
Modeling Motion with Multi-Modal Features for Text-Based Video Segmentation

Wangbo Zhao1,2,3 Kai Wang1 Xiangxiang Chu2 Fuzhao Xue1 Xinchao Wang1 Yang You1*

1 National University of Singapore 2 Meituan Inc. 3 Northwestern Polytechnical University
wangbo.zhao96@gmail.com, kai.wang@comp.nus.edu.sg, chuxiangxiang@meituan.com,

f.xue@u.nus.edu, xinchao@nus.edu.sg, youy@comp.nus.edu.sg

Abstract

Text-based video segmentation aims to segment the tar-
get object in a video based on a describing sentence. Incor-
porating motion information from optical flow maps with
appearance and linguistic modalities is crucial yet has been
largely ignored by previous work. In this paper, we design a
method to fuse and align appearance, motion, and linguistic
features to achieve accurate segmentation. Specifically, we
propose a multi-modal video transformer, which can fuse
and aggregate multi-modal and temporal features between
frames. Furthermore, we design a language-guided feature
fusion module to progressively fuse appearance and motion
features in each feature level with guidance from linguistic
features. Finally, a multi-modal alignment loss is proposed
to alleviate the semantic gap between features from different
modalities. Extensive experiments on A2D Sentences and
J-HMDB Sentences verify the performance and the gener-
alization ability of our method compared to the state-of-the-
art methods.

1. Introduction
Text-based video segmentation aims at locating and seg-

menting the object described by a language sentence in a
video sequence. Unlike traditional tasks, which do predic-
tion on video- or frame- level, e.g. text-to-video retrieval
[27, 40, 52], video caption [32, 62], video question an-
swering [22, 51], and language-queried video localization
[1, 60], this task requires relatively more fine-grained multi-
modal and temporal understanding for pixel-level segmen-
tation. The challenge of this task can be thus summarized
as: (1) how to reason between visual and linguistic modali-
ties to locate the target object, and (2) how to leverage tem-
poral information to enhance segmentation.

To solve the former problem, previous works adopt sim-
ple concatenation [18], generating dynamic filters [16, 48]
and cross-modal attention modules [21, 49] to achieve in-
teractions between two modalities. When it comes to the
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Figure 1. Comparison between baseline and our model. We adopt
”B” in 4.4 as the baseline model. Compared with the baseline
model, our model can incorporate motion information from optical
flow maps with appearance and linguistic features and generate
better segmentation masks.

latter problem, they usually adopt 3D convolution neural
networks (3D CNNs) e.g. I3D [8] to extract features from a
video clip. However, all these methods ignore exploring the
explicit motion information between frames for text-based
video segmentation. In this task, the target object usually
has action, and the corresponding text contains some words
to describe its motion e.g. driving and jumping in Figure 1.
This means that the motion information may help the model
to find the target object. Despite the fact that some motion
information between frames can be implicitly learned in 3D
CNNs, it can not well interact with other modalities. In-
troducing motion information has been tried in some video
tasks [9, 15, 24, 30, 53, 61, 63], but how to incorporate the
motion information with appearance and linguistic features
in text-based video segmentation is still challenging.

A common way to introduce explicit motion informa-
tion is to extract features from flow maps generated from
an optical flow estimation model. From flow maps in Fig-
ure 1, we can find that the target object with motion usu-
ally is distinctive and can be easily identified. This may
promote the final performance. To leverage the motion in-
formation from optical flow, Gavrilyuk et al. [16] adopt two
3D CNNS with different parameters to generate masks from
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RGB frames and optical flow maps, respectively, then com-
pute weighted averaged masks from them. However, such a
simple fusion strategy ignores the interaction between mo-
tion modalities and appearance and linguistic features, lead-
ing to unsatisfactory improvement and huge computational
overhead. Hence, designing a model to effectively incorpo-
rate the motion information from the optical flow with ap-
pearance features from RGB frames and linguistic features
is necessary.

Motivated by observations above, we propose our multi-
modal fusion and alignment network. First, since many
previous works [3, 6, 9, 19] have demonstrated the supe-
riority of transformers in reasoning and fusing multi-modal
and temporal features, we build a multi-modal video trans-
former (MMVT) to model the interaction between appear-
ance, motion, and linguistic features in different frames.
Our transformer contains two attention modules in each
layer: cross-modal attention and temporal attention. The
former aims at fusing three modalities features, while the
latter is adopted to aggregate fused features in the temporal
dimension. By stacking them several layers, multi-modal
information can flow and interact with each other between
different frames. Benefiting from the multi-modal interac-
tion between frames in MMVT, we do not rely on 3D CNNs
to extract temporal information, which largely reduce the
computational overhead.

Then, to fuse multi-modal features progressively, we
propose the language-guided feature fusion (LGFF) module
and insert it into each level to decode features. In each mod-
ule, useful appearance and motion features will be selected
by the linguistic feature, with the help of features from the
higher level. By doing this, useful features can be gradually
selected and fused. Moreover, since both appearance, mo-
tion, and language features are distinctive modalities fea-
tures, which are generated from backbones separately pre-
trained on different datasets, the semantic gap between them
would be large [20]. To alleviate this problem, we design
a multi-modal alignment loss, which explicitly encourages
the network to learn to align three modalities features in an
embedding space, which further improves the performance
of our model.

In Figure 1, compared with the baseline model without
motion information, our model can accurately locate the tar-
get object, obtain a more complete mask, and distinguish
the target object from others. Our main contributions can
be summarised as:

• To the best of our knowledge, we are the first to incor-
porate the motion information from optical flow maps
with appearance and linguistic features for text-based
video segmentation.

• We propose a transformer-based model to fuse multi-
modal and temporal features and design a language-
guided feature fusion module to progressively fuse

multi-modal features from different feature levels.

• Noticing the semantic gap between different modal
features, we propose a multi-modal alignment loss to
explicitly align features from three different modali-
ties, which further improve the performance of our
method.

• Extensive experiments are conducted to verify the ef-
fectiveness of proposed methods. Our approach sig-
nificantly surpasses existing state-of-the-art methods
on most metrics on A2D Sentences and J-HMDB Sen-
tences dataset with less computational overhead.

2. Related Work
Text-Based Image Segmentation Text-based image seg-
mentation aims to segment the object in an image given a
text describing its properties e.g. appearance and location.
Hu et al. [18] are the first to propose this task, and they
adopt the fully convolutional network to fuse extracted vi-
sual and linguistic features directly. Liu et al. [34] propose a
multi-modal LSTM to force the word-visual interaction. Ye
et al. [56] design a self-attention module to capture long-
range relationships between two modalities. Luo et al. [37]
propose a model to achieve joint learning of locating and
segmentation since these two tasks can reinforce each other.
Jing et al. [25] decouple this task into locating the target
object position and accurately generating the segmentation
mask. Yang et al. [54] represents the expression as a lan-
guage graph and performs explainable visual reasoning to
distinguish the target object from others. Ding et al. [13] in-
troduce the encoder-decoder attention mechanism in trans-
former [46] and view the language expression as queries.

Unlike these works for images, which only need to focus
on fusing features from the static RGB image and the lan-
guage expression, we conduct multi-modal fusion between
the RGB image, flow map, and text. In addition, we also
consider the temporal information between adjacent frames.
Text-Based Video Segmentation For promoting compre-
hensive action understanding, Xu et al. [50] release a
dataset named Actor-Action Dataset (A2D) containing a
fixed vocabulary of actor and action pairs and pixel-level
annotations. After that, Gavrilyuk et al. [16] further ex-
tend this dataset and propose text-based video segmenta-
tion. They generate dynamic filters from extracted text fea-
tures and adopt them to convolve with vision features to ob-
tain the final pixel-wise segmentation. They also try to aver-
age the masks from an optical flow map and an RGB frame
to improve the performance further. Wang et al. [49] pro-
pose a cross-guided attention mechanism, where features
from frames and the text can guide and promote each other.
This design can reduce linguistic variation and incorporate
query-focused visual features. Mcintosh et al. [38] propose
a capsule-based network to encode and merge visual and
textual features jointly. Wang et al. [48] introduce the idea
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of deformable convolution [11] into generating dynamic fil-
ters to address geometric deformation. Ning et al. [39] pro-
pose a polar positional encoding mechanism to measure the
spatial relations in terms of direction and range, which is
similar to natural language descriptions. Hui et al. [21]
adopt 3D and 2D encoders to recognize the queried actions
and accurately segment target object, respectively.

Different from [16], which ignores the interaction be-
tween motion information and other modalities, the motion
information can be well fused and interact with appearance
and linguistic features in our MMVT and LGFF.
Vision-Language Learning Tasks Owing to the develop-
ment of NLP and CV tasks, more and more researchers are
starting to explore the image-language, and video-language
tasks [2, 28, 44, 47]. The latter is more related to our task
since it requires exploring the information in the tempo-
ral dimension. Many attempts [29, 31, 42, 43] have been
done on video-language following a pretraining then fine-
tuning manner. They first adopt some proxy tasks to train
the model in an self-supervised manner, categorized into
completion, matching and ordering. Then, the well-learned
representations should be transferred to downstream tasks,
e.g. text-based video retrieval [58], action step localization
[65], video question answering [44]. More details about
vision-language learning tasks can be found in the survey
[41].

Tasks mentioned above usually make video-level or
frames-level prediction and do not require fine-grained fea-
tures. In contrast, text-based video segmentation requires to
predict on pixel-level. So pre-trained video-language mod-
els can not be directly applied to our task.
Vision Transformer Vaswani et al. [46] first propose the
transformer, which shows its predominance in many Nat-
ual Language Processing (NLP) tasks. The main compo-
nent of transformers is the self-attention mechanism, which
can model long-range dependencies in the data. Com-
puter vision community views this advantage and attempt
to design transformer-based models for image classification
[14, 36, 55, 57, 59], object detection [7, 64] and video un-
derstanding [3, 6]. Transformers have also been introduced
into some multi-modal tasks. Hu et al. [19] propose a uni-
fied transformer model jointly trained on multiple tasks, in-
cluding not only vision-only and language-only tasks but
also vision-and-language reasoning. Chen et al. [9] adopt
a multi-modal video transformer to collaboratively fuse ap-
pearance, motion and audio features for video action recog-
nition. Liu et al. [35] adopt two transformers to extract ap-
pearance and depth information for saliency detection.

In this paper, we propose a transformer-based module
that contains cross-modal attention and temporal attention.
The former incorporates motion modalities with appearance
and linguistic features, and the latter focuses on aggregating
temporal information.

3. Method
The overall architecture of the proposed method is

shown in Figure 2. For a video sequence, we have T frames,
their corresponding flow maps, and the text, which describe
the target object and its action. First, we adopt three en-
coders to extract appearance, motion, and language fea-
tures, respectively. Then, the extracted three kinds of high-
level features will be concatenated together and input into
our multi-modal video transformer (MMVT) to fuse cross-
modal features and build temporal relationships between
frames. In the decoder, appearance and motion features
from different levels will be progressively fused with lan-
guage features in our language-guided feature fusion mod-
ule (LGFF) and predict the final segmentation mask. Dur-
ing training, a multi-modal alignment loss is added to align
features from different modalities. In the following paper,
we will first simply introduce features extraction encoders
in Section 3.1, then illustrate detailedly the proposed MMT,
LGFF, MMAL in Section 3.2, 3.3, and 3.4, respectively.
3.1. Encoders

We adopt two visual backbones for a video clip with
its flow maps to extract the multi-level appearance fea-
tures Ai ∈ RT×Ci

A×H
i×W i

and motion features Mi ∈
RT×Ci

M×H
i×W i

, where i ∈ [1, 4] denotes the ith stage
from the backbone. Following [5], we leverage the bidi-
rectional transformer model BERT [12] as the linguistic en-
coder to extract linguistic features. Specifically, we first to-
kenize the text and add the [CLS] and [SEP] tokens at the
beginning and end of the tokenized sequence. Then we feed
the tokens sequence into BERT and obtain the token repre-
sentations as linguistic feature L ∈ RL×CL .

We adopt a 1D convolution layer for the linguistic fea-
ture to reduce its channel dimension to C, obtaining zL ∈
RL×C . For the high-level appearance feature A4 and mo-
tion feature M4, we first respectively concatenate an 8-
dimensional coordinate feature PC4 ∈ R8×H4×W 4

with
them like [49] to encode the spatial location information.
Then, two ASPP modules [10] are adopted to unify their
channel dimensions toC, respectively. Finally, two features
are flattened and reshaped, resulting zA ∈ RT×H4W 4×C

and zM ∈ RT×H4W 4×C , respectively.
3.2. Multi-Modal Video Transformer

As discussed in Section 1, to explore the rich multi-
modal interaction and leverage temporal information in dif-
ferent frames, we propose our Multi-Modal Video Trans-
former (MMVT). From Figure 2, each layer of our MMVT
contains three components: cross-modal attention (CMA),
temporal attention (TA), and MLP. The multi-layer percep-
tron block (MLP) is a common component in transformers
e.g. [14, 46] and we do not talk about it here.

In our cross-modal attention module, we aim to pro-
mote the interaction between different modalities in a sin-
gle frame. Based on this, we first concatenate high-level
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Figure 2. Overview of the proposed model. MMVT: Multi-modal video transformer. CMA: Cross-modal attention. TA: Temporal attention.
LGFF: Language-guided feature fusion. ”B+M” is the baseline model with motion information, details about which can be found in 4.4.
Here, we do not show the multi-modal alignment loss for simplification.

features from three modalities and obtain feature z ∈
RT×(2HW+L)×C . Here, we omit the superscript of H and
W for simplification. These can be formulated as:

z = Cat(zA, zM, zL). (1)

We omit the broadcast operation along the temporal di-
mension for zL here. Then, we pass it through a layer nor-
malization (LN) [4] and we input z into the multi-head self
attention (MSA) [46]. Note that, a residual connection is
added here to improve robustness. Formally, this can be
defined as:

z′ =MSA(LN(z)) + z. (2)

This process acts along the temporal dimension so that
multi-model features in every frame can be well fused.

In our temporal attention module, the fused multi-
modal features from different frames can interact with each
other. First, we chunk z′ into z′A ∈ RT×HW×C , z′M ∈
RT×HW×C , z′L ∈ RT×L×C . Here, z′A can be considered
as the appearance feature that has been enhanced by other
modal features. To reduce the computational complexity,
we only build the temporal relationships for z′A. Before
feeding into MSA, we first flatten z′A into RTHW×C , so
that the information in temporal dimension can participate
in the interaction. Then it can be formulated as follow:

z′′A =MSA(LN(z′A)) + z′A (3)

After that, z′′A is reshaped back to RT×HW×C .
By doing the process above, the information contained in

a frame can flow to other frames. After that, we concatenate
the feature z′′A, which has been enhanced by other frames,
with z′M and z′L, resulting in z′′. Finally, we adopt the MLP
to increase nonlinearity. These can be formulated as:

z′′ = Cat(z′′A, z
′
M, z

′
L), (4)

Flow Image&GT

(a)

(b)

C

up
conv

C

conv
C conv

(c)

Figure 3. (a) Language-Guided Feature Fusion Module. ”up”:
Upsample operation. PCi: Coordinate feature for ith level. ”C”:
Concatenation operation. �: Element-wise Multiplication. ⊕:
Element-wise Addition. (b)(c) We visualize the feature map g1EM,
g1EA and f1.

z′′′ =MLP (z′′) + z′′. (5)
Since z′A already contains information from other

modalities, the multi-modal information can exchange and
fuse between frames via the interaction of z′A in the tem-
poral attention module. Note that, these are all processes
in one layer of MMVT. By stacking them for several lay-
ers, multi-modal features from different frames can be well
fused and aggregated. Here, we set the number of layers to
four by default.

3.3. Language-Guided Feature Fusion Module
Our language-guided feature fusion module (LGFF)

aims at progressively fusing multi-modal features from dif-
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ferent feature levels. As illustrated in Figure 3 (a), we first
adopt two 1 × 1 convolution layers to reduce the channel
number of appearance feature f iA and motion feature f iM
to C. Then, each feature will be concatenated with the
feature from the previous LGFF module f i+1 and the 8-
dimensional coordinate feature, followed by a 3× 3 convo-
lution layer to fuse them. The feature f i+1 contains higher-
level and semantically stronger information, while the coor-
dinate feature can provide spatial location information.

Then, we need to emphasize the important region in
the feature map with the guidance from linguistic features.
Since [CLS] token in L has aggregated the representation
of the whole sentence [12], we multiply it with two fused
features, and obtain the enhanced appearance and motion
feature, respectively. We can formulate this process as:

f iEA = fL � Conv3([PCi, Up(f i+1), f iA]), (6)

f iEM = fL � Conv3([PCi, Up(f i+1), f iM]). (7)

Here,� denotes element-wise multiplication. fL represents
the [CLS] token in linguistic features L. Through this pro-
cess, the region related to the text in the feature will be se-
lected and emphasized.

Since appearance usually contains more information
than motion features, we adopt f iEA to generate two spatial-
attention maps attA and attM through a 1× 1 convolution
layer followed by a sigmoid function to further emphasize
the target region. Note that two convolution layers here do
not share parameters. The residual connect is adopted here
to avoid losing some meaningful information.

giEA = attA � f iEA + f iEA, (8)

giEM = attM � f iEM + f iEM, (9)

where giEA and giEM are two obtained features.
Finally, they are concatenated together and further fused

with two 3 × 3 convolution layers with the ReLU func-
tion, resulting in f i. We insert three LGFF modules into
our network as the decoder, hence i ∈ [1, 3]. Note that
we adopt z′′′A as the feature from the highest level f4 in
the first LGFF module since it has been enhanced by other
modalities and temporal information from different frames
in MMVT. From Figure 3 (b)(c), we can find that, no matter
whether the flow map can highlight the target object or not,
giEM can distinguish the target object from other regions
and incorporate well with giEA to generate the final output
feature f1.

3.4. Multi-modal Alignment Loss
Although our model has achieved good performance

with the two modules above, we notice that there may ex-
ist some semantic gap between the three modalities features
since they are extracted from encoders that are pre-trained
on different source data [20]. Based on this, we propose our

a black dog is walking with its 
friend on the snow

Appearance feature

Motion feature

Linguistic feature

ground-truth mask

Figure 4. We adopt the ground-truth mask to distinguish the fea-
tures that belong to the foreground or the background in appear-
ance featuresfA and motion feature fM.

multi-modal alignment loss so that three modalities features
can be explicitly aligned.

Specifically, we consider that the features belonging to
the target object from appearance features are foreground
features, and other features are background features. For
motion features, it can also be categorized into the fore-
ground and background features. Then, the feature align-
ment rules are defined as (1) the linguistic features should
be close to foreground features from both appearance and
motion features in embedding space, while far away from
background features. (2) Appearance and motion features
from the same category should be close to each other, mean-
while far away from other category features. Since the
multi-modal alignment loss is defined per frame, we do not
need to consider the temporal dimension here.

First, for each frame, we obtain a whole representation of
appearance feature FA by upsampling f2EA, f3EA and con-
catenating them with f1EA together. FM is obtained in the
same way. Here we also adopt the [CLS] token FL in L
as the whole representation of the text. We employ three
MLP functions to transform FA, FM, and FL into the same
embedding space with the same channel numbers c.

Now, we need to distinguish the feature belongs to the
target object from other features in FA and FM. This can
be easily realized by leveraging the ground-truth mask. For
example, in Figure 4, we can obtain foreground features
FAfore

and background features FAback
, where we know

that FAfore
∪ FAback

= FA. We can obtain the alignment
score pAL between each element f iA ∈ FA and FL by:

p̂iAL = σ(tan(
π

2
sim(f iA, FL))), (10)

where sim represents the function to calculate the cosine
similarity. If f iA is close to FL in the embedding space,
their cosine similarity will be close to 1 then the alignment
score p̂iAL will be close to 1, otherwise p̂iAL will be close
to 0. Based on this, we can define its label piAL as: if f iA ∈
FAfore

, piAL = 1 otherwise piAL = 0. Now the alignment
loss LAL between FA and FL can be defined as:
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LAL = −
∑

piAL log p̂
i
AL + (1− piAL) log(1− p̂iAL).

(11)
The alignment loss LML between FM and FL can also be
defined in the same way.

For appearance features f iA ∈ FA and motion features
f iM ∈ FM, we can also align them together. The alignment
score can be defined as:

p̂i,jAM = σ(tan(
π

2
sim(f iA, f

j
M))). (12)

When f iA and F j
M belongs to the foreground or back-

ground at the same time, its label pi,jAM = 1, otherwise
pi,jAM = 0. The alignment loss LAM can be defined as:

LAM = −
∑

pi,jAM log p̂i,jAM+(1−pi,jAM) log(1− p̂i,jAM).

(13)
Finally, we define the multi-modal alignment loss as:

Lalign = LAL + LML + LAM. (14)

4. Experiments
4.1. Datasets and Evaluation Metrics

Following prior works, we conduct experiments on two
popular text-based video segmentation datasets including
A2D Sentences [16] and J-HMDB Sentences [16]. These
two datasets are extended by Gavrilyuk et al. [16] via pro-
viding a referring language for each target object in Actor-
Action Dataset (A2D) [50] and J-HMDB [23].

A2D Sentences contains 3,782 videos, which are split
into 3,036 and 746 videos for training and testing, respec-
tively. There are 3 to 5 frames with pixel-level annotations
in each video for training and evaluating segmentation per-
formance. Besides, there are 6,655 sentences to describe
the actors and their actions in each video. J-HMDB Sen-
tences contains 928 videos from 21 action classes with cor-
responding 928 sentences. All frames in it are annotated
at the pixel level. Previous methods usually evaluate their
generalization ability on this dataset.

Intersection-over-union (IoU) is the ratio of intersec-
tion area over union area between the ground-truth mask
and prediction. Following prior works, we adopt Over-
all IoU and Mean IoU to evaluate the performance. The
former treats ground-truth masks and predictions on the
testing dataset as a whole, resulting in favor of larger ob-
jects, while the latter is the averaged IoU overall test sam-
ples. We also adopt P@X to measure the percentage of
samples whose IoU are higher than the threshold X, where
X ∈ [0.5, 0.6, 0.7, 0.8, 0.9]. The mean average precision
(mAP) over 0.5:0.95 is also adopted.
4.2. Implementation Details

Following [30], we adopt the ResNet-101 and ResNet-
34 [17] as the appearance and motion encoders to extract
appearance and motion features. The stride of four stages
in two encoders is set as 2, 2, 2, and 1, respectively. RAFT

[45] is employed to generate optical flow maps. We adopt
an Adam [26] optimizer with the learning rate 2 × 10−5 to
train the whole network. The batch size is set to 8, and each
batch contains a video clip with three frames. We set the
maximum training step to 30,000, and the learning rate is
divided by ten at 25,000 and 28,000, respectively. Follow-
ing the settings in prior works, all frames are resized and
padded to 320 × 320. The maximum length of each input
sentence is 20. All experiments are conducted on 2 NVIDIA
Tesla V100 GPUs.

4.3. Comparison with State-of-the-art Methods
A2D Sentences We employ the training and testing set of
A2D Sentences to train and evaluate our model, respec-
tively. As shown in Table 1, our method surpass over state-
of-the-art method CSTM by 0.8% , 2.6% , 4.2% on Preci-
sion @0.6, @0.7 and @0.8, respectively. This means that,
when the metric is more stricter, our model can surpass pre-
vious methods by a larger margin. It is noteworthy that,
our method achieve 13.0 % on the most challenging met-
ric Precision @0.9, which means that our method can gen-
erate particularly accurate segmentation masks. The mAP
and Overall IoU can also be further improved by 2.0% and
1.1%, respectively. We also notice that our model is lower
than CSTM [21] by 0.9% on Precision@0.5, which is be-
cause our model tend to generate more accurate and con-
fident results, while some not accurate results from CSTM
[21] can still considered to be True, since the threshold in
Precision@0.5 is low. Furthermore, since CSTM generates
masks on the feature map with original size while our model
predicts on the feature map with 1/4 original size, they may
perform better on small objects. Hence the performance of
our method is slightly lower than its on IoU Mean, which
treats small objects equally.
J-HMDB Sentences Like previous works, we adopt the
J-HMDB Sentences to verify the generalization ability of
our method. Following [21, 49], we employ the model that
achieves the best performance on A2D Sentences to directly
evaluate on the test set of J-HMDB Sentences, which is split
by [16]. As illustrated in Table 2, our method outperform
all previous methods on all metrics. It is easy to find that
our model can surpass other methods by a large margin, es-
pecially when the metric is strict e.g. Precision@0.6, @0.7
and @0.8. This phenomenon is similar to that in A2D Sen-
tences, which means that our model shows more robust per-
formance with the help of well-fused multi-modal informa-
tion. Note that, like other methods, our approach can not
achieve good results on Precision@0.9 (lower than 1 %),
since all methods are not trained or finetuned on J-HMDB
Sentences.

4.4. Ablation Study
Following previous works, we conduct ablation experi-

ments on A2D Sentences to thoroughly analyze and verify
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Table 1. Comparison with state-of-the-art methods on A2D Sentences testing set. † denotes adopting additional optical flow input.

Methods Venue Precision mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [18] ECCV2016 34.8 23.6 13.3 3.3 0.1 13.2 47.4 35.0
Li et al. [33] CVPR2017 38.7 29.0 17.5 6.6 0.1 16.3 51.5 35.4

Gavrilyuk et al. [16] CVPR2018 47.5 34.7 21.1 8.0 0.2 19.8 53.6 42.1
Gavrilyuk et al. † [16] CVPR2018 50.0 37.6 23.1 9.4 0.4 21.5 55.1 42.6

ACGA [49] ICCV2019 55.7 45.9 31.9 16.0 2.0 27.4 60.1 49.0
VT-Capsule [38] CVPR2020 52.6 45.0 34.5 20.7 3.6 30.3 56.8 46.0

CMDY [48] AAAI2020 60.7 52.5 40.5 23.5 4.5 33.3 62.3 53.1
PRPE [39] IJCAI2020 63.4 57.9 48.3 32.2 8.3 38.8 66.1 52.9
CSTM [21] CVPR2021 65.4 58.9 49.7 33.3 9.1 39.9 66.2 56.1

Our † – 64.5 59.7 52.3 37.5 13.0 41.9 67.3 55.8

Table 2. Comparison with state-of-the-art methods on J-HMDB Sentences testing set. All methods adopt the best model trained on A2D
Sentences to directly eval on J-HMDB Sentences without finetuning. † denotes adopting additional optical flow input.

Methods Venue Precision mAP IoU
P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [18] ECCV2016 63.3 35.0 8.5 0.2 0.0 17.8 54.6 52.8
Li et al. [33] CVPR2017 57.8 33.5 10.3 0.6 0.0 17.3 52.9 49.1

Gavrilyuk et al. [16] CVPR2018 69.9 46.0 17.3 1.4 0.0 23.3 54.1 54.2
ACGA [49] ICCV2019 75.6 56.4 28.7 3.4 0.0 28.9 57.6 58.4

VT-Capsule [38] CVPR2020 67.7 51.3 28.3 5.1 0.0 26.1 53.5 55.0
CMDY [48] AAAI2020 74.2 58.7 31.6 4.7 0.0 30.1 55.4 57.6
PRPE [39] IJCAI2020 69.1 57.2 31.9 6.0 0.1 29.4 - -
CSTM [21] CVPR2021 78.3 63.9 37.8 7.6 0.0 33.5 59.8 60.4

Our † – 79.9 71.4 49.0 12.6 0.1 38.6 61.9 61.3

Table 3. Quantitative results of each component in our model. Appearance: with appearance feature; Motion: with motion feature; MMVT:
Multi-Modal Video Transformer; LGFF: Language-Guided Feature Fusion Module; Align: Multi-modal Alignment Loss.

Name Settings Precision mAP IoU
Appearance Motion MMVT LGFF Align P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

B 3 55.1 50.7 44.2 31.7 9.5 35.3 61.9 48.2
B+M 3 3 56.8 51.9 45.0 32.3 10.0 36.3 63.5 49.5
B+T 3 3 59.2 54.1 46.1 32.2 9.8 37.2 64.4 51.3

B+M+T 3 3 3 62.0 56.8 48.7 34.3 10.5 39.2 64.8 53.6
B+T+L 3 3 3 62.0 57.4 49.6 36.2 11.6 40.1 65.5 54.0

B+M+T+L 3 3 3 3 63.1 58.5 51.2 37.1 12.6 41.1 66.8 54.8
B+M+T+L+A 3 3 3 3 3 64.5 59.7 52.3 37.5 13.0 41.9 67.3 55.8

 a woman is playing with her cat outside
a back car with a camper behind it is parked

the car is trying to jump over other cars

 woman in pink top bouncing a ball on the left

(a)

(b)
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iou=0.78 iou=0.20 iou=0.07

iou=0.85 iou=0.25 iou=0.07
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iou=0.79 iou=0.14 iou=0.04

Figure 5. Qualitative results comparison. From left to right in (a), (b), (c) and (d): ground-truth, ”B+M+T+L+A”, ”B+M”, and ”B”.

the effectiveness of the proposed method.

Effectiveness of Each Component. We first verify each
component in our model in Table 3. “B+M” is the base-
line model shown in Figure 2, which only adopt concate-
nation and convolutional layers to fuse multi-modal. In ad-
dition, only appearance features are fused in the decoder
in ”B+M”. ”B” is the same as ”B+M” except without mo-
tion branch. By comparing them, we can find that introduc-
ing the explicit motion information from optical flow maps
can effectively improve the performance. To verify the ef-
fectiveness of multi-modal interaction between frames, we
replace the concatenation operation in ”B+M” with the pro-
posed MMVT and obtain ”B+M+T”. We find that the per-
formance is significantly improved, especially in mAP and
Mean IoU, improved by 2.9% and 4.1%, respectively. This
benefits from the powerful capacity of fusing multi-modal
features between frames in MMVT. Then, we replace all

simple concatenation operations in every level of the de-
coder in ”B+M+T” with the proposed LGFF and obtain
”B+M+T+L”. This demonstrates a remarkable improve-
ment on all metrics, especially in rigorous metrics Preci-
sion@0.7, @0.8, and @0.9, which are improved by 2.5%,
2.7%, and 2.1%, respectively. This means the decoder with
our LGFF can progressively fuse multi-modal features from
different levels and gradually recover the resolution of the
feature map, leading to more accurate segmentation masks.
Finally, we add the proposed multi-modal alignment loss
into ”B+M+T+L+A” and the results demonstrate that ex-
plicitly aligning multi-modal features can obtain better per-
formance. To further verify the generalization of proposed
components, we gradually add our MMVT and LGFF to
”B”, resulting in”B+T” and ”B+T+L”. The results show
that only fusing appearance and linguistic features with
our MMVT and LGFF can also improve the performance.
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Table 4. Comparison of using different MMVT setting.

Name Setting mAP IoU
CMA TA 0.5:0.95 Overall Mean

B+M 36.3 63.5 49.5
+CMA 3 36.8 64.1 50.6

+CAT+TA 3 38.6 64.8 53.2
B+M+T 3 3 39.2 64.8 53.6

Table 5. Comparison of using different decoder settings.

Name Setting mAP IoU
CAT LGFF 0.5:0.95 Overall Mean

CAT 3 37.6 63.5 51.6
LGFF 3 41.1 66.8 54.8

Hence, our MMVT and LGFF can work well in different
settings instead of only handling the setting with motion.

MMVT Settings. There are two attention modules in our
MMVT, named cross model attention (CMA) and temporal
attention (TA), respectively. Here, we conduct experiments
to verify their effectiveness in Table 4. We remove all TA
modules in MMVT from ”B+M+T”, which is denoted as
”+CMA”. We can see that the performance drop signifi-
cantly, which verifies the usefulness of fusing information
from different frames in TA. When compared with ”B+M”,
”+CAM” achieves better results, which shows its capacity
of fusing multi-modal features. Furthermore, we try to re-
move all CMA modules in TA and only adopt a concatena-
tion with a convolutional layer to fuse multi-modal features
before the MMVT, which is denoted as ”+CAT+TA”. This
results in worse performance than ”B+M+T”, which verify
that it is useful and necessary to combine CMA and TA in
our MMVT.

Decoder Settings. In Table 5, we conduct experiments
to explore the effectiveness of our LGFF. We adopt the
concatenation operation followed by a convolution layer
to fuse appearance, motion, linguistic features as well as
features from higher level as the baseline, which is de-
noted as ”CAT”. We find that such a simple fusion strat-
egy degrades the performance obviously, compared with
our model ”LGFF”. This means that it is necessary to de-
sign the LGFF to effectively fuse multi-modal features from
different levels.

Effectiveness of Multi-modal Alignment Loss We con-
duct experiments to verify the effectiveness of our multi-
modal alignment loss. ”l2am” denotes adopting LAL and
LML to align linguistic features with appearance and mo-
tion features, while ”a2m” represents employing LAM to
align appearance and motion features. We also try to add
two traditional binary cross-entropy losses to ”B+M+T+L”
for appearance and motion branch, respectively, which is
denoted as ”+bce”. From Table 6, we can find that ”+bce”
can not bring obvious improvement to the performance.
When we add ”l2am” and ”a2m” to ”B+M+T+L”, the per-
formance is improved gradually, which verifies the effec-
tiveness of ”l2am” and ”a2m”.

Table 6. Comparison of using different Multi-modal Alignment
Loss settings.

Name Setting mAP IoU
l2am a2m 0.5:0.95 Overall Mean

B+M+T+L 41.1 66.8 54.8
+bce 41.2 66.3 54.8

+l2am 3 41.2 67.1 55.2
B+M+T+L+A 3 3 41.9 67.3 55.8

4.5. Qualitative Results Comparison
We visualize some representative samples generated

from ”B”, ”B+M”, and ”B+M+T+L+A” in Figure 5. In
some complex scenes like Figure 5 (a) and (b), there are
multiple objects moving, leading to unsatisfying segmen-
tation results from ”B+M”, which simply adopts concate-
nation to fuse multi-modal features. From Figure 5 (c),
we can find that, when the motion information is adopted,
although the model ”B+M” can find the car, it still mis-
classifies some pixels from other cars as foreground, while
”B+M+T+L+A” can generate more accurate mask. These
examples show that our method can well incorporate and
fuse appearance, motion and linguistic features together to
locate the target object and generate more accurate masks.
Figure 5 (d) demonstrates that our model can still accurately
segment the target object without motion.

5. Conclusion
In this paper, we propose a method to fuse and align

multi-modal features for text-based video segmentation.
First, we introduce the explicit motion information from
optical flow maps to incorporate with appearance and lin-
guistic features. Then, we design the MMVT to fuse multi-
modal features between frames. Furthermore, we propose
the LGFF module to progressively fuse multi-modal fea-
tures from different feature levels. Finally, the multi-modal
alignment loss is adopted to explicitly align multi-modal
features to reduce the semantic gap between them. Exten-
sive experiments verify the effectiveness of each component
in our method and demonstrate that our method can signif-
icantly outperform state-of-the-art methods on two popular
datasets.
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