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Abstract

Optical flow estimation is a fundamental task in com-
puter vision. Recent direct-regression methods using deep
neural networks achieve remarkable performance improve-
ment. However, they do not explicitly capture long-term
motion correspondences and thus cannot handle large mo-
tions effectively. In this paper, inspired by the traditional
matching-optimization methods where matching is intro-
duced to handle large displacements before energy-based
optimizations, we introduce a simple but effective global
matching step before the direct regression and develop a
learning-based matching-optimization framework, namely
GMFlowNet. In GMFlowNet, global matching is efficiently
calculated by applying argmax on 4D cost volumes. Ad-
ditionally, to improve the matching quality, we propose
patch-based overlapping attention to extract large con-
text features. Extensive experiments demonstrate that GM-
FlowNet outperforms RAFT, the most popular optimization-
only method, by a large margin and achieves state-of-
the-art performance on standard benchmarks. Thanks to
the matching and overlapping attention, GMFlowNet ob-
tains major improvements on the predictions for texture-
less regions and large motions. Our code is made publicly
available at https://github.com/xiaofeng94/
GMFlowNet.

1. Introduction

Optical flow estimation is a key computer vision task,
which benefits various applications, including video inter-
polation [24], deblurring [52], video segmentation [43] and
action recognition [37]. Prevalent work in this area has
been largely dominated by either matching-optimization
or direct-regression methods. Previous energy-based op-
timization methods [6, 17, 31] usually fail to handle large
displacements due to their inability to capture long-term
motion correspondences. To remedy this, matching-
optimization methods [2, 7, 47] introduce a matching step
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Figure 1. Main frameworks for optical flow estimation. (a) Tra-
ditional matching-optimization methods first build a sparse match-
ing to get a coarse flow and then exploit energy-based optimization
to refine the flow. (b) Direct-regression methods mimic the energy-
based optimization with learned parameters. They can be regarded
as learning-based optimizations without matching. (c) Our frame-
work introduces matching before the learning-based optimization
and further improves the performance.

before the optimization, which aims to find correspon-
dences between pixels or patches across frames. How-
ever, their matching process depends on complicated hand-
crafted features and is time-consuming and inaccurate.

Recent direct-regression methods [20, 38, 41, 54] regard
optical flow estimation as a regression task and achieve
considerable improvements especially in predicting small
changes in optical flow. These methods typically calculate
4D cost volumes representing the similarity between pixels
and then directly regress flows from cost volumes by neu-
ral networks. Similar to energy-based optimization, direct-
regression methods cannot capture long-term motion corre-
spondences in an explicit way and thus suffer from a perfor-
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mance drop in areas with large motions.
In this paper, we incorporate a matching step to explic-

itly handle large displacements for direct-regression meth-
ods, inspired by the improvement matching-optimization
methods brought to energy-based optimization approaches.
Based on this idea, we develop a novel framework for op-
tical flow estimation, namely Global Matching Flow Net-
work (GMFlowNet), where global matching is introduced
before the direct regression. Unlike traditional methods,
GMFlowNet provides an efficient and accurate matching
step. For efficiency, we apply argmax to the typical 4D
cost volume to build the global matching since it results
in minor computational overhead. For accuracy, we pro-
pose a Patch-based OverLapping Attention (POLA) block
to extract large context features to diminish regional ambi-
guities in matching, e.g., repeated patterns and textureless
regions. Specifically, POLA divides input feature maps into
patches and attends each patch with itself and its neighbor-
ing patches. Since direct-regression methods mimic the tra-
ditional energy-based optimizations in a data-driven man-
ner [41], they can be interpreted as learning-based optimiza-
tions. Thus, our method can be regarded as a learning-based
matching-optimization framework. Fig. 1 illustrates differ-
ences between previous related frameworks and ours.

We evaluate GMFlowNet on standard datasets for op-
tical flow estimation. Extensive experiments demonstrate
that GMFlowNet significantly outperforms the most popu-
lar optimization-only model RAFT [41] and achieves state-
of-the-art performance. As expected, GMFlowNet provides
better flow estimations especially for large motion areas and
textureless regions. Besides, we thoroughly investigate our
global matching and POLA, showing that they are both ef-
fective and efficient.

Our contributions are summarized as follows: 1) We in-
troduce a global matching step to explicitly handle large
displacement optical flow estimations for direct-regression
methods. With typical 4D cost volumes, our global match-
ing is effective and efficient. 2) We propose a well-
designed Patch-based OverLapping Attention (POLA) to
address local ambiguities in matching and demonstrate its
effectiveness via extensive experiments. 3) Following tra-
ditional matching-optimization frameworks, we propose
a learning-based matching-optimization framework named
GMFlowNet that achieves state of the art performance on
standard benchmarks.

2. Related Work
Optical flow as energy optimization. Previous meth-

ods formulated the optical flow as a continuous global en-
ergy function optimization problem [17]. Black and Anan-
dan [5] introduced a robust estimation framework to address
outliers caused by occlusions or significant brightness vari-
ations. Later research made further improvements by using

better regularization terms [6, 34, 53] or additional robust
optimization terms [5, 8]. However, these approaches lack
the ability to compute long-term dependencies and, thus,
only work well for small displacements. To handle large
displacements, later methods [6,9] introduced the coarse-to-
fine strategy where large and small displacements are han-
dled at different levels of an image pyramid.

However, coarse-to-fine approaches can neither handle
small and fast-moving objects that disappear at coarse levels
nor remedy mistakes made in the early stages. To address
those issues, Brox and Malik [7] introduced feature match-
ing to the energy-based optimization framework, which was
further improved in later works [35,47,49]. Following stud-
ies [1, 3, 12, 19, 48] widely adopted this approach. How-
ever, all these studies consider global matching highly time-
consuming, so they only conducted local matching for com-
putation efficiency, e.g., EpicFlow [35]. Contrary to previ-
ous methods, we calculate global matching efficiently by
applying the argmax operator on widely adopted 4D cost
volumes and achieve better performance.

Optical flow as network regression. More recently, the
community has been motivated by the success of CNNs
on high-level vision tasks [27] to exploit learning-based
solutions for optical flow estimation. Relevant studies
[4, 14, 16, 22, 38, 41, 54, 55] typically formulate optical flow
estimation as regression instead of matching. In regression,
cost volumes are the critical component that represents the
similarity between pixels. For example, Sun et al. [38] de-
signed a network using stacked image pyramids, feature
warping, and cost volumes. Hofinger et al. [16] employed a
sampling-based strategy to improve the calculation of cost
volumes. Teed and Deng [41] built 4D cost volumes for
all pairs of pixels. However, due to the high cost of mem-
ory and time, they did not aggregate the cost volumes to
involve the global information. Separable Flow [54] pro-
posed a separable cost volume module for efficient aggre-
gations. In this work, we sidestep the high-cost global ag-
gregation and leverage global information by constructing
global matching using existing 4D cost volumes.

Attention mechanism in vision. This work extracts
large context information for matching via leveraging re-
cent advances in Vision Transformers [11, 13, 28]. Meth-
ods leveraging Transformers’ ability of modeling long-term
dependencies have outperformed convolutional neural net-
works in various high-level computer vision tasks [13, 42].
Inspired by these, Jiang et al. [25] introduced an attention-
based module to resolve occlusions for optical flow estima-
tion. Furthermore, LoFTR [40] adopted the self- and cross-
attention to extract better descriptors for feature match-
ing. Prevailing Vision Transformer architectures, e.g., Swin
Transformer [28], conduct indirect inter-patch information
exchange with shifted windows. We propose POLA to ex-
change information across patches directly.
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Figure 2. Overview of GMFlowNet. GMFlowNet has three components: 1) The large context feature extraction module generates initial
features from 3 convolutional layers and adopts the proposed POLA to extract large context information. N refers to the number of
attention blocks. 2) The global matching module adopts large context features and constructs a 4D cost volume. Then, a global matching
is built by applying argmax on the cost volume and refined by mutual matching. A coarse flow f0

1→2 is generated from the matching. 3)
The optimization module takes f0

1→2 as the initial state and updates the flow estimation iteratively. T refers to the number of iterations.
We employ the off-the-shelf optimization from RAFT [41].

3. Approach

We propose a novel framework GMFlowNet where a
simple and effective global matching is introduced before
the learning-based optimization. Our GMFlowNet consists
of three modules, namely, large context feature extraction,
global matching, and learning-based optimization. Fig. 2
provides an overview of GMFlowNet, and each module is
elaborated in the following sections.

3.1. Large Context Feature Extraction

Large context information is the key to handle match-
ing in locally ambiguous locations, e.g. repeated patterns
and textureless regions. GMFlowNet first employs 3 con-
volutional layers (3-Convs) to extract initial features and
then adopts Transformer blocks to include long-term depen-
dency information. Due to the large dimension of image
features, it’s computationally prohibitive to apply vanilla
self-attention [44] on whole feature maps. To reduce the
computation cost, we propose a well-designed local atten-
tion module POLA for optical flow estimation. In this sec-
tion, we first describe attention in Tranformer and then we
introduce POLA. In the end, we compare POLA with other
feature extractors and discuss why ours is better for our task.

Attention in Transformer. Given query vectors Q ∈
RNq×d, key vectors K ∈ RNk×d, and value vectors V ∈
RNv×d, where d is the feature dimension, attention module
attends Q with V by the similarity between Q and K. Addi-
tionally, Ramachandran et al. [33] suggest a learned relative
position bias B ∈ RNq×Nk for better performance, and the
attention is calculated as,

Attention(Q,K, V ) = softmax(QKT /
√
d+B) · V. (1)

For more details about Transformers, please refer to [44].
Patch-based overlapping attention. Our POLA di-

vides features into M × M non-overlapping patches and
attends every patch with itself and its eight neighboring
patches. Fig. 3a illustrates our POLA with M = 2. Fol-
lowing prior work [28, 44], we adopt multi-head attentions
in our attention block, as well. Given a patch vectorized
as P ∈ RM2×d and its surrounding 3 × 3 patches vector-
ized as S ∈ R9M2×d, for the i-th head of our attention, we
first project P and S into dk dimensions by learned linear
projections and denote the projected results as Pi and Si,
respectively. Then, we perform attention with Pi and Si

and get the output hi. Finally, we concatenate hi from all
heads as H and project H to d dimensions as the final re-
sult O ∈ RM2×d. Our multi-head patch-based overlapping
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Figure 3. Local attention. (a) The proposed POLA. (b) Window
partitions in Swin Transformer [28]. Red boxes highlight win-
dows, and blue boxes highlight shifted windows. Two blocks are
required to propagate information between windows.

attention can be formulated as,

hi = Attention(LQ
i (P ), LK

i (S), LV
i (S)).

H = Concat([h1, h2, . . . , hn])

O = LO(H). (2)

Here n is the number of heads, LQ
i , LK

i , LV
i and LO are

linear projection functions. In the experiments, we set n =
8 and dk = d/n.

Why POLA is an improved attention method. Swin
Transformer [28] provides a general local attention mech-
anism for vision tasks with windows and shifted windows
as shown in Fig. 3b. However, the shifted window scheme
requires two individual attention blocks to propagates inter-
patch features, leading to information loss. Such loss is es-
pecially detrimental to matching because matching heavily
depends on context information to reduce local ambigui-
ties. By contrast, our POLA involves inter-patch features
within one block and propagates information directly with
less information loss. Moreover, POLA can be viewed as
a generalization of per pixel overlapping attention that has
been explored in [18,33]. Compared with the per-pixel one,
POLA enjoys at least three advantages: 1) consumes less
memory, 2) can be efficiently implemented in existing deep
learning platforms, and 3) arranges features by patch, which
may provide better performance as suggested in recent re-
search [13, 28, 42].

3.2. Global Matching

We extract the context features F1 and F2 for the first
input image I1 and the second input image I2, respectively.
Then, a 4D cost volume is constructed on F1 and F2. After
that, a global matching is computed from the cost volume
and outputs a coarse flow f0

1→2 for I1 and I2, which is taken
as the initial state of the later optimization.

4D cost volume calculation. We follow prior work [25,
41] to construct the 4D cost volume on 1/8 of the input

resolution. The cost volume C is calculated as,

C(i, j, u, v) = F1(i, j) · F2(u, v), (3)

where (i, j) and (u, v) refer to locations in F1 and F2.
Matching confidence calculation. We adopt a dual-

softmax operator [36] to convert the cost volume into
matching confidence. This operator is efficient and enables
the supervision of matching. In our case, the matching con-
fidence Pc is computed by,

Pc(i, j, u, v) = softmax(C(i, j, ·))⊙ softmax(C(·, u, v)),
(4)

where C(i, j, ·) means all (u, v) for given (i, j). C(·, u, v)
is similar. Pixel-wise production is denoted as ⊙.

Matching selection and flow generation. Based on Pc,
we obtain the matching for I1 at (i, j) as

M1→2(i, j) = argmax
u,v

Pc(i, j, u, v). (5)

The matching for I2, M2→1(u, v), is attained similarly.
Then, we pick robust matches that satisfy both M1→2(i, j)
and M2→1(u, v) and define the matching set Mc as,

Mc = {(̂i, ĵ)|(̂i, ĵ) = M2→1(M1→2(̂i, ĵ))}. (6)

The coarse flow is computed as,

f0
1→2 =

{
M1→2(i, j)− (i, j) (i, j) ∈ Mc

(0, 0) Otherwise
. (7)

3.3. Optimization

We use the off-the-shelf update operator from RAFT
[41] as our optimization. This optimization predicts a delta
flow and adds it to the current flow estimation. It iterates
on such additions and outputs a series of flow predictions
{f1

1→2, f
2
1→2, . . . , f

T
1→2}, where T is the total number of

iterations and fT
1→2 is used as the final prediction. We ini-

tialize the optimization with our coarse flow f0
1→2 instead

of the zero flow used in [41]. The optimization part in
GMFlowNet is replaceable. We adopt RAFT’s because it
achieves the best performance. Any future optimization
may be applied here for further improvements.

3.4. Supervision

Matching loss. We round the ground truth optical flow
fgt
1→2 to the pixel level and collect the ground truth matching

set Mgt
c . We consider regions as matched if they appear

in both frames and set occlusion areas as unmatched. As
the supervision in feature matching [40], we minimize the
negative log-likelihood of Pc in matched regions as,

LM = − 1

|Mgt
c |

∑
(̂i,ĵ)∈Mgt

c

logPc(̂i, ĵ) (8)

17595



Optimization loss. We follow RAFT [41] and super-
vise the optimization with ℓ1 distance between the predicted
flow and fgt. The optimization loss is defined as,

LO =

T∑
i=1

γ(i−T )||fgt
1→2 − f i

1→2||1. (9)

The overall loss function of GMFlowNet is,

L = LO + λLM (10)

where λ balances different loss terms.

4. Experiments
This section elaborates on the experimental results to

demonstrate the effectiveness of GMFlowNet. We show
that GMFlowNet improves optical flow estimation when
large motions and textureless regions are present based on
both quantitative and qualitative evaluations. We also dis-
cuss the improvements in the results. An ablation study and
an efficiency evaluation finalize the evaluation.

We implemented GMFlowNet in PyTorch [32] and fol-
lowed the training setting of RAFT [41]. We first train our
model on FlyingChairs [23] (C) for 120k iterations (batch
size of 10) and then finetune it on FlyingThings [29] (T)
for 160k iterations (batch size of 6). After that, our model
is further finetuned on a combination of data from Fly-
ingThings (T), Sintel with both clean and final passes [10]
(S), KITTI [30] (K), and/or HD1K [26] (H). In the fol-
lowing sections, C+T refers to FlyingChairs and FlyingTh-
ings. C+T+S/K means C+T with either Sintel or KITTI.
C+T+S+K+H refers to all training datasets. We set the
patch size to M = 7 for POLA and the feature dimension
to d = 256. When evaluating on Sintel, we improve the
model by replacing 4 heads of our POLA blocks with 2 ver-
tical and 2 horizontal axial-attention heads that are proposed
by Wang et al. [45].

4.1. Quantitative Evaluations

Evaluations on different displacements. Our global
matching aims at addressing large motions explicitly. To
evaluate its performance, we divide all regions of the Sin-
tel training set (both clean and final passes) into different
subsets, i.e., s10, s10-40, s40+, based on displacements.
s10 refers to regions with displacements between 0 and 10,
s10-40 for 10 and 40, and s40+ for larger than 40. Then,
we train the optimization-only baseline model RAFT [41]
and GMFlowNet on C+T and evaluate them on the differ-
ent subsets. Table 1 provides the evaluation results in terms
of average end-point-error (AEPE). As shown, for the clean
pass, GMFlowNet improves RAFT by 22.4% (from 8.80
from 6.83) on s40+ and 18.3% (from 1.38 from 1.69) on
s10-40. For the final pass, GMFlowNet is close to RAFT

Sintel RAFT [41] Ours Rel. Impr.
Dataset Type (AEPE) (AEPE) (%)

s0-10 0.37 0.28 24.3
Clean s10-40 1.69 1.38 18.3
(train) s40+ 8.80 6.83 22.4

All 1.47 1.14 22.4

s0-10 0.53 0.54 −1.9
Final s10-40 3.11 3.09 0.6
(train) s40+ 18.11 17.25 4.7

All 2.78 2.71 2.5

Table 1. Quantitative results on different displacements. Mod-
els are trained on C+T. Rel. Impr. refers to relative improvement.
Our method improves more on regions with extremely large mo-
tions (s40+) than on s10-40.

on s10 and s10-40 but outperforms RAFT on s40 by 4.7%.
Those results indicate that GMFlowNet enjoys great im-
provements on regions with extremely large displacements,
which demonstrates that the global matching with large
context information is beneficial to handle large motions.

Cross-domain evaluations. Following previous studies
[25, 41, 54], we trained the proposed GMFlowNet on C+T
and evaluated it on the training sets of Sintel and KITTI as
cross-domain evaluations. Table 2 displays the results of
GMFlowNet and other competitive approaches. As a com-
mon practice, AEPE is reported for Sintel. Fl-epe and Fl-all
are reported for KITTI.

As shown, GMFlowNet is close to the best method Sep-
arable Flow [54] on Sintel Final and achieves better per-
formance on the other datasets. Our method achieves an
AEPE of 1.14 on Sintel Clean, a Fl-all of 15.4 on KITTI,
which are 19.6% and 11.5% better than the optimization-
only baseline, RAFT. Those results demonstrate that GM-
FlowNet boasts a better generalization ability than RAFT as
well as other methods. Considering that GMFlowNet and
RAFT share the same optimization stage, we attribute the
huge improvement in generalization to our global match-
ing. We believe this is a fair claim because RAFT exploits
regression but GMFlowNet considers both matching and re-
gression. Since regression is more likely to overfit specific
datasets than matching, GMFlowNet generalizes better.

Evaluations on standard benchmarks. We evaluate
GMFlowNet on standard online benchmarks, i.e., Sintel
[10] and KITTI [30]. For a fair comparison, we follow
previous methods [25, 41, 54] and train GMFlowNet on
C+T+S/K and C+T+S+K+H, respectively. Table 2 exhibits
the evaluation results. GMFlowNet adopts the optimiza-
tion process of RAFT, but outperforms RAFT by a large
margin. Moreover, GMFlowNet outperforms the state-of-
the-art method Separable Flow [54] on Sintel, but achieves
slightly lower performance on KITTI. This is probably be-

17596



Training Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)
Clean Final F1-epe F1-all Clean Final F1-all

C+T

HD3 [51] 3.84 8.77 13.17 24.0 - - -
PWC-Net [38] 2.55 3.93 10.35 33.7 - - -
LiteFlowNet2 [21] 2.24 3.78 8.97 25.9 - - -
VCN [50] 2.21 3.68 8.36 25.1 - - -
MaskFlowNet [55] 2.25 3.61 - 23.1 - - -
FlowNet2 [23] 2.02 3.54 10.08 30.0 3.96 6.02 -
DICL-Flow [46] 1.94 3.77 8.70 23.6 - - -
RAFT [41] 1.43 2.71 5.04 17.4 - - -
GMA [25] 1.30 2.74 4.69 17.1 - - -
Separable Flow [54] 1.30 2.59 4.60 15.9 - - -
GMFlowNet (Ours) 1.14 2.71 4.24 15.4 - - -

C+T+S/K

FlowNet2 [23] (1.45) (2.01) (2.30) (6.8) 4.16 5.74 11.48
HD3 [51] (1.87) (1.17) (1.31) (4.1) 4.79 4.67 6.55
PWC-Net [38] - - - - 4.39 5.04 9.60
LiteFlowNet [20] (1.35) (1.78) (1.62) (5.58) 4.54 5.38 9.38
ScopeFlow [4] - - - - 3.59 4.10 6.82
VCN [50] (1.66) (2.24) (1.16) (4.1) 2.81 4.40 6.30
DICL-Flow [46] (1.11) (1.60) (1.02) (3.60) 2.12 3.44 6.31
RAFT* [41] (0.77) (1.20) (0.64) (1.5) 2.08 3.41 5.27
Separable Flow [54] (0.71) (1.14) (0.68) (1.57) 1.99 3.27 4.89
GMFlowNet (Ours) (0.65) (1.06) (0.63) (1.49) 1.59 2.91 4.89

C+T+S+K+H

LiteFlowNet2 [21] (1.30) (1.62) (1.47) (4.8) 3.48 4.69 7.74
PWC-Net+ [39] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
MaskFlowNet [55] - - - - 2.52 4.17 6.10
RAFT* [41] (0.76) (1.22) (0.63) (1.5) 1.94 3.18 5.10
GMA* [25] (0.62) (1.06) (0.57) (1.2) 1.40 2.88 5.15
Separable Flow [54] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 4.64
GMFlowNet (Ours) (0.59) (0.91) (0.64) (1.51) 1.39 2.65 4.79

Table 2. Quantitative results on Sintel and KITTI datasets. “C+T”: We test the generalization ability on Sintel and KITTI training sets
after training on FlyingChairs (C) and FlyingThing (T). “C+T+S/K”: We train models on C+T and finetune them on either Sintel (S) or
KITTI (T) and evaluate on the test set of S or T. “C+T+S+K+H”: Our training set contains training samples from C, T, S, K and HD1K
(H). Parentheses denote results on the training set. The best and runner up results are highlighted in bold and underlined, respectively. *We
report results of the 2-view setting that is adopted by other methods.

cause GMFlowNet adopts attention blocks to extract large
context features. However, KITTI only provides 200 train-
ing images that are far from enough to train high quality
attention blocks. We assume that with more training data,
GMFlowNet may result in larger improvements compared
to CNN-based approaches.

4.2. Qualitative Evaluations

We visualize the estimated flows and cost volumes to il-
lustrate the exact aspects that GMFlowNet improves. The
supplementary document provides additional visualizations
for ours coarse flow from matching.

Visualizations of estimated flows. Fig. 4 provides sev-
eral test samples from KITTI and the corresponding flow es-
timations of RAFT and GMFlowNet. As we can see, com-

pared with RAFT, GMFlowNet provides better predictions
on locally ambiguous regions like textureless regions. For
example, there are two white cars moving forward side by
side in the last row of Fig. 4. Since the two cars share sim-
ilar colors and shapes, RAFT interprets them as one car. In
contrast, our method succeeds in estimating the difference
between the two cars and predicts the flow correctly. For
more results, please refer to the supplementary document.
These improvements are strong evidence of the effective-
ness of the introduced global matching and POLA.

Visualizations of cost volumes. Fig. 5 visualizes the av-
erage and normalized cost volumes of both RAFT and GM-
FlowNet for large displacement regions (> 20 pixels). The
supplementary document provides more details about the
visualization. For a fair comparison, we trained RAFT and
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(a) Input images (b) RAFT [41] (c) Ours

Figure 4. Qualitative evaluations for four samples from KITTI test set. (b) Results of the widely adopted optimization-only baseline
model RAFT [41]. (c) Results of our GMFlowNet. Regions with significant improvements are highlighted by red dash boxes. GMFlowNet
works better especially in textureless regions, because our overlapping attention provides more context information to diminish regional
ambiguities.
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Figure 5. Visualizations of cost volumes for large motions. The
peak of our cost volume is twice higher than that of RAFT’s, which
demonstrates that our method handles large displacements better.

GMFlowNet on C+T and drew the figure using the train-
ing set of Sintel. As shown, the peak of our cost volume is
much higher than that of RAFT, which clearly demonstrates
that GMFlowNet is better at handling large displacements.
This is plausible because our matching is designed to handle
large motions and the proposed POLA extracts large context
information that is crucial to overcome regional ambiguities
for matching.

4.3. Ablation Study

We perform a set of ablation studies to show the impor-
tance and effectiveness of each component in GMFlowNet.
All models in the experiments are trained on C+T and tested
on Sintel and KITTI training sets. Table 3 provides the re-
sults for various ablation experiments. In each section of
the table, we study a specific component of our approach in
isolation and underline the settings used in our final model.

Initial feature extraction. We tried three different mod-
ules, i.e., None, ResNet [15], and 3-Convs, to extract initial
features for the following POLA blocks. None means no

initial features. For this setting, we use the Swin Trans-
former architecture as the overall feature extractor, but we
replace its attention blocks with POLA blocks. As shown
in Table 3, 3-Convs achieve the best performance. This is
likely because, on the one hand, attention blocks have more
difficulties than CNNs to learn rich features from raw im-
ages. On the other hand, ResNet is much deeper than 3-
Convs and may extract more high level features that are less
useful for matching.

Large context feature extraction. To verify the effec-
tiveness of our POLA, we compare it with ResNet, Swin
Transformer [28], and ViT [13]. For ViT, we further re-
duce the feature maps by 4x. Otherwise, ViT will run out
of memory because it takes global attentions instead of lo-
cal attentions used in POLA. As shown in Table 3, POLA
outperforms others by a large margin.

The number of our attention blocks. A simple way to
expand GMFlowNet is to increase the number of attention
blocks. Table 3 shows that more attention blocks achieve
better performance, which is probably because more blocks
provide larger receptive fields and better context informa-
tion. However, more blocks increases the computation and
memory costs. As a trade-off, we take 6 blocks finally.

Overlapping type. Our POLA can be viewed as a gener-
alization of per pixel overlapping attention proposed in [33].
As shown in Table 3, POLA shares the same amount of pa-
rameters with the per pixel attention and outperforms it.

Global matching. Our key motivation is to introduce
global matching into direct-regression methods. We remove
the global matching in GMFlowNet and observe a signifi-
cant performance drop on Sintel Final and KITTI shown in
Table 3. Those results clearly demonstrate the effectiveness
of the global matching.
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Experiment Method Sintel (train) KITTI-15 (train) Parameters
Clean Final F1-epe F1-all

Baseline [41] - 1.43 2.71 5.04 17.4 5.3M

Initial Features
None 1.31 2.83 4.89 17.4 11.1M
ResNet 1.27 2.86 4.44 16.3 10.0M
3-Convs 1.14 2.71 4.24 15.4 9.3M

Large Context Features

ResNet 1.26 2.95 4.74 17.1 5.3M
Swin Transformer 1.33 2.90 5.65 17.3 9.3M
ViT 1.33 2.94 4.86 16.4 12.5M
POLA 1.14 2.71 4.24 15.4 9.3M

Number of Attention Blocks
3 1.27 2.87 4.76 16.9 6.9M
6 1.14 2.71 4.24 15.4 9.3M
12 1.12 2.63 4.04 15.6 14.1M

Overlapping Type Per pixel 1.32 2.88 5.11 16.8 9.3M
Patch-based 1.14 2.71 4.24 15.4 9.3M

Global Matching No 1.24 2.82 4.58 16.4 9.3M
Yes 1.14 2.71 4.24 15.4 9.3M

Table 3. Ablation experiments. Settings used in the final model are underlined. See Sec. 4.3 for details.

Method Param Speed Sintel KITTI
Clean Fl-epe

RAFT [41] 5.3M 0.382s 1.43 5.04
RAFT+GM 5.3M 0.384s 1.26 4.74

+SWIN [28] 9.3M 0.422s 1.33 5.65
Ours 9.3M 0.500s 1.14 4.24

Table 4. Comparisons of parameters and inference time. All
models are trained on C+T and tested on S and K. Speed measure-
ments are evaluated on Sintel with the same platform.

4.4. Efficiency

Running time cost of our global matching. Run-
ning time cost is a major concern to adopt global match-
ing. To address this concern, we compare the running time
of the widely adopted RAFT and RAFT+GM. RAFT+GM
refers to RAFT with our global matching step. As shown
in Table 4, the global matching is very efficient and only
takes 0.002s or 0.52% of extra time. Moreover, com-
pared with RAFT, GMFlowNet runs slightly slower with
4M more parameters but significantly improves the perfor-
mance. Therefore, the main benefit of our method is the
performance improvement.

Running time cost of our overlapping attention. Our
overlapping attention introduces more calculations but is
not necessarily inefficient. To demonstrate this, we com-

pare our model with +SWIN in Table 4. +SWIN is a vari-
ant model where the POLA blocks are replaced with local
attention blocks from Swin Transformer [28]. As shown,
compared with +Swin, GMFlowNet requires 0.078s of ex-
tra time and improves the performance by 13.5% on Sintel
clean pass and by 24.9% on KIITI. We believe that the over-
head is acceptable given the performance improvement.

5. Conclusion

We have shown that matching improves the performance
of direct-regression optical flow estimation methods in han-
dling large displacements. We proposed a novel framework,
GMFlowNet, where a global matching step is introduced
before learning-based optimization. To improve the match-
ing, we proposed a patch-based overlapping attention that
extracts large context features to diminish regional ambi-
guities. GMFlowNet significantly improves predictions for
large motions and textureless regions and achieves state-of-
art performance on standard benchmark datasets. Future
work may focus on addressing GMFlowNet’s limitations on
running time cost and number of parameters.
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