initialization
values). The result shows that a fixed tuning coefficient can
reduce the flexibility of the model and restrict the SR ability.

Residual skip connection. In Exp. V, we remove the resid-
ual connection in the SCFE module and only use a stack of
convolution kernels. The results show that residual connec-
tions play an important role in the feature extraction stage, as
removing them leads to significant performance degradation.
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Methods Middlebury NYU V2 Lu RGBDD

×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8 ×16

DJF [21] 1.68 3.24 5.62 2.80 5.33 9.46 1.65 3.96 6.75 3.41 5.57 8.15
DJFR [22] 1.32 3.19 5.57 2.38 4.94 9.18 1.15 3.57 6.77 3.35 5.57 7.99
PAC [46] 1.32 2.62 4.58 1.89 3.33 6.78 1.20 2.33 5.19 1.25 1.98 3.49
CUNet [3] 1.10 2.17 4.33 1.92 3.70 6.78 0.91 2.23 4.99 1.18 1.95 3.45
DKN [16] 1.23 2.12 4.24 1.62 3.26 6.51 0.96 2.16 5.11 1.30 1.96 3.42
FDKN [16] 1.08 2.17 4.50 1.86 3.58 6.96 0.82 2.10 5.05 1.18 1.91 3.41
FDSR [12] 1.13 2.08 4.39 1.61 3.18 5.86 1.29 2.19 5.00 1.16 1.82 3.06
DCTNet (Ours) 1.10 2.05 4.19 1.59 3.16 5.84 0.88 1.85 4.39 1.08 1.74 3.05

Table 2. Quantitative comparison between our DCTNet and previous state-of-the-art approaches on four benchmark datasets. We use the
RMSE metric (lower is better). The best and the second-best values are highlighted by bold and underline, respectively.
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Figure 6. The number of model parameters vs. RMSE on the NYU v2 dataset for ×4, ×8, and ×16 SR scales. Our DCTNet (red star)
achieves better or comparable performance with a relatively small number of parameters than existing models (blue dots).

Methods RMSE Methods RMSE

SVLRM [34] 8.05 DKN [16] 7.38
DJF [21] 7.90 FDSR [12] 7.50
DJFR [22] 8.01 DCTNet 7.37
FDKN [16] 7.50

FDSR∗ [12] 5.49 DCTNet∗ 5.43

Table 3. Quantitative results on the real-world branch of the
RGBDD dataset. The best and second best values are highlighted
by bold and underline, respectively. FDSR∗ and DCTNet∗ repre-
sent the results after finetuning on real-world branch data.

Configurations ×4 ×8 ×16

I w/ Independent Filters 1.74 3.34 6.06
II w/ Fully-shared Filters 1.80 3.48 6.46
III w/o DCT Module 1.78 3.46 6.61
IV w/o Learnable Parameters 1.77 3.55 6.63
V w/o Residual Connection 1.91 3.84 7.06

Ours 1.59 3.16 5.84

Table 4. Results of ablation experiments on the NYU v2 test set.
Bold indicates the best score in terms of RMSE.

4.5. Limitation

Although our proposed DCTNet is more interpretable
and compares favorably against existing approaches with
less learnable parameters, one limitation is that the com-

ponents in the model make the formulation more complex
than approaches using an end-to-end deep neural network
to regress the HR depth map. In our future work, we will
explore different ways to simplify the network design while
keeping the merit of interpretability and the good tradeoff
between network parameters and SR performance. We will
also investigate challenges ubiquitous for most guided depth
SR approaches, e.g., low illumination and blurry boundary
in the paired RGB images.

5. Conclusion
In this paper, we propose a novel guided depth super-

resolution (GDSR) model, DCTNet, based on discrete co-
sine transform, semi-coupled convolutional feature extrac-
tion, and adaptive edge attention. Our DCTNet incorporates
intuitive motivations into the design choices to alleviate the
challenges of RGB texture over-transferred, ineffective cross-
modal feature extraction, and unclear working mechanism
of network components in existing methods. In the future,
we hope that more multi-modal image processing tasks can
benefit from all or some components in DCTNet.
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[40] Gernot Riegler, Matthias Rüther, and Horst Bischof. Atgv-net:
Accurate depth super-resolution. In ECCV, pages 268–284.
Springer, 2016. 1

[41] Daniel Scharstein and Chris Pal. Learning conditional random
fields for stereo. In CVPR. IEEE Computer Society, 2007. 2,
5

[42] Jamie Shotton, Ross B. Girshick, Andrew W. Fitzgibbon,
Toby Sharp, Mat Cook, Mark Finocchio, Richard Moore,
Pushmeet Kohli, Antonio Criminisi, Alex Kipman, and An-
drew Blake. Efficient human pose estimation from single
depth images. IEEE Trans. Pattern Anal. Mach. Intell.,
35(12):2821–2840, 2013. 1

[43] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In ECCV, pages 746–760. Springer, 2012. 2,
5

[44] Xibin Song, Yuchao Dai, Dingfu Zhou, Liu Liu, Wei Li,
Hongdong Li, and Ruigang Yang. Channel attention based
iterative residual learning for depth map super-resolution. In
CVPR, pages 5630–5639. IEEE Computer Society, 2020. 2

[45] Gilbert Strang. The discrete cosine transform. SIAM review,
41(1):135–147, 1999. 3

[46] Hang Su, Varun Jampani, Deqing Sun, Orazio Gallo, Erik G.
Learned-Miller, and Jan Kautz. Pixel-adaptive convolutional
neural networks. In CVPR, pages 11166–11175. IEEE Com-
puter Society, 2019. 5, 6, 7, 8

[47] Baoli Sun, Xinchen Ye, Baopu Li, Haojie Li, Zhihui Wang,
and Rui Xu. Learning scene structure guidance via cross-
task knowledge transfer for single depth super-resolution. In
CVPR, pages 7792–7801. IEEE Computer Society, 2021. 2

[48] Xiao Tan, Changming Sun, and Tuan D. Pham. Multipoint
filtering with local polynomial approximation and range guid-
ance. In CVPR, pages 2941–2948. IEEE Computer Society,
2014. 2

[49] Jiaxiang Tang, Xiaokang Chen, and Gang Zeng. Joint implicit
image function for guided depth super-resolution. In ACM
Multimedia, pages 4390–4399. ACM, 2021. 2

[50] Qi Tang, Runmin Cong, Ronghui Sheng, Lingzhi He, Dan
Zhang, Yao Zhao, and Sam Kwong. Bridgenet: A joint learn-
ing network of depth map super-resolution and monocular
depth estimation. In ACM Multimedia, pages 2148–2157.
ACM, 2021. 2

[51] Ivana Tosic and Sarah Drewes. Learning joint intensity-
depth sparse representations. IEEE Trans. Image Process.,
23(5):2122–2132, 2014. 2

[52] Yang Wen, Bin Sheng, Ping Li, Weiyao Lin, and David Dagan
Feng. Deep color guided coarse-to-fine convolutional network
cascade for depth image super-resolution. IEEE Trans. Image
Process., 28(2):994–1006, 2019. 2

[53] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang.
Fast end-to-end trainable guided filter. In CVPR, pages 1838–
1847. IEEE Computer Society, 2018. 2
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