This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

GraFormer: Graph-oriented Transformer for 3D Pose Estimation

Weixi Zhao, Weigiang Wang, Yunjie Tian
University of Chinese Academy of Sciences, Beijing, China

{zhaoweixil9, tianyunjiel9}@mails.ucas.ac.cn

wgwang@ucas.ac.cn

Abstract

In 2D-to-3D pose estimation, it is important to exploit
the spatial constraints of 2D joints, but it is not yet well
modeled. To better model the relation of joints for 3D
pose estimation, we propose an effective but simple net-
work, called GraFormer', where a novel transformer archi-
tecture is designed via embedding graph convolution layers
after multi-head attention block. The proposed GraFormer
is built by repeatedly stacking the GraAttention block and
the ChebGConv block. The proposed GraAttention block
is a new transformer block designed for processing graph-
structured data, which is able to learn better features
through capturing global information from all the nodes as
well as the explicit adjacency structure of nodes. To model
the implicit high-order connection relations among non-
neighboring nodes, the ChebGConv block is introduced to
exchange information between non-neighboring nodes and
attain a larger receptive field. We have empirically shown
the superiority of GraFormer through extensive experiments
on popular public datasets. Specifically, GraFormer out-
performs the state-of-the-art GraghSH [38] on the Hu-
man3.6M dataset yet only contains 18% parameters of it.

1. Introduction

3D pose estimation has attracted much attention in recent
years from computer vision community due to its numer-
ous applications such as action recognition [16,19,37,39],
virtual reality [9, 23], etc. The 2D-to-3D human pose esti-
mation task aims to convert 2D joint coordinates in images
into corresponding 3D coordinates in the physical world. It
is challenging since less information is contained in 2D co-
ordinates. Previous works [25,26] have shown that the 2D
coordinates plus connection structure information are vital
to learning feature representations for 3D pose estimation.
However, the CNN-based method [26] is weak to directly
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Figure 1. Node information transfer diagrams. (a): Normalized
adjacency matrix. The adjacency matrix is hard to find all im-
plicit relations between a node and other nodes, except the rela-
tion between it and its neighbors. (b): Attention weight matrix.
The weight matrix can model the implicit relationship of all nodes
based on the feature values. (c): Graph Laplacian matrix. The
ChebGConv block can not only find many implicit relations but
also remain the graph characteristics of 2D joints.

model the connection structure information.

To better model the explicit structure information, recent
works [7,22,38,42] employ graph convolution networks
(GCNs) to learn the representation of these graph-structured
data. These techniques achieve good performances but suf-
fer from the limited receptive field when learning better rep-
resentations, where graph convolution filters [18] operate
only on the first-order neighboring nodes, as illustrated in
Figure 1 (a). Although this issue can be alleviated by stack-
ing multiple GCN layers, the performance can still degrade
due to the over-smoothing problem. Other methods are also
proposed to enlarge the receptive field. For example, Zhao
et al. [42] utilize non-local modules to increase the net-
work receptive field. Lin et al. [21] utilize the recent popu-
lar transformer model to capture the global visual informa-
tion over entire RGB images. In [21,42], the self-attention
modules of transformers facilitate the interaction among all
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nodes, and thus the relations of them are modeled, as illus-
trated in Figure 1 (b). However, the self-attention mecha-
nism builds upon calculating the similarities of nodes and
ignores the graph structure information among nodes (the
adjacency relation of nodes).

To better utilize self-attention to model the structural rep-
resentations of nodes in a graph, we propose a graph-based
attention block (GraAttention) where the transformer and
a graph convolution layer with a learnable adjacency matrix
(referred to as LAM-GConv) [7, 18] are combined. Con-
cretely, we replace the multiple layer perceptron (MLP) of
conventional transformers with LAM-GConv. Although the
conventional self-attention module facilitates the interac-
tion among nodes in a graph, it ignores the graph struc-
ture information among nodes. In our method, the intro-
duction of LAM-GConv can further boost the interaction
among nodes by modeling graph structure. By introduc-
ing the LAM-GConv into the conventional transformer, the
GraAttention block is able to learn better features through
capturing global information as well as the adjacency struc-
ture of nodes.

Although the direct adjacent relations can be modeled
by LAM-GConv, two non-neighboring nodes also have im-
plicit relations. For example, some implicit relations for
the two knee joints of humans exist, though they are not
physically connected. We note that the conventional self-
attention can only model the global relationship of nodes,
and the LAM-GConv can only model direct adjacency re-
lations, but the implicit relations among nodes are not well
modeled. Thus, we propose to use ChebGConv block [6] to
model the aforementioned implicit connection, as shown in
Figure 1 (c). The proposed ChebGConv block can exchange
information according to the high-order structure relations
of nodes to attain a larger receptive field than the vanilla
graph convolutions [18].

We demonstrate the effectiveness of our method by con-
ducting comprehensive evaluation experiments and abla-
tion studies on standard 3D benchmarks. The experimen-
tal results show that the proposed network, Graph-oriented
Transformer (GraFormer) outperforms the state of the arts
on Human3.6M [15] with only 0.65M parameters. In par-
ticular, for the 2D ground truth inputs, we achieve 13 first-
place results out of 15 categories on Human3.6M. In addi-
tion, the superiority of GraFormer is also verified on Ob-
Man [12], FHAD [10], and GHD [27]. The proposed
GraFormer is task-independent and thus can be easily ap-
plied to other graph regression tasks.

The contribution of this paper can be summarized into
two aspects. First, we propose a new transformer archi-
tecture, called GraAttention block, for processing graph-
structured data. In the proposed GraAttentioin block, the
conventional multi-head attention computation is followed
by a graph convolution layer instead of MLP, which can

capture not only the global information from all the nodes
but also model the adjacency structure among nodes with
a learnable adjacency matrix. Second, we propose to use
the ChebGConv block to further model the implicit high-
order connection relations among nodes. By stacking the
GraAttentioin block and ChebGConv block, we construct a
novel network called GraFormer, which can simultaneously
model the explicit and implicit relationships between nodes,
enlarge the receptive field of node information transmission,
and effectively improve the performance of 2D-to-3D pose
estimation tasks.

2. Related works
2.1. 3D Pose Estimation

One-stage 3D pose estimation methods usually directly
estimate 3D pose using image features. Pavlakos et al. [28]
first predict the 3D heat map and then yield the 3D pose.
Mehta et al. [26] utilize transfer learning to produce multi-
modal data, which are fused to predict 3D pose. Tekin et
al. [34] utilize 3D YOLO model [29] combined with the
temporal information to predict the 3D pose of hands and
objects simultaneously. Li et al. [20] group and predict the
joint points in a multi-tasks manner.

Differently, multi-stage methods first adopt CNN net-
works to detect 2D joint coordinates, and then they are used
as inputs for 3D pose estimation. To yield 3D pose, Chen
et al. [3] propose to match 2D coordinates with a 3D pose
database. Based on 2D coordinates, Martinez et al. [25]
propose a simple and effective network architecture con-
sisting of linear layers, batch normalization, dropout, and
ReLU activation function to regress the 3D pose. Simon
et al. [31] propose a multi-view method that estimates 3D
hand pose by triangulating multiple 2D joint coordinates.
Hossain et al. [13] consider 2D coordinate information as a
sequence and utilize temporal information to predict the 3D
coordinates in a sequence manner.

2.2. Transformer-based Methods

Different from the conventional graph convolution [11,

] which aggregates the information of neighbors equally,
the GAT [36] method uses the self-attention to learn the
weight of each node to aggregate the information of neigh-
bors. The aGCN [40] method also learns the weights of
neighboring nodes through the self-attention mechanism
but it uses a different activation function and transforma-
tion matrix from GAT. Although the GAT and aGCN meth-
ods are effective, their receptive fields are still limited. To
attain the global receptive field, Zhao et al. [42] utilize the
non-local layer to learn the relationships between 2D joints.
Lin et al. [21] modify the standard transformer encoder and
adjust the dimension of encoder layers. However, such in-
teraction ignores the adjacency structure of nodes. Com-

20439



XN

Dim=96 Dim=3

ChebGConv
Layer

<
g 8 g
. = Q
O3  Dim=9% £ % o8
ez —— 23 gg
o — <@ @ @
< E <
o G} o
>
3 T e o £ 2
2 e.2 3 ] Sx =
— 2 =& = —>©——> z 3 S 2
o I
o =] o = )
> 5 a S s - &
& b= 3 <

[ |

Dropout
v

ChebGConv
Layer
RelLU

ChebGConv
Layer
RelLU

Figure 2. Framework of GraFormer. The core part is the stack of GraAttention block and ChebGConv block, which boosts performance
for 2D-to-3D pose estimation tasks by exploiting relations among 2D joints.

paratively, our method enlarges the receptive field through
self-attention and models graph structure by GCNs to effec-
tively improve the performance on 3D pose estimation.

2.3. GCN-based methods

Recently, some works in the 3D pose estimation task
[7,11,22,38,42] have achieved state-of-the-art results by
using graph convolutional networks. Zhao et al. [42] pro-
pose semantic graph convolution, which learns the weights
among neighbor joints. Non-local modules are used to en-
hance interaction among 2D joints. Doosti et al. [7] pro-
pose the modified graph pooling and unpooling operations
to make the up-sampling and down-sampling procedures
trainable for graph-structured data. Xu et al. [38] propose
the graph hourglass network and adopt the SE Block [14]
to fuse features extracted from different layers of the net-
work. In this paper, we use a new transformer architecture
by embedding graph convolution operations to improve the
3D pose estimation.

3. Method

As shown in Figure 2, the proposed GraFormer takes 2D
joint coordinates as inputs and predicts the 3D pose as a tar-
get. It is built by repeatedly stacking GraAttention blocks
and ChebGConv blocks. GraAttention blocks mainly con-
sist of two parts, i.e., the conventional multi-head attention
and two graph convolution layers with learnable adjacency
matrix (LAM-GConv), and the residual shortcut is added
for each of them. ChebGConv blocks mainly consist of two
Chebyshev graph convolutional layers, and also a residual
shortcut is added. More details are given in subsections 3.2,

3.1. Preliminaries

Multi-head self-attention and graph convolution lay-
ers are the fundamental building blocks of the proposed
GraFormer. Graph Convolution Networks (GCNs) have
the ability to handle graph-structured data. Formally, let
X! € R7*% denote the input of the I-th layer of a GCN,
which contains j nodes and each node corresponds to a d;-
dimensional representation vector. For example, the input
of GraFormer, X° € R7*2, is the 2D joint coordinates of
human bodies or hands. The output X'*! of the I/ GCN
layer can be computed by

Xl — g (D—%AD—%XI@) , (1)

where ¢ is the ReLU activation function, © € R%*di+1 de-
notes a learnable weight matrix, A € R7*J is the adjacency
matrix, A = A+ I; and D is the diagonal node degree ma-
trix, and I; is the identity matrix of order j. We make A
learnable for LAM-GConv in GraAttention block.

The gains achieved by transformer-based methods [21]
mainly come from integrating the global information from
a sequence. Concretely, let X! € R7*% denote the input
of the [-th multi-head attention layer, and it is first fed into
three fully connected layers parallelly to produce three out-
puts, i.e., query Q', key K' and value V! with the same
dimension of j x d. Then, the self-attention output Ylis
computed by

Q- KlT
T

where 7 is the softmax function on the row.

V=1 Wi, )
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3.2. GraAttention block

As illustrated in Figure 2, in the application of 3D pose
estimation of the human body, the pose of human body in
images is represented by sixteen 2D joint coordinates. After
they are first pre-processed by a ChebGConv layer, the cor-
responding output is fed into the architecture which is built
by repeatedly stacking GraAttention blocks and ChebG-
Conv blocks. Before it is processed by the multi-head self-
attention in GraAttention block, the input feature vectors
are first normalized by layer normalization (LN) [1], which
is commonly used in transformer models [35].

The multi-head self-attention block is inherited from the
transformer encoder layers [35]. Different from other appli-
cations of transformer in 3D pose estimation like [21], we
remove the MLP layer from the standard transformer since
we observe that the existence of MLP makes the system per-
formance degrade greatly. Then, the self-attention output is
processed by a dropout [32]. It should be noted that posi-
tional encoding is not used in our system. Although each
dimension of the output of the multi-head attention block
contains all 2D joint information, which is decided by the
characteristic of multi-head attention computation, spatial
topological relations among nodes are not encoded. Since
the standard transformer can only encode the linear topo-
logical relation, it is not consistent with the general graph
topology structure, so the removal of it aims to avoid the
introduction of noises for the following modeling of spatial
topological relation.

Finally, the output is normalized by the LN layer and fol-
lowed by a combination of two GCN layers and two ReLU
activation layers. In the GraAttention blocks, the GCN lay-
ers are added in order to encode the information of graph
topology structure. It should be noted that different from the
standard vanilla graph convolution layer, we make the ad-
jacency matrix to be learnable and it is shared by multiple
LAM-GConv layers so that the GCN layer becomes more
flexible to learn graph-structured data. We name the GCN
layer with a learnable adjacency matrix as LAM-GConv. At
the end, a dropout is added to make the system more ro-
bust. It can be seen that we propose a new transformer block
specific for processing graph-structured data, called GraAt-
tention block, which is a combination of multi-head self-
attention without position information encoding and GCN
layers. Both parts include a shortcut connection so as to
make the training easier, as shown in Figure 2.

3.3. ChebGConv block

Although we have utilized the vanilla graph convolu-
tion layer in the GraAttention block to model the non-linear
topological relation among nodes, it should be noted that the
topological relation is obtained by learning and is virtual,
since the adjacency matrix consists of learnable parameters.
Different from graph convolution layers in the GraAttention

block, those in ChebGConv blocks have the fixed adjacency
matrix, which truly encodes the objective topological rela-
tion among nodes. We aim to use ChebGConv blocks to
model the implicit high-order graph structure information.
For Chebyshev graph convolution layers [6], the normalized
graph Laplacian is computed by

L=1-D2AD 2, 3)

and Chebyshev graph convolution is defined as
K-1 }
xH =31 (L)Xlek, )
k=0

where T}, (z) = 22Ty —1 (x) —Tr—2 (z) denotes the Cheby-
shev polynomial of degree k, Ty = 1,7} = x, and L €
RJ *J denotes the rescaled Laplacian, L = 2L/Amax — I,
Amay iS the maximum eigenvalue of L. ), € R%*+1 de-
notes the trainable parameters in the graph convolutional
layer. Since the convolution kernel is a K-order polyno-
mial graph Laplacian, ChebGConv block is able to fuse
information among the K-hop neighbors of a joint, which
brings a larger receptive field. Our experimental results also
show that ChebGConv blocks indeed boost the system per-
formance. Though ChebGConv involves more expensive
computation than a vanilla GCN layer, its total computation
cost increases slightly since the size of the graph is small
with only 16 joints and the topological structure is very sim-
ple.

3.4. Training

To train the GraFormer, we apply a loss function to the
final output to minimize the error between the 3D predic-

tions and ground truth. Given dataset S = {J??, J3? éV:l,
where J2¢ € R7*2 is 2D coordinates of joints of human
bodies or hands, 7 = 16 for the human datasets and 21 for
the hand datasets, and Jf’d € R7*3 is the 3D ground truth
coordinates. N denotes the total number of training exam-
ples.

We use the mean squared errors (MSE) as the loss be-

tween 3D predictions and ground truth coordinates, i.e.,

1 N
Lmse: N; (’

where J3¢ € R7*3 denotes the predicted 3D coordinates,
[|-]], is the 2-norm of the vector.

- 2
Forf)

4. Experiments

In this section, we first introduce the experimental de-
tails and training settings. Next, we compare GraFormer
with other state-of-the-art methods and analyze the results.
Finally, we conduct ablation studies to verify the effective-
ness of GraFormer.
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Methods | Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. ‘ Avg.
Pavlakos [28] CVPR17 | 67.4 71.9 66.7 69.1 72.0 770 650 683 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Metha [26] 3DV17 52.6 64.1 55.2 62.2 71.6 79.5 52.8 68.6 91.8 118.4 65.7 63.5 49.4 76.4 535 68.6
Zhou [44] ICCV 17 54.8 60.7 58.2 71.4 62.0 655 538 556 752 111.6 64.1 66.0 51.4 63.2 553 64.9
Martinez [25] ICCV17 51.8 56.2 58.1 59.0 69.5 78.4 552 58.1 74.0 94.6 62.3 59.1 65.1 49.5 524 62.9
Sun [33] ICCV17 52.8 54.8 54.2 54.3 61.8 531 536 717 86.7 61.5 672 534 47.1 61.6 53.4 59.1
Fang [8] AAATIS8 50.1 54.3 57.0 57.1 66.6 73.3 534 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Yang [41] CVPR18 51.5 58.9 50.4 57.0 62.1 654 498 527 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Hossain [13] ECCV18 48.4 50.7 57.2 552 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 583
Zhao [42] CVPR19 48.2 60.8 51.8 64.0 64.6 536 51.1 67.4 88.7 57.7 732 656 48.9 64.8 51.9 60.8
Ci [5]1ICCV19 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 433 52.7
Liu [22] ECCV20 46.3 52.2 473 50.7 55.5 67.1 492  46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu [38] CVPR21 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 514 48.6 53.9 39.9 44.1 51.9
Ours | 452 50.8 48.0 50.0 54.9 650 482 47.1 60.2 70.0 51.6 487 54.1 39.7 43.1 | 51.8
Martinez [25] (GT) 37.7 44.4 40.3 42.1 48.2 549 444 421 54.6 58.0 45.1 46.4 47.6 36.4 40.4 455
Hossain [13] (GT) 352 40.8 37.2 37.4 43.2 44.0 38.9 35.6 423 44.6 39.7 39.7 40.2 32.8 355 39.2
Zhao [42] (GT) 37.8 49.4 37.6 40.9 45.1 414  40.1 483 50.1 42.2 535 443 40.5 473 39.0 43.8
Liu [22] (GT) 36.8 40.3 33.0 36.3 37.5 45.0 39.7 349 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Xu [38] (GT) 35.8 38.1 31.0 353 35.8 432 373 317 38.4 455 35.4 36.7 36.8 27.9 30.7 35.8
Ours (GT) | 320 38.0 304 344 34.7 433 352 314 38.0 46.2 342 357 36.1 274 30.6 | 352

Table 1. Quantitative evaluation results using MPJPE in millimeter on Human3.6M [

4.1. Experimental Details

Dataset We use 3 popular hand datasets, including Ob-
Man [12], FHAD [10], GHD [27], and 1 human pose
dataset Human3.6M [15] to evaluate the GraFormer.

ObMan is a large synthetic dataset of hand-object inter-
action scenarios. The hands are generated from MANO [30]
and the objects are selected from the Shapenet [2] dataset.
The ObMan dataset contains 141,550 training samples and
6,285 evaluation samples. Each sample contains an RGB
image, a depth image, a 3D mesh of the hand and object,
and 3D coordinates for the hand.

FHAD [10] contains videos of manipulating different
objects from the first-person perspective. There are a total
of 21,501 frames of images, where 11,019 frames are used
for training and 10,482 frames for testing.

GHD [27] contains 143,449 images without objects, and
188,050 images with objects. The no object part of the
dataset consists of 141 sets of images, each containing 1024
images, except the last set. We use the first 130 sets for
training and the last 11 sets for testing.

Human3.6M [15] is the most widely used dataset in the
3D human pose estimation task. It provides 3.6M accurate
3D poses captured by the MoCap system in the indoor envi-
ronment. It contains 15 actions performed by seven actors
taken by four cameras. There are two common evaluation
protocols for splitting training and testing set in previous
methods [22,25,38,42]. The first protocol uses subjects S1,
S5, S6, S7, and S8 for training, and S9 and S11 for testing.
Errors are calculated after the ground truth and predictions
are aligned with the root joints. The second protocol uses
subjects S1, S5, S6, S7, S8, and S9 for training, and S11
for testing. We conduct experiments using the first proto-
col. In this way, there are 1,559,752 frames for training,
and 543,344 frames for testing.

]. Best in bold.

Evaluation Metric We follow the same evaluation met-
ric as [42]. The evaluation metric is the Mean Per Joint
Position Error (MPJPE) in millimeters, which is calculated
between the ground truth and the predicted 3D coordinates
across all cameras and joints after aligning the predefined
root joints (the pelvis joint).

Training Settings For the three hand datasets ObMan,
FHAD and GHD, we directly take 2D image coordinates
and 3D camera coordinates as the inputs and ground truth.
The 2D coordinates and 3D ground truth provided by Ob-
Man can be used by simply converting the ground truth
from meter to millimeter. The 3D ground truth provided by
FHAD are world coordinates, and we use the extrinsic ma-
trix to calculate the corresponding camera coordinates. The
3D ground truths of GHD are already the camera coordinate
system, and the 2D coordinates need to be cropped, scaled
and restored. We use the hand coordinates as input but ob-
ject coordinates for all hand datasets. For Human3.6M, be-
cause of the multiple camera views, it needs to be normal-
ized according to [42] before training and evaluation.

In our experiment, we set the number of N in Figure 2
to 5 and adopt 4 heads for self-attention. Different from
the feature dimension value of 64 or 128 in previous works
[38,42], we set the middle feature dimension of the model
to 96 for GraFormer with a dropout rate of 0.25. We
adopt Adam [!7] optimizer for optimization with an ini-
tial learning rate of 0.001 and mini-batches of 64. For Hu-
man3.6M, we multiply the learning rate by 0.9 every 75000
steps. For hand datasets, the learning rate decays by 0.9
every 30 epochs. We train GraFormer for 100 epochs on
Human3.6M, 900 epochs on Obman and GHD and 3000
epochs on FHAD.
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4.2. Performance and Comparison

In this section, we evaluate the GraFormer on several
popular datasets and analyze the performances compared
with other state-of-the-art methods.

Performance on Human Pose Dataset The results of
previous works on Human3.6M can be categorized into
two groups as shown in Table 1. The top group meth-
ods take images as inputs and then yield 3D poses using
the learned features. In our method, we adopt 2D coordi-
nates detected by Cascaded Pyramid Network (CPN) [4].
In the bottom group, we compare GraFormer with the most
advanced methods using the same 2D inputs. The results
show that GraFormer surpasses all the methods, which in-
dicates the superiority of our method. The bottom group
methods take 2D ground truth as inputs to predict 3D pose
coordinates directly. Compared with the previous methods,
GraFormer achieves the best performance which indicates
the effectiveness of our method. In particular, GraFormer
obviously improves scores in direction, eating, greet, phone,
pose, smoke, and wait with only 0.65M parameters (18%
of [38]). Interestingly, we find that these actions have a
large range of motions (the average distance between adja-
cent joints is 55.25 pixels), which implies longer distances
among 2D joints than the actions of Photo and SittingD (the
average distance between adjacent joints is 49.89 pixels).
This means GraFormer has a more powerful capability to
capture information of 2D joints with a larger range of mo-
tions.

Performance on Hand Datasets We verify GraFormer
on hand datasets via comparing with Linear model [25],
Graph U-Net [7] and SemGCN [42] since all of these meth-
ods regress 3D pose results by taking 2D ground truth coor-
dinates as inputs. The difference between human pose data
and hand data is the number of joints and skeleton structure.

The results on three hand datasets are shown in Table 2.
Results show that GraFormer achieves the best performance
on ObMan and GHD. In particular, GraFormer surpasses
other methods by a large margin on GHD. We note that
small datasets are not friendly to self-attention. Even so,
GraFormer still beats the Linear model and Graph U-Net on
the extremely small dataset FHAD. Note that for the hand
data set, we use SemGConv [42] to replace ChebGConv [6]
in GraFormer, since SemGConv is easier to train on small
datasets

Generalization Ability To evaluate the generalization ca-
pabilities of our model, we use our model trained on Hu-
man3.6M and evaluate on the test set of MPI-INF-3DHP
[26]. The test set of MPI-INF-3DHP includes 3 set-
tings, studio with green screen(GS), studio without green

Methods | ObMan FHAD GHD | Methods | ObMan FHAD GHD
Martinez [25] | 23.64  26.15  39.25 | Zhao [42] | 2.34 849  13.1
Doosti [7] 7.63 1382 845 | Ours 171 1042 220

Table 2. MPIJPE (mm) results compared with Linear model,
SemGCN and Graph U-Net on three hand datasets, ObMan,
FHAD and GHD.

screen(noGS) and outdoors. We use the same metric as
[26], including 3D Percentage of Correct Keypoints (3D
PCK) and the Area Under the Curve (AUC). Although the
GraAttention is sensitive to values, our method still out-
performs most state-of-the-art methods on MPI-INF-3DHP
while only using Human3.6M for training. The related re-
sults are shown in Table 3.

. PCK AUC
Methods Training Date GS [10GS | Outdoor | Avg | ATl
Martinez [25] H36M 49.8 | 425 31.2 4251 17.0
Mehta [26] H36M 70.8 | 623 58.8 64.7 | 31.7
Yang [41] H36M+MPII - - - 69.0 | 32.0
Zhou [44] H36M+MPII | 71.1 | 64.7 72.7 69.2 | 325
Luo [24] H36M 713 | 594 65.7 65.6 | 332
Ci [5] H36M 74.8 | 70.8 773 74.0 | 36.7
Zhou [43] H36M+MPII | 75.6 | 71.3 80.3 75.3 | 38.0
Xu [38] H36M 81.5 | 81.7 75.2 80.1 | 45.8
ours H36M 80.1 | 77.9 74.1 79.0 | 43.8

Table 3. Results on MPI-INF-3DHP test set.

Runtime On an Nvidia RTX2080Ti GPU, the inference
of a single batch with size 64 requires just 0.015 seconds.

Methods | Params  MPJPE(mm) | Methods | Params  MPJPE(mm)
GAT [36] 0.16M 82.9 FC [25] 4.29M 455
ST-GCN [39] 0.27M 574 Pre-agg [22] | 4.22M 37.8
SemGCN [42] | 0.43M 438 GraphSH [38] | 3.70M 358
GraFormer-small | 0.12M 389 | GraFormer | 0.65M 352

Table 4. Results on Human3.6M dataset under different parameter
configurations.

4.3. Ablation Study

Discussion on model parameters We start the ablation
experiments by comparing GraFormers with different pa-
rameter configurations to other methods on the Human3.6M
dataset, and the results are released in Table 4. We report
the results of our models of two configurations to show that
our method can achieve better results with fewer parame-
ters than other methods. GraFormer-small has only 2 layers,
and the feature dimension is 64 with a dropout rate of 0.1.
GraFormer has 5 layers, and the feature dimension is set to
96 with a dropout rate of 0.25. The GraFormer achieves bet-
ter results with even much fewer parameters than GraphSH,
etc. The lightweight version, GraFormer-small, with 72%
fewer parameters than SemGCN, beats SemGCN by 4.9.
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Figure 3. Visualization of the learned adjacency matrices of different LAM-GConv layers in the GraAttention.
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Figure 4. Quantitatively compare our method with SemGCN on different actions of Human3.6M [15]. The 3D ground truth and 3D

predictions are shown in black and color, respectively.

It should be noted that in the top group of Table 1, we
set N to 6, model dimension to 128, and dropout rate to
0.45. However, even so, GraFormer has only 37% as many
parameters as GraphSH [38].

Effects of GraFormer Modules Next, we test
GraFormer modules on Human3.6M [15], ObMan [12],
and FHAD [10]. We design 5 models by removing or
replacing GraFormer’s modules to test the effects of our
method. All parameters are the same for the 5 models if not
particularly indicated. Specifically, Model-T is formed by
replacing the stack of GraAttention and ChebGConv block
with transformer encoders. Model-C removes GraAttention
from GraFormer. Model-M replaces GraAttention with
self-attention. Model-AT removes the ChebGConv from
GraFormer. And model-AM reserves MLP compared to
GraFormer. The results are shown in Table 5.

Models | Human3.6M ObMan FHAD
model-T 51.76 15.54 20.14
model-C 47.81 8.51 16.30
model-M 42.19 5.02 13.52
model-AT 37.78 7.29 14.39
model-AM 42.44 3.46 13.49
GraFormer 35.17 3.29 11.68

Table 5. MPJPE (mm) results on Human3.6M, ObMan and FHAD
by removing or replacing GraFormer’s modules.

From the results of model-T, we can find that the trans-
former is poor for 2D-to-3D pose estimation. This is
because the transformer ignores graph structure informa-
tion. The results of model-C and model-M are worse than
GraFromer, which shows that GraAttention is necessary and
more effective than self-attention. The loss of ChebGConv
block in model-AT brings worse performance, which indi-
cates the effectiveness of ChebGConv block. The perfor-
mance also degrades when the MLP layer is plugged after
self-attention in GraAttention, which verifies that the MLP
layer impedes the learning of 3D poses actually. Figure 6
shows the test errors of model-AM and GraFormer. We find
that the test error of model-AM is almost unchanged at 250
epochs while the test error of GraFomer still decreases until
below 12mm. This reconfirms that the MLP layer degrades
transformer in the 2D-to-3D pose estimation.

Comparison of different graph convolutional layers In
Table 6, we show the results of Graformer on Human3.6M
using Chebyshev graph convolution [0] or semantic graph
convolution [42]. The ChebGConv contains a vital param-
eter, the order of the graph Laplacian polynomial, we show
the results for orders 1, 2, and 3.

Visualization Figure 3 shows the visualization results
of learned adjacency matrices of LAM-GConv layers of
GraAttention block. In Figure 3(a), the color of some 3x3
regions is obviously brighter than other regions, which in-
dicates that interaction among these joints takes greater
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Figure 5. Skeleton results predicted by GraFormer on Human3.6M [15], ObMan [12], FHAD [10], and GHD [27].

| chebk=1 chebk=2 chebk=3 | SemGConv
dim 64 39.04 36.19 39.31 38.53
dim 96 37.77 35.17 38.13 38.56

Table 6. MPJPE (mm) results on Human3.6M using different
graph convolutional layers.

model-AM

GraFormer

MPIPE(mm)

0 500 1000 1500 2000
Epochs

Figure 6. Test errors of model-AM and GraFormer on FHAD.

weights and these joints are closely connected. Interest-
ingly, we note that joints 2-4, 5-7, 11-13 and 14-16 are
four limbs of the human, which are activated in 3 x 3 re-
gions. This implies that the relations of joints on a limb are
strongly connected, and the GraFormer is able to find these
relations effectively. The regions of Figure 3 (b) to (d) be-
come larger, which shows that GraFormer finds long-range
relationships in these layers. The Figure 3(e) illustrates that
the interaction regions become much smaller, which implies
that joints mainly retain their own information, and a little
information interacts among joints.

Figure 4 shows the results of a quantitative comparison
of our method with SemGCN [42] over three actions, sit-
ting, smoking, and eating, which have a large range of mo-
tions. The results show that our method can significantly
improve the performance on some types of actions.

In Figure 5, we show the predicted 3D body results on
Human3.6M [15](columns 1-2) and hand results on Ob-
Man [12](columns 3-4), FHAD [10] (columns 5-6) and
GHD [27] (columns 7-8). The images in columns 1, 3, 5,
and 7 are skeleton figures drawn using 2D ground truth. In
columns 2, 4, 6, and 8, the colored skeletons are drawn us-
ing the 3D predictions, and the black skeletons are drawn
using the 3D ground truth. We can find that our method is

o e oo

oc‘&".-'»c ﬁ/”o.q“;‘(ﬁo

,\\

e

Figure 7. Visualization of graph Laplacian of ChebGConv.

0‘.

able to estimate the 3D poses accurately using 2D coordi-
nates. It shows that our method could effectively learn 3D
poses by exploiting the relationship among 2D joints.

Figure 7 is a visualization of graph Laplacian of different
orders of Chebyshev graph convolution. The top row shows
the schematic diagrams of joint information aggregation ac-
cording to the bottom row. The width of the line implies
the weights between 2D joints. The bottom row shows the
visualization of the corresponding Laplacian matrix with
0-order (a), 1-order (b) and 2-order (c) respectively. It is
easy to find that the bigger orders matrix activates more 2D
joints, which implies that bigger orders of the Laplacian ma-
trix have the capability to find more implicit relations.

5. Conclusions

In this paper, we present a new graph-oriented trans-
former network GraFormer and apply it to 2D-to-3D pose
estimation task. In the proposed GraFormer, two function
blocks (GraAttention block and ChebGConv blocks) are
presented and the stacking of them makes the GraFormer
can not only fuse the information of all the nodes but
also model the implicit and explicit topological structure.
Extensive experiments have been conducted on the pop-
ular benchmarks and the results show that the proposed
GraFormer achieves the state-of-the-art performances but
contains much fewer model parameters.
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