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Abstract

In this paper, we study the problem of procedure plan-
ning in instructional videos. Here, an agent must pro-
duce a plausible sequence of actions that can transform
the environment from a given start to a desired goal
state. When learning procedure planning from instructional
videos, most recent work leverages intermediate visual ob-
servations as supervision, which requires expensive anno-
tation efforts to localize precisely all the instructional steps
in training videos. In contrast, we remove the need for ex-
pensive temporal video annotations and propose a weakly
supervised approach by learning from natural language in-
structions. Our model is based on a transformer equipped
with a memory module, which maps the start and goal ob-
servations to a sequence of plausible actions. Furthermore,
we augment our model with a probabilistic generative mod-
ule to capture the uncertainty inherent to procedure plan-
ning, an aspect largely overlooked by previous work. We
evaluate our model on three datasets and show our weakly-
supervised approach outperforms previous fully supervised
state-of-the-art models on multiple metrics.

1. Introduction
Procedure planning is a natural task for humans – one

must plan out a sequence of actions that takes one from the
current state to the desired goal. While effortless for hu-
mans, procedure planning is notoriously hard for artificial
agents. Nevertheless, solving procedure planning is of great
importance for building next-level artificial intelligence sys-
tems capable of analyzing and mimicking human behaviour,
and eventually assisting humans in goal-directed problem
solving, e.g., cooking, assembling furniture or tasks that
can be represented as a clear set of instructions. Tradition-
ally, procedure planning has been addressed in structured
environments, such as object manipulation on a table sur-
face [13, 43]. While restricting the environment helps im-
prove planning, it also limits the range of possible applica-
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Figure 1. Illustration of weak language supervision for procedure
planning. Fully supervised approaches (bottom row) learn models
from step labels, ai, and intermediate visual representations, vi,
over T finite steps. This strategy requires knowing the starting, si,
and ending, ei, timestamps, for each intermediate step. In contrast,
our approach (top row) exploits natural language representations,
li, of the intermediate labels, ai, as a surrogate supervision, which
only requires labeling the order of events. Note that the action
label, ai, is a discrete variable, whereas the action language repre-
sentation, li, is a pre-trained continuous embedding.

tions. Here, we follow more recent work [8] and tackle pro-
cedure planning in the realm of instructional videos [46,54].
Given visual observations of the start and goal states, the
task is to predict a sequence of high-level actions needed to
achieve a goal; see Fig 1. This task is particularly challeng-
ing as it requires parsing unstructured environments, rec-
ognizing human activities and understanding human-object
interactions. Yet, the range of applications for such planners
is broad, which motivates research efforts on this problem.

Current approaches for procedure planning from instruc-
tional videos share a serious limitation – reliance on strong
supervision with expensive annotations [6, 8, 45]. Specifi-
cally, all such methods require access to (i) a list of action
labels used to transition from start to the goal state and (ii)
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the visual representation of the intermediate states. Using
such intermediate visual representations entails very expen-
sive annotation of the start and end times of each interme-
diate instructional step; see Fig 1 (bottom). In contrast,
our work removes the need for intermediate visual states
during training and instead uses their linguistic representa-
tion for supervision. Relying on language representations
allows us to better leverage instructional videos and sig-
nificantly reduce the labeling effort; see Fig. 1 (top). For
example, language annotations for the intermediate instruc-
tional steps could be extracted from general procedure de-
scriptions available in recipes or websites, e.g., WikiHow
[21]. In contrast, to obtain the timestamps for intermediate
instructional steps one must watch the entire instructional
video. In addition, a language representation can be a more
stable supervisory signal [40], as the description of a given
step (e.g., add seasoning) remains the same, while its visual
observation varies across different videos.

Previous work on procedure planning from video relies
on a two-branch autoregressive approach while adopting
different architectures to model these branches [6, 8, 45]. In
such models, one branch is dedicated to predicting actions
based on the previous observation, while the other approxi-
mates the observation given the previous action in a step-by-
step manner. Such models are cumbersome and compound
errors, especially for longer sequences. In contrast, we rely
on a single branch non-autoregressive model, implemented
as a transformer [47] that generates all intermediate steps in
parallel conditioned on the start and goal observations.

Another important factor in procedure planning is to
model the uncertainty inherent to the prediction task. For
example, given a set of ingredients and the goal of making
a pancake, the intermediate steps could be either (i) [add
wet ingredients −→ add dry ingredients −→ whisk mixture] or
(ii) [add dry ingredients −→ add wet ingredients −→ whisk
mixture]. This example shows that in realistic scenarios
some plans can vary even under a shared common goal.
This observation is usually handled in physical path plan-
ning tasks (e.g., robotic arms are allowed to follow multiple
feasible trajectories [43]); yet, effort is lacking on proba-
bilistic modeling of procedure planning from instructional
videos. While previous work included a probabilistic com-
ponent at training time [6], we are the first to use and bene-
fit from multiple plausible plans at inference. We explicitly
handle uncertainty in procedure planning with a dedicated
generative module that can produce multiple feasible plans.

Contributions. In summary, the main technical con-
tributions of our work are threefold. (i) We introduce a
weakly supervised approach for procedure planning, which
leverages powerful language representations extracted from
pre-trained text-video embeddings. (ii) We tackle the task
with a simpler single branch model, which can generate
all intermediate steps in parallel, rather than relying on

the two-branch auto-regressive approach used in previous
work. (iii) We propose a generative adversarial framework,
trained with an extra adversarial objective, to capture the
stochastic property of planned procedures. We evaluate our
approach on three widely used instructional videos datasets
and show state-of-the-art performance across different pre-
diction time horizons, even while relying on weaker su-
pervision. We also show the advantage of modeling un-
certainty. Our code is available at: https://github.
com/SamsungLabs/procedure-planning.

2. Related work
Procedure planning. Traditionally, goal-conditioned

planning has been studied mostly in physical environments,
e.g., robotic motion planning [14,16,23] and human pedes-
trian trajectory planning [33]. Recently, the task of proce-
dure planning from instructional videos was introduced [8].
Various approaches have made use of recurrent neural net-
works (RNNs) [8], transformers [45] and adversarial pol-
icy planning [6]; all have used two-branches and strong vi-
sual supervision. In contrast, we model the actions directly
using a non-autoregressive transformer-based architecture.
More importantly, we use low-budget weak supervision in
the form of language instructions instead of supervising the
model with “costly” visual observations as done by all ex-
isting approaches.

Supervision with natural language. A common alter-
native to training visual models using manually defined la-
bel sets is to exploit semantic supervision from natural lan-
guage. Using natural language as supervision has several
advantages: (i) language annotations can be collected auto-
matically [37]; (ii) modeling language and vision jointly can
produce stronger representations [10]; (iii) such supervision
can achieve better generalization to unseen domains [40].
Such benefits resulted in a growing interest in using lan-
guage as supervision for variety of tasks, e.g., image classi-
fication [10, 17, 22], representation learning [36, 50], video
retrieval [15, 37], step localization [11, 36] and navigation
with instruction following [38]. We use advances in joint
video and language modeling for procedure planning. We
use pre-trained features [36] to map language and video to
a common space and replace expensive video supervision
with readily available language instructions

Sequence modeling with transformers. Procedure
planning is a task of conditional sequence prediction and
thus it directly benefits from recent advances in sequence
modeling. One of the strongest recent approaches to se-
quence modeling is the transformer architecture [47], which
has been adopted for a wide variety of tasks, e.g., im-
ages [26], videos [4] and multi-modal data [31, 32, 50]
tasks. Recent work adopted the transformer decoder ar-
chitecture for fixed-size set prediction via learnable input
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queries [7, 52]. We build upon similar ideas by setting the
first and last queries to correspond to the start and goal ob-
servations, while making the intermediate queries learnable.
To improve long-range sequence modeling and help overall
sequence coherence, recent work augmented transformers
with an explicit external memory [29, 49]. For the same
reasons, we also integrate a learnable memory module.

Future prediction. The task of procedure planning is
closely related to future prediction, where only past obser-
vations are provided as input. A key consideration in future
prediction is modeling prediction uncertainty from partial
initial observations. One common approach for modeling
uncertainty is a Variational Auto Encoder (VAE) [25] that
captures the distribution over future actions. Another ap-
proach is to use generative adversarial networks (GANs)
to forecast multiple, distinct and high quality future activi-
ties [39,53]. In this work, we adopt the generative modeling
framework to model distributions over possible plans.

3. Technical approach

Here, we present our approach to procedure planning
that relies on three main components. First, we predict
all steps in the plan in parallel using a non-autoregressive
transformer decoder. To obtain coherent plan predictions,
our transformer is augmented with a learned memory shared
across all possible tasks in a given dataset (Sec. 3.2). Sec-
ond, to model the uncertainty inherent to the task, we in-
clude a generative component trained with an adversarial
loss. As a result, we can infer multiple feasible plans con-
ditioned on start and goal observations (Sec. 3.3). Third,
to supervise the transformer’s outputs, we use the cross-
entropy loss on action predictions and a contrastive loss to
match visual state predictions with the corresponding lan-
guage descriptions (Sec. 3.4). Fig. 2 provides an overview
of our approach, which we detail next.

3.1. Problem formulation

Given a start visual observation, vstart, and a desired vi-
sual goal, vgoal, our task is to predict a plan defined as the
sequence of T intermediate action steps, π̃ = ã1:T , taken to
transition from vstart to vgoal. We overscore with∼ to indi-
cate our predictions, while the lack of such overscoring in-
dicates ground truth (GT). At training time, given vstart and
vgoal, we predict a plan, π̃, and corresponding visual obser-
vations, ṽ1:T . We use the intermediate action labels, a1:T ,
to train the plan prediction, π̃, and corresponding language
descriptions (embedded with a pre-trained text encoder),
l1:T , to supervise the intermediate visual observations, ṽ1:T .
That is, we substitute the visual information about interme-
diate instruction steps, v1:T , with their language counter-
parts, l1:T , to train the planner; see Fig. 2. We believe such
supervision substitution is meaningful, as we are using a

strong pre-trained vision-language encoder [36], mapping
visual activities and their descriptions in a common space,
thus making visual, vt, and language, lt, features, corre-
sponding to the same activity, interchangeable for training.
In contrast, previous work assumes access to the set of inter-
mediate action-observation pairs (i.e., a1:T , v1:T ) [6, 8, 45],
thereby requiring strong supervision to identify all interme-
diate visual observations. At inference time, we only use
the start and goal observation, to predict a plan, π̃ = ã1:T ,
for a given time horizon, T .

3.2. Memory augmented transformer decoder

To implement our planner, we use a non-autoregressive
transformer decoder architecture [7, 52]. Our transformer
decoder takes two input types; namely, learnable queries
augmented with the start and goal observations and a
learned memory component, and outputs action and inter-
mediate state predictions, as illustrated in Fig. 2.

Conditioned learned-query input. The first input is the
query set, Q = [qstart, q1, . . . , qT−1, qgoal], where the first
and last inputs correspond to the representations of our ini-
tial and goal visual observations, vstart and vgoal, respec-
tively, while q1:T−1 are a set of learned queries. Queries,
[q1, . . . , qgoal], are associated with the action labels, a1:T ,
that we wish to predict. To communicate information about
the order of elements to the decoder, we add to each query
a fixed cosine positional embedding [5], pt, as follows

Q = [qstart + p0, . . . , qt + pt, . . . , qgoal + pT ], (1)

where qt and pt all are encoded as d dimensional embed-
dings, (i.e., qt, pt ∈ Rd) and t = 1, . . . , T − 1.

Learned memory input. The second input to our trans-
former decoder is a learned memory component that is com-
mon across all examples in a given dataset. The memory is
defined as a set of d-dimensional vectors

M = [m1,m2, . . . ,mn] ∈ Rd×n, (2)

where n is the number of learnable vectors in the memory
bank. Notably, the size of the memory (i.e., number of en-
tries, n, in the memory) is a hyperparameter that is inde-
pendent from the prediction time horizon. We use read-only
memory [34] and share it among all layers for simplicity.

Memory-augmented transformer decoder. Our architec-
ture is a stack of standard transformer decoder blocks [47]
(see Fig. 3), where each such block has access to the
global learnable memory, (2). Specifically, the memory-
augmented transformer block consists of two key opera-
tions. First, the input is processed with the self-attention
operation. Second, the cross-attention module attends to
the learnable memory to generate the output. The input to
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Figure 3. Illustration of the transformer block with self-attention
and cross-attention with memory. The learned memory, M, serves
as an external memory bank and is globally shared across all trans-
former blocks. K, V and Q symbolize key, value and query, resp.

self-attention in the first transformer block corresponds to
the query, Q. All cross-attention blocks access the same
memory, M. Intuitively, the memory module can be seen
as a collection of learnable plan embeddings shared across
the entire dataset. Empirically, we show that the memory
module plays a key role in our framework.

Our transformer decoder, T , consists of a stack of N
such memory-augmented blocks. We add two output heads
(implemented as multi-layer perceptrons (MLPs)) at the fi-
nal decoding layer. One head, ha, yields intermediate pre-
dicted actions, ãt, while the second, hv , yields correspond-
ing intermediate visual representations, ṽt, according to

ã1:T = ha(T (Q,M)), ṽ1:T = hv(T (Q,M)), (3)

3.3. Adversarial generative modeling

To capture the uncertainty in prediction, where multiple
plans from vstart to vgoal are plausible, we augment our
model with a stochastic component using generative adver-
sarial learning [18]. To make the generation process condi-

tional on the input, we augment the entire query input, (1),
with a random noise vector, z ∼ N (0, 1), z ∈ Rd′

, through
concatenation. The new query input sequence to our trans-
former, T , thus becomes

Qz = {[qt; z ] | qt ∈ Q}. (4)

We employ adversarial training wherein the generator,
G, is trained to produce realistic action sequences, while the
critic, C, provides the supervisory signal for training G [3].
In our case, we treat the memory-augmented transformer,
T , as the generator,G (i.e.,G = hv(T (Qz,M))), while the
critic is modeled by a simple MLP. More precisely, we pass
the output of our transformer, ṽ1:T , concatenated along the
temporal dimension, to the critic, C, which outputs a value
between 0 and 1, indicating its ability to discriminate be-
tween the predicted and ground truth sequence, as depicted
in Fig. 2. Notably, to avoid the notorious issue of mode col-
lapse associated with training GANs [44] (i.e., regardless
of variations in random latent noise, z ), we follow previ-
ous work [30, 51, 53] and include the normalized distance
regularizing loss, Lreg, defined in the supplement.

3.4. Training

To supervise our transformer, we rely on two comple-
mentary loss functions that enforce our transformer to de-
code the correct set of action labels in the procedure as
well as corresponding visual representations. We also use
an adversarial loss to train the stochastic component of our
model.

Visual step supervision. One of the outputs of our model
at training time is the sequence of visual features, corre-
sponding to the procedure steps, ṽ1:T . To supervise the
visual features with corresponding language features, l1:T ,
we adopt contrastive learning [19]. For each feature, ṽt,
predicted by the transformer’s head, hv , we use the corre-
sponding ground truth language embedding, lt, as the pos-
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itive example and all the other embeddings in the language
vocabulary, {lj}, as negative examples. The contrastive loss
is calculated as

Ll = −
∑T

t=1

[
log exp(lt·ṽt)∑

j exp(lj ·ṽt)

]
, (5)

where (·) denotes the dot-product operator. Note, we use
all examples in the language vocabulary as negatives as our
vocabulary is typically small (< 1K elements) and doing
so allows for better training compared to per-batch negative
sampling, e.g., [20].

Action plan supervision. We also enforce the action pre-
diction head, ha, to output sequences of action probabili-
ties, ãt, corresponding to ground truth one-hot labels, at.
For this purpose, we use the cross-entropy loss

La = −
∑T

t=1 at log ãt. (6)

Adversarial supervision. To model uncertainty, we use
adversarial training on the visual state predictions, ṽ1:T .
The goal is to make predicted visual observation sequences
indistinguishable from feature sequences composed of the
ground truth language step description, l1:T . We optimize
the generator, G, (our transformer) and the critic, C, (an
MLP) using an adversarial loss [3]

Ladv = min
G

max
C
V(G,C,Qz,M), (7)

where V is the standard GAN objective, defined as
El∼pdata

[logC(l)] + Ez∼pz [log(1 − C(hv(T (Qz,M))))],
with l∼pdata and z∼pz denoting the data distributions of
the language representation and random noise, resp.

Complete loss. Overall, our full loss function is defined as

L(θ) = λ1Ll + λ2La + λ3Ladv + λ4Lreg, (8)

where θ refers to the parameters associated with all learn-
able modules, i.e., queries, memory module, as well as the
transformer decoder and discriminator parameters and λ1:4
are empirically determined loss weights.

3.5. Inference

At inference time, we use our transformer as a generative
model to sample multiple procedure plans, π̃k = ãk1:T , for
the same input start and goal observations. This operation
is achieved by drawing K latent noise vectors, zk, and for-
warding them through our transformer, T , conditioned on a
single start-goal observation, as follows

π̃k = ha(T (Qzk

,M)), zk ∼ N (0, 1), (9)

for k = 1, . . . ,K.

To obtain a probability distribution over actions at each
timestep, t, of the plan, given by our model, we calculate
action frequencies as follows:

Π̄ = ā1:T =
1

K

K∑
k=1

[ãk1 , . . . , ã
k
T ]. (10)

Given that akt are one-hot vectors, each āt results in a
marginal distribution over actions at a specific timestep, t.

Most standard benchmark metrics for procedure plan-
ning, such as Success Rate, Accuracy or Intersection over
Union (IoU), require a single action sequence output for
evaluation (see Section 4.1). To compute the most probable
action sequence, induced by our action distribution, Π̄, we
use the Viterbi algorithm [48], as commonly seen in sequen-
tial labeling work [27,28,41,42]. More specifically, we use
Π̄ as the emission matrix in the Viterbi formulation, while
the transition matrix is estimated from action co-occurrence
frequencies in the training set (details in the supplement).
Our Viterbi post-processing step can be viewed as bias-
ing sample selections from {π̃k}Kk=1, toward plans that are
more likely under a first-order model of action transitions.
An alternative approach to select a likely action sequence is
simply to select the mode from the set {π̃k}Kk=1. We empir-
ically demonstrate the superiority of the Viterbi approach,
which proved especially useful for smaller datasets.

3.6. Implementation details

Our planner operates on video and language features,
pre-extracted by a model trained for joint video-text em-
bedding [36] using the HowTo100M [37] dataset and self
supervision. We use a memory-augmented transformer with
two layers and eight heads, and optimize it for 200 epochs
with ADAM [24] on a single V100 GPU. Additional train-
ing and architecture details are provided in the supplement.

4. Experiments
In this section, we evaluate the role of each module in our

approach (Sec. 4.2) and demonstrate its performance across
three different datasets. We include evaluation on the largest
labeled instructional video dataset, which has not been used
previously for the task of procedure planning due to the
need of strong supervision in previous work (Sec. 4.3). Fi-
nally, we provide prediction uncertainty evaluation in pro-
cedure planning for the first time, which sheds light on our
approach and the task of planning itself (Sec. 4.4).

4.1. Evaluation protocol

Datasets. For evaluation, we use three different instruc-
tional video datasets, namely, CrossTask [54], the Narrated
Instructional Videos datasets [2] (NIV) and COIN [46].
CrossTask contains 2750 videos, depicting 18 different pro-
cedure and an average of 7.6 actions/video; the NIV dataset

2942



Datasets Loss Objective SR ↑ mAcc ↑ mIoU ↑

CrossTask

La 16.90 44.20 57.56
La + Ll 22.12 45.57 67.40
La + Ll + Ladv 23.34 49.96 73.89
w/o Viterbi 22.66 45.95 67.52

COIN

La 8.48 12.19 68.15
La + Ll 14.41 20.25 73.49
La + Ll + Ladv 15.40 21.67 76.31
w/o Viterbi 14.18 21.01 75.62

NIV

La 17.81 42.35 69.42
La + Ll 24.05 46.67 73.89
La + Ll + Ladv 24.68 49.01 74.29
w/o Viterbi 20.18 47.73 73.09

Table 1. Performance of our model trained with different loss
functions on three datasets. The last row of each block represents
the results of the total loss but without the Viterbi algorithm.

is much smaller with 150 videos, five procedures and 9.5
actions/video on average. COIN is the largest dataset in our
evaluation. It contains 11827 videos, 778 procedures and
3.6 actions/video. Depicted procedures vary widely, e.g.,
Make Taco Salad and Change Car Tire. We follow previous
work [8] and adopt 70%/30% to create our train/test splits
and we use 20% of the training data for validation. We also
follow the data pre-processing steps outlined in the original
procedure planning paper [8] to select {start, goal} obser-
vations and curate the dataset into plans covering different
time horizons. More details are in the supplement.

Metrics. Following previous work [6, 8, 45], we evaluate
the performance using three increasingly strict metrics. (i)
mean Intersection over Union (mIoU) treats the predicted
and ground truth action sequences as sets, and measures
the overlap between these sets. mIoU is agnostic to the
order of actions and only indicates whether the model cap-
tures the correct set of steps needed to complete the plan.
(ii) mean Accuracy (mAcc) performs element-wise com-
parisons between the predicted and ground truth action se-
quences, thereby considering the order of the actions as
well. (iii) Success Rate (SR) considers a plan successful
only if it exactly matches the ground truth.

We also evaluate the stochastic nature of our model by
measuring the following probabilistic metrics: (i) the Kull-
backLeibler (KL) divergence between our predicted plan
distributions and ground truth; (ii) how well the ground
truth modes are covered by our results (Mode Recall); (iii)
how often our plans correspond to the ground truth mode
(Mode Precision). To this end, for each {start, goal} ob-
servation, we draw (K = 1500) samples from our gener-
ative model and explicitly approximate a distribution, as
described in Sec. 3.5. For completeness, we also evalu-
ate using more standard probabilistic prediction metrics, in-
cluding Negative Log Likelihood (NLL) and the cosine dis-
tance [9, 35, 53].

Baselines. We compare to all previous approaches to pro-
cedure planning from instructional videos [6, 8, 45] as well
as other fully supervised planning approaches [1, 12, 43].

Memory Size SR ↑ mAcc ↑ mIoU ↑
0 7.49 22.76 31.33

64 16.30 43.62 55.66
128 23.34 49.96 73.89
256 20.81 44.61 59.70

Table 2. Ablation study on the impact of external memory sizes
for prediction horizon, T = 3, with CrossTask. All results are
obtained using our transformer, with two layers and eight heads.

4.2. Ablation study

Impact of different loss functions. We evaluate the role
of each loss component by gradually introducing each ob-
jective. The results in Table 1 show the pivotal role of
language-based supervision, as evidenced by increased per-
formance across all metrics, and the complementarity of
the three objectives. Notably, improvements from the ad-
versarial loss may seem marginal (e.g., ∼ 1% in SR), as
the metrics only compare a single prediction to a single
ground truth plan. We show its strict superiority to deter-
ministic models for modelling distributions of procedures
in Sec. 4.4.

Impact of Viterbi post-processing. Throughout the empir-
ical results, we use the Viterbi algorithm on top of the pre-
dicted action probabilities, Π̄ (10), to produce the optimal
plan at inference time. Notably, the Viterbi post-processing
is optional, and one may directly use the set π̃k to produce
the final plan by simply selecting the mode across the set.
Comparing the last two rows in each block of Table 1 shows
the added advantage of using Viterbi to model the optimal
action order in procedure plans explicitly, for all datasets.
Notably, Viterbi post-processing is especially helpful on the
NIV dataset. We hypothesize that the data scarcity in NIV
results in a weaker predictive model at training; therefore,
explicitly modeling the optimal transition between the ac-
tions with Viterbi plays a more important role in this case.

Impact of model configuration. We also include an abla-
tion evaluating the adopted memory augmented transformer
decoder. Table 2 shows that the size of our memory plays a
key role in our architecture. Indeed, excluding the memory
component yields the worst results, while too large a mem-
ory degrades performance. These results suggest that the
memory component helps capture dataset content, where it
yields stronger results when the number of memory entries
is large enough to properly span the actions present in the
entire dataset. Notably, while tuning the memory size for
each dataset might yield better results, for simplicity, we
elect to use the best setting of CrossTask for all datasets.

4.3. Comparison to alternative approaches

CrossTask (short-horizon). Table 3 compares our weakly-
supervised approach to a number of alternatives, including
the fully supervised state of the art, across the two predic-
tion horizons typically reported in this task. Our results are
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T = 3 T = 4

Models Supervision SR ↑ mAcc ↑ mIoU ↑ SR ↑ mAcc ↑ mIoU ↑
Random - <0.01 0.94 1.66 <0.01 0.83 1.66
Retrieval-Based - 8.05 23.30 32.06 3.95 22.22 36.97
WLTDO [12] - 1.87 21.64 31.70 0.77 17.92 26.43
UAAA [1] - 2.15 20.21 30.87 0.98 19.86 27.09
UPN [43] V 2.89 24.39 31.56 1.19 21.59 27.85
DDN [8] V 12.18 31.29 47.48 5.97 27.10 48.46
Ext-GAILw/o Aug. [6] V 18.01 43.86 57.16 - - -
Ext-GAIL [6] V 21.27 49.46 61.70 16.41 43.05 60.93
Ours L 23.34 49.96 73.89 13.40 44.16 70.01

Table 3. Evaluation of procedure planning results on CrossTask for prediction horizon T ∈ {3, 4}. The column name Supervision denotes
the type of state supervision applied in training, with V and L denoting visual and language state representation, resp.

T = 3 T = 4 T = 5 T = 6

Models SR↑ SR↑ SR↑ SR↑
Retrieval-Based 8.05 3.95 2.40 1.10
DDN [8] 12.18 5.97 3.10 1.20
Ours (Protocol 1) 23.34 13.40 7.21 4.40

PlaTe [45] 18.5 14.0 10.0 7.5
Ours (Protocol 2) 24.4 15.8 11.8 8.3

Table 4. Success Rate evaluation of procedure planning results on
CrossTask [54] that extends to longer prediction horizon, T .

consistently better, except for the the success rate (SR) at
T = 4, where we are the second best approach. The per-
formance improvement in SR is especially striking at short-
term horizon, T = 3, where we outperform the previous
best (i.e., Ext-GAIL [6]) by more than 2%, while using
weaker supervision. Notably, Ext-GAIL achieves its level
of performance via data augmentation, which allows it to
have 30% more training data. In a more similar setup (i.e.,
when Ext-GAIL does not use data augmentation) the per-
formance gain of our method over “Ext-GAIL w/o Aug” is
5.3%. Importantly, our results are obtained with weaker su-
pervision, which speaks decisively in favor of our approach.

We also notice a larger gain in mIoU compared to pre-
vious work, i.e., 73.89% vs. 61.70% for T = 3 and
70.01% vs. 60.93% for T = 4. This result suggests that
our approach is better at capturing feasible action steps than
other approaches (e.g., never producing pour water when
input observations are related to making a salad). We hy-
pothesize that this performance is enabled by the language-
based contrastive learning, which is more effective at clus-
tering latent representations than its vision counterpart. For
example, while some visual observations can look similar
(e.g., pour water and add oil), the distinction between the
two is clearer in natural language. Notably, the level of im-
provements in mIoU and mAcc is typically higher than the
gain in SR. We attribute this result to the uncertainty inher-
ent to the task (i.e., multiple feasible plans for the same start
and goal observations). We explore this aspect in greater
detail in Sec. 4.4. Finally, thanks to the non-autoregressive
nature, we are 4x faster at inference, e.g., 6.75ms (ours) vs.

NIV COIN

Horizons Methods Sup. SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

T = 3

Random - 2.21 4.07 6.09 <0.01 <0.01 2.47
Retrieval - - - - 4.38 17.40 32.06
DDN [8] V 18.41 32.54 56.56 13.9 20.19 64.78
Ext-GAIL [6] V 22.11 42.20 65.93 - - -
Ours L 24.68 49.01 74.29 15.4 21.67 76.31

T = 4

Random - 1.12 2.73 5.84 <0.01 <0.01 2.32
Retrieval - - - - 2.71 14.29 36.97
DDN [8] V 15.97 27.09 53.84 11.13 17.71 68.06
Ext-GAIL [6] V 19.91 36.31 53.84 - - -
Ours L 20.14 38.36 67.29 11.32 18.85 70.53

Table 5. Procedure planning results on NIV [2] and COIN [46] for
prediction horizon T ∈ {3, 4}. The column Sup. denotes the type
of state supervision applied in training.

27.34ms (DDN [8]) on CrossTask for T = 3.

CrossTask (long-horizon). We now evaluate our model’s
ability to predict plans for longer time horizons (i.e., T ∈
{3, . . . , 6}). We compare to previous approaches that re-
ported results on such horizons. There are two different
protocols for these settings. (i) Protocol 1 [8] and (ii) Proto-
col 2 [45]; see details in supplement. For a fair comparison,
we present our results using both protocols in Table 4 and
show that our approach is the most effective on both.

NIV. Following previous work [6], we also evaluate our
model on the smaller NIV dataset. The results in Table 5
are consistent with our results on CrossTask. Once again,
our approach is the top performer across all metrics. This
result suggests our language supervision works for smaller
datasets as well.

COIN. To show the capability of our method to scale, we
evaluate our method on the largest labeled instructional
video dataset (i.e., COIN). As we are the first ones to per-
form procedure planning on such a large-scale dataset, there
is a lack of comparison methods. Therefore, we follow ex-
isting work [8] and include three baselines: (i) Random se-
lection; (ii) Retrieval-based; (iii) and a re-implementation of
the DDN model [8] , using our video features, described in
Sec. 3.6. Table 5 shows that our model equipped with lan-
guage supervision consistently outperforms the baselines,
even strongly-supervised ones.
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Metric ↓ Method T = 3 T = 4 T = 5 T = 6

KL-Div Ours - determinstic 2.31 4.47 6.30 8.81
Ours - probabilistic 2.11 3.50 4.26 6.89

NLL Ours - determinstic 5.13 6.25 6.68 8.49
Ours - probabilistic 4.89 5.48 6.24 7.67

Table 6. Evaluation of the plan distributions produced by our prob-
abilistic approach vs. the deterministic variant.

4.4. Evaluating probabilistic modeling

To evaluate our probabilistic modeling, we compare plan
distributions produced by our model, with the ground truth
distribution over feasible plans. We focus our evaluation of
probabilistic modeling on CrossTask as it is the most suit-
able dataset in terms of variations in the set of feasible plans,
as we demonstrate in the supplement.

Plan distribution modeling. Our approach is probabilistic
by design as described in Secs. 3.3 and 3.5. To establish a
deterministic baseline, we train our model without the ad-
versarial loss and fix the latent noise vector, z = 0, both
during training and testing. To build the ground truth dis-
tribution over goal-conditioned plans, we retrieve all action
sequences of length T in the test set that share the given
start and goal state. The plan distribution of our probabilis-
tic model (conditioned on the start and goal observations) is
obtained by samplingK = 1500 different action sequences,
as discussed in Sec. 3.5. For the deterministic baseline, the
model produces only one plan (i.e., K = 1). In all cases,
the probability of a plan is defined as its frequency in the
obtained sample set. To evaluate the quality of the predicted
plans, we measure the (dis-)similarity between plan distri-
butions produced by each model (i.e., ours vs. the deter-
ministic variant) and that of the ground truth using the KL
divergence and NLL. Table 6 shows that our probabilistic
approach better matches the ground truth plan distribution
(i.e., it has lower KL and NLL). These results come about
because our model is able to sample multiple valid plans
with respect to the test set distribution, as opposed to the
deterministic model that considers a single feasible plan.

Sample diversity and mode coverage. For given start and
goal observations, our approach produces multiple plan hy-
potheses, using probabilistic sampling described in Sec. 3.5
(as visualized in Figure 4). In this section, we measure the
diversity of our samples and their relation to the ground
truth plans distribution. To characterize the ground truth
distribution, we define ground truth modes as the set of
unique action sequences in the test set that share the same
start and goal state. To calculate the relation of our sam-
ples to the ground truth modes we define two metrics, Mode
Recall (ModeRec) and Mode Precision (ModePrec). Mod-
eRec reflects how well the GT modes are covered by our
model and is calculated as the average number of GT modes
captured by at least one sample from our model. In com-

Pour Powder Pour Water Pour Juice Stir

Pour Water Pour Alcohol Pour Powder Stir

Pour Juice Pour Powder Stir Pour Alcohol

Figure 4. Sample plausible plans (seen in the test set) produced by
our probabilistic model, for the same {start, goal} observations.

Metric ↑ Method T = 3 T = 4 T = 5 T = 6

ModePrec Ours - deterministic 27.61 17.21 7.41 4.97
Ours - probabilistic 36.61 18.55 12.48 6.58

ModeRec Ours - deterministic 56.24 37.33 18.38 8.85
Ours - probabilistic 66.13 46.56 26.46 12.67

CosDist Ours - probabilistic 0.384 0.302 0.2471 0.1658

Table 7. Evaluation of diversity and accuracy of our samples with
respect to ground truth. Our approach improves both ModePrec
and ModeRec metrics. We further provide averaged pair-wise co-
sine distance as another indicator for diversity. CosDist for the
deterministic model is not provided, since it only produces a sin-
gle result with no pairs to compare.

plement, ModePrec measures how often a sampled plan is
feasible according to the test data; it is calculated as the av-
erage number of samples that match at least one GT mode.
Intuitively, ModeRec and ModeRec measure not only how
diverse the samples from our model are, but also how useful
this diversity is with respect to the GT. By measuring the
average cosine distance among model samples, i.e., Cos-
Dist — a metric widely used in the GAN literature — we
also show that our samples are diverse agnostic to the data
distribution. The results in Table 7 suggest our probabilis-
tic approach can produce both diverse and accurate plans,
where it is superior on all metrics.

5. Conclusion
We have introduced a weakly-supervised method for

probabilistic procedure planning using instructional videos.
Different from previous work, we echew the need for ex-
pensive visual supervision in favor of cheaper language su-
pervision by capitalizing on pre-trained text-video embed-
dings, which, remarkably, leads to superior planning perfor-
mance. We showed that modeling the interplay between in-
termediate visual states and actions step-by-step is not a ne-
cessity for procedure planning. Instead, we efficiently solve
the problem with a “one-shot” transformer decoder archi-
tecture. In addition, we demonstrated the crucial role of
modeling uncertainty in obtained plans to yield a principled
approach to planning from videos. We introduced a way to
evaluate such uncertainty on the test set and show that it is a
powerful metric to better understand the model and the task
of planning itself. Hopefully, future work will adopt the
probabilistic view on procedure planning from instructional
videos, not only in training but also in evaluation, such that
the next generation of planners can confidently predict mul-
tiple feasible plans to achieve the desired goal.
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