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Abstract

Point clouds upsampling is a challenging issue to gener-
ate dense and uniform point clouds from the given sparse
input. Most existing methods either take the end-to-end su-
pervised learning based manner, where large amounts of
pairs of sparse input and dense ground-truth are exploited
as supervision information; or treat up-scaling of different
scale factors as independent tasks, and have to build multi-
ple networks to handle upsampling with varying factors. In
this paper, we propose a novel approach that achieves self-
supervised and magnification-flexible point clouds upsam-
pling simultaneously. We formulate point clouds upsam-
pling as the task of seeking nearest projection points on the
implicit surface for seed points. To this end, we define two
implicit neural functions to estimate projection direction
and distance respectively, which can be trained by two pre-
text learning tasks. Experimental results demonstrate that
our self-supervised learning based scheme achieves com-
petitive or even better performance than supervised learn-
ing based state-of-the-art methods. The source code is pub-
licly available at https://github.com/xnowbzhao/sapcu.

1. Introduction

Point clouds serve as a popular tool to represent 3D data
due to their flexibility and compactness in describing ob-
jects/scenes with complex geometry and topology. They
can be easily captured by modern scanning devices, and
have been widely used in many applications, such as au-
tonomous driving, robotics, etc. However, due to the inher-
ent limitations of 3D sensing technology, raw point clouds
acquired from 3D scanners are usually sparse, occluded
and non-uniform. In many downstream applications, such
as surface reconstruction and understanding, dense point
clouds are desired for representing shapes with richer ge-
ometric details. Accordingly, people turn to develop a com-
putational approach, referred to as point clouds upsampling,
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which has attracted extensive attention in both industry and
academia [7,8, 13,20-22].

Unlike conventional grid based images, point clouds are
irregular and unordered, which make point clouds upsam-
pling a more challenging task than its 2D image counter-
part. The goal of point clouds upsampling is two-fold: 1)
generating a dense point set from the sparse input to pro-
vide richer details of the object; 2) generating a uniform and
complete point set to cover the underlying surface faithfully.

In recent years, deep neural networks based point
clouds upsampling approaches emerge and become popu-
lar, which adaptively learn structures from data and achieve
superior performance than traditional methods, such as
optimization-based ones [ 1,5,6]. For instance, Yu et al. [21]
propose to learn multi-level features per point and expand
the point set via a multi-branch convolution unit implicitly
in feature space, which is then split to a multitude of fea-
tures for reconstruction of an upsampled point set. Wang et
al. [20] propose to progressively train a cascade of patch-
based upsampling networks on different levels of detail. Li
et al. [7] apply generative adversarial network into point
clouds upsampling, which constructs an up-down-up expan-
sion unit in the generator for upsampling point features with
error feedback and self-correction, and formulate a self-
attention unit to enhance the feature integration. To bet-
ter represent locality and aggregate the point neighborhood
information, Qian et al. [13] propose to use a Graph Con-
volutional Network to perform point clouds upsampling.

In summary, the outlined deep learning based methods
take a general approach: first design an upsampling module
to expand the number of points in the feature space, then
formulate losses to enforce the output points to be as close
as possible to the ground truth dense points. However, these
methods suffer from the following two limitations:
End-to-End Training. These methods are trained in an
end-to-end supervised learning manner, which requires a
large amount of pairs of input sparse and ground-truth dense
point sets as the supervision information. The training data
is constructed by sampling from synthetic models, whose
distributions are inevitably biased from that of the real-
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scanned data. This would lead the trained models to have
poor generalization ability in real-world applications. Thus,
it is more desirable to develop self-supervised or unsuper-
vised point cloud upsampling schemes.
Fixed Upsampling Factor. Due to resource constraints,
such as display resolution and transmission bandwidth, the
required upsampling factor is usually various. These ex-
isting methods treat upscaling of different scale factors as
independent tasks, which train a specific deep model for a
pre-defined factor and have to build multiple networks to
handle upsampling with varying factors. This manner is
clumsy, which increases both model complexity and train-
ing time significantly. Thus, it is more desirable to develop
unified point cloud upsampling schemes that can handle ar-
bitrary scale factor.

Some methods developed very recently [9, 14, 19,22] in-
vestigate the above limitations and attempt to address them:

* Regarding self-supervised point cloud upsampling,
Liu et al. [9] propose the coarse-to-fine framework,
which downsamples the input sparse patches into
sparser ones and then exploits them as pairs of super-
vision information to perform end-to-end training. [22]
proposes an end-to-end self-supervised learning man-
ner, in which the loss functions enforce the input sparse
point cloud and the generated dense one to have similar
3D shapes and rendered images. However, these two
methods are still limited to a fixed upsampling factor.

* Regarding arbitrary-scale upsampling, inspired by the
counterpart Meta-SR in image [4], Ye et al. [19] pro-
pose Meta-PU for magnification-flexible point cloud
upsampling, in which the meta-subnetwork is learned
to adjust the weights of the upsampling blocks dynam-
ically. Qian et al. [ 14] design a neural network to adap-
tively learn unified and sorted interpolation weights as
well as the high-order refinements, by analyzing the
local geometry of the input point cloud. However,
these two methods still follow the end-to-end super-
vised learning manner, which need to construct a large-
scale training set including ground truth dense point
sets with scales within a wide range.

In this paper, we propose a novel and powerful point
clouds upsampling method via implicit neural representa-
tion, which can achieve self-supervised and magnification-
flexible upsampling simultaneously. Specifically, to get rid
of the requirement of ground truth dense point clouds, we
do not directly learn the mapping between the input sparse
and output dense point sets. Alternatively, inspired by the
notion that an implicit surface can be represented by signed
distance function (SDF) [10, 11, 15], we turn to seek the
nearest projection points on the object surface for given seed
points through two implicit neural functions, which are used
to estimate projection direction and distance respectively.

The two function can be trained by two constructed pre-
text self-supervised learning tasks. In the way, as long as
the seed points are sampled densely and uniformly, we can
produce high-resolution point clouds that are dense, uni-
form and complete. To guarantee the uniformity of seeds
sampling, we exploit equally-paced 3D voxels to divide the
space of point cloud. Experimental results demonstrate our
self-supervised learning based scheme achieves competitive
or even better performance that supervised learning based
state-of-the-art methods. The main contributions of this
work are highlighted as follows:

* To the best of our knowledge, we are the first in the lit-
erature to simultaneously consider self-supervised and
arbitrary-scale point clouds upsampling.

* We formulate point clouds upsampling as the task of
seeking nearest projection points on the implicit sur-
face for seed points, which can be done by two im-
plicit neural functions trained by pretext tasks. From
the generated dense point clouds, we can achieve
arbitrary-scale upsampling by farthest point sampling.

e Although our method is self-supervised, it produces
high-quality dense point clouds that are uniform and
complete, and achieves competitive objective perfor-
mance and even better visual performance compared
with state-of-the-art supervised methods.

2. Method

Define X = {p;}; € R™*3 as the input sparse point
cloud. For a desirable scaling factor r, we target to obtain a
corresponding dense point cloud Y = {p;}¥; € RV*3 in-
cluding N = |r x n] points. § is defined as the underlying
surface of the dense point cloud. The high-resolution point
cloud Y is required to be dense and uniform, as well as be
able to handle occlusion and noise, i.e., to be complete and
clean.

Unlike the existing methods that take the end-to-end
training framework, we do not directly learn the mapping
between the input sparse and output dense point sets, but
instead seek the nearest projection point on the object sur-
face for a given seed point in a self-supervised manner. By
densely and uniformly sampling seed points in the space,
we can obtain dense and approximately uniform projec-
tion points, which can describe the underlying surface faith-
fully. The proposed self-supervised point clouds upsam-
pling strategy includes the four steps:

* Seeds Sampling. We represent the geometric space
of the point cloud by 3D voxel grid, from which we
choose the centres of voxels that are close to the im-
plicit surface S as the seed points.
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* Surface Projection. For seed points, we project them
to the implicit surface S to obtain the projected points,
which construct the generated dense point cloud.

* Outliers Removal. We further remove the projected
points that are generated by far seed points to achieve
cleaner point cloud.

* Arbitrary-Scale Point Cloud Generation. To obtain the
desired upsampling factor, we adjust the number of
vertices of the generated dense clouds by farthest point
sampling.

In the following, we introduce each step in detail.

2.1. Seeds Sampling

To obtain uniformly sampled seed points, given a point
cloud, we divide the 3D space into equally spaced voxels
{V(a,y,2) }> where V g ¢ o) represents the voxel locating in
the origin of the 3D Cartesian coordinate system. We define
the resolution of a 3D voxel volume as [ x [ x [. The centre
of avoxel Vi, , .yisthus ¢y ) = [+ 0.5% [,y + 0.5
I,z + 0.5 % []. The centres of voxels are equally distributed
in the space, which serve as good candidates of seed points.
However, we do not use them all, but choose the ones that
are closed to the underlying surface of the point cloud.

A reasonable principle to choose centres is according
to their distances to the surface S. We choose a centre
C(z,y,2) as the seed if its distance to the surface within
a preset range: Dist(c(y,y.),S) € [Dy, Dy]. The dif-
ficulty lies in that we cannot directly compute the dis-
tance Dist(c(, , ., S), since the underlying surface S is un-
known. We propose an alternative strategy to approximate
Dist(c(z,y,-),S). Specifically, from the input sparse point
sets X', we choose M points that are nearest to Cla,y,2)» de-
noted as {Pc,1, Pe,2: - = s Pe,ms -+ * 5 Pe,m | that are ordered
from near to far. From these points, we can form a set of
triangles {T,, = (Pc.1, Pe.2, Pesm) }2L_5. We then perform
the following approximation:

Dist(C(y,y.2),S) ~ minDist(c(, y ), t), t € {Trm}h_s
ey
where ¢ represents a point contained in the constructed tri-
angles. Finally, we obtain the seed points set C. By set-
ting appropriate [, we can generate dense and uniformly dis-
tributed seed points.

2.2. Surface Projection

With the sampled seed points, the next step is to seek the
their projection points on the surface, which are the target
points of the generated dense point cloud.

In the field of 3D computer vision and graphics, it is
well-known that an implicit surface can be defined as a
signed distance function (SDF) [10, |1, 15]. SDF, when

passed the coordinates of a point in space, outputs the clos-
est distance of this point to the surface, whose sign indicates
whether the point is inside or outside of the surface. In-
spired by SDF, we propose the following feasible approach
to estimate the projected point on the surface for a query
seed point.

It is worth noting that, the computation strategies of SDF,

such as [10, 1 1, 15], cannot be directly applied for our pur-
pose. For a 3D query point x, SDF outputs: SDF(x) =
5,5 € R. The sign of s only indicates it is inside or out-
side of a shape, but does not provide the direction to the
surface. In our method, for a seed point ¢ € C, we divide
the task of estimating projection point into two sub-tasks:
1) estimating the projection direction n € [—1,1]3; 2) esti-
mating the projection distance d € R. Then the coordinate
of the projection point of the seed point c can be obtained
asicp, =c+nxd.
Projection Direction Estimation. We train a multi-layer
fully-connected neural network f,,(-;©,,) for this purpose,
which takes the query point ¢ and the sparse point cloud X
as inputs:

n= f,(c,X;0,) 2

To reduce the computational complexity, we take k near-
est points to ¢ in X instead of the whole X" as input. We
denote this subset of points as X. = {p1, -, Ppx}. More-
over, to facilitate the inference process of neural networks,
we perform normalization on the point coordinates by set-
ting c as the origin. In this way, we can simplify the estima-
tion function as:

n=f,(X.;0,) 3)

where X. = {p1 — ¢, - ,px — C}.

Projection Distance Estimation. Similarly, for estimating
the projection distance d, we also train a multi-layer fully-
connected neural network f4(-; ©,,), which takes the query
point c, the subset of nearest points X, and the estimated
projection direction n as inputs:

d = fa(e, Xe,n;04) @

Normalization is also helpful for this network. Different
from f,,, here the input n involves direction. Therefore, it
should perform normalization on both position and direc-
tion, which can be done in two stages: 1) moving c to the
origin; 2) applying the rotation matrix W, to rotate n to a
specific direction ny, i.e., n; = W, n. After normalization,
X, becomes X, = {W,(p1—c), -+, W,.(pr—c)}, which
is the only required input for fj:

d = fa(Xe;04) )
2.3. Outliers Removal

In the step of seeds sampling, some points that are actu-
ally far away from § may be included into the seed points
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Figure 1. The network architecture of implicit neural function.

set C' due to the error in approximation. The normal vector
and distance of these points cannot be well estimated, lead-
ing to outliers in the resulting dense point cloud. We turn to
exploit the post-processing procedure to remove them.

Specifically, for a projection point c,,, we find its v near-
est points {c, 1, - ,¢p}. We then compute the average
bias between c,, and them:

1 v )
by =~ > " Dist(cy, cp,i) (6)
=1

For all projection points, we do in the same way to get {b,, },
the average of which is denoted as b. We determine a point
as outlier if it satisfies b, > b, where ) is set as 1.5 in
practical implementation.

2.4. Arbitrary-Scale Point Cloud Generation

Note that the above process cannot accurately control the
number of vertices generated. Thus, it is necessary to adjust
the number of vertices to achieve upsampling with the de-
sired scale factor. In our context, we first perform inverse
normalization on the generated point cloud, and then adjust
the number of vertices to IV by the farthest point sampling
algorithm [12].

3. Implicit Neural Networks Training

In this section, we introduce the architecture of implicit
neural networks and the training strategy.

3.1. Architectures

The networks f,, and f; share the same architecture as
shown in Figure 1, which borrows the idea of encoder-
decoder framework [ 10]. The network takes the normalized
subset of points as input, which are feed into the encoder
to obtain a 2048-dimensional feature vector. Here we em-
ploy a state-of-the-art method DGCNN [17] as the encoder

to preserve surface information in multi-levels. The feature
vector is then passed through 4 full-connected (FC) layers
with batch normalization and ReLU, the output dimensional
of which are 1024, 512 and 128 respectively. The output di-
mensional of the last FC layer is 3 for the projection direc-
tion n and 1 for the the projection distance d. Note that the
design of the network is not the main contribution of this
paper. We can exploit any suitable network for our purpose.

3.2. Training Data Preparation

To train the two implicit neural functions, we construct
two pretext tasks, for which we prepare training samples
that consist of 3D points and the corresponding ground truth
projection direction and distance values. We train with
normalized watertight meshes that are constructed by the
TSDF-Fusion presented in [10, 16] from a subset of the
ShapeNet [2] that consists of 13 major categories. Since
fn and fy are designed with different purposes, we prepare
different training pairs for them:

* For preparing the training data of f,,, we firstly gen-
erate the seed points: 50K seed points are randomly
selected around the mesh surface by limiting that the
distances between them and the surface are within a
preset range [D; — €, D,, + €], where € is introduced
to increase robustness. For a seed point ¢, we find the
nearest point on the mesh and sample 5 points around
it, then compute the average vector d between ¢ and
them. In this way, we can effectively handle the error
in mesh reconstruction. The ground truth n is finally
derived as the normalization of d. Secondly, for every
16 seed points, we randomly select 2048 points as the
corresponding sparse point cloud X.

* For preparing the training data of fy, SOK seed points
are randomly selected around the mesh surface in the
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Scale 2x 4x
Metric (10~3) CDh | EMD | | F-score 1 | mean ] std | CDh | EMD | | F-score T | mean | std |
PU-Net [21] 12.9 (6) | 6.75(6) 334 (5) 4.02(5) | 5.62(4) 11.3(7) | 7.02(7) 462 (7) 5.05(7) | 6.81(6)
Fixed MPU [20] - - - - - 104 (4) | 5.64(5) 527 (4) 3.61(4) | 5.50(3)
Scale PU-GAN [7] 12.7.(5) | 5.09 (5) 326 (6) 4.32(6) | 6.01(5) 109 (5) | 6.66 (6) 484 (6) 4.66 (6) | 6.56(5)
PU-GCN [13] 122 (3) | 494 4) 360 (3) 3.47(2) | 5.09(2) 102 (3) | 5.50(4) 537 (3) 335(2) | 5.01(2)
PU-DR [§] 11.0 (1) | 3.55(1) 409 (1) 2.30 (1) | 4.05(1) 871 (1) | 3.98(2) 625 (1) 224 (1) | 3.89(1)
Arbitrary | Meta-PU [19] 126 (4) | 3.94(2) 339 (4) 377(4) | 541(3) 109 (5) | 3.56(1) 506 (5) 3.89(5) | 5.60(4)
Scale Proposed 12.1(2) | 493(3) 371 (2) 3.49(3) | 10.2(6) 10.1(2) | 4.87(3) 561 (2) 3493) | 9.35(7)
Scale 8x 16 %
Metric (10~3) CD | EMD | | F-score T | mean] std | CD | EMD | | F-score T | mean | std |
PU-Net [21] 9.67 (5) | 8.91(6) 611 (6) 4.85(6) | 6.81(5) || 925(7) | 10.4(7) 632 (7) 6.04 (7) | 8.04 (6)
Fixed MPU [20] - - - - - 8.12(5) | 7.74 (6) 727 (5) 4.01(6) | 6.11(5)
Scale PU-GAN [7] 8.82(4) | 5.05(3) 676 (4) 376 (4) | 551 (3) || 7.52(2) | 6.02(4) 770 (3) 3.14(2) | 4.92(2)
PU-GCN [13] 8.78 (3) | 6.41(5) 678 (3) 333(2) | 5.06(2) || 7.80(4) | 7.44(5) 749 (4) 339@4) | 5.11(3)
PU-DR [§] 834 (1) | 3.95(1) 708 (1) 299(1) | 497(1) || 7.29(1) | 4.51(1) 779 (1) 292 (1) | 472(1)
Arbitrary | Meta-PU [19] 9.71 (6) | 4.33(2) 625 (5) 395(5) | 5.68(4) 8.96 (6) | 5.62(2) 676 (6) 3.87(5) | 559 4)
Scale Proposed 870(2) | 5534 706 (2) 348 (3) | 8.84(6) || 7.653) | 598 (3) 772 (2) 335(@3) | 834 ()

Table 1. Objective performance comparison with respect to CD, EMD, F-score, mean and std with state-of-the-art methods. The ranking

numbers are also provided.

same way as f,. We then find the corresponding near-
est projection points on the surface. The distance be-
tween a seed point and the projection point is used as
the ground truth d. The generation of X is in the same
way as fp,.

It is worth noting that, although the training data are gen-
erated from watertight meshes, our scheme is capable to
handle non-watertight point clouds, which can be observed
in the real-world cases shown in Figure 6.

3.3. Training Details

The training of f,, and f; is done by minimizing the sum
over losses between the predicted and real direction/length
values under the mean squared error (MSE) loss function.
The training process is conducted on a server with two Tesla
V100 GPUs. The networks are trained for 1200 epochs
with a batch size of 64, using the Adam algorithm. Fol-
lowing [10], the learning rate is set as 10~4, and the other
hyperparameters of Adam are set as 81 = 0.9, 82 = 0.999,
epsilon = 1078, weight decay = 0.

4. Experiments

In this section, we provide extensive experimental results
to demonstrate the superior performance of our method.

4.1. Comparison Study

We compare the proposed self-supervised arbitrary-scale
point clouds upsampling (SSAS) method with several state-
of-the-art works, which can be divided into two categories
in term of the scale factor: 1) fixed scale methods, including
PU-Net [21], MPU [20], PU-GAN [7], PU-GCN [13], PU-
DR [8]; 2) arbitrary scale method, including Meta-PU [19].

Note that these methods are all supervised learning based.
The compared models are trained with the released codes by
their authors, following the default settings in their papers.

We train all these compared methods following the ap-
proach mentioned in [19] for fair comparison. The test
samples are from the dataset adopted by [19,21]. We non-
uniformly sample 2048 points using Poisson disk sampling
from 20 test models to form the test set.

4.2. Parameters Setting

The side length of voxel / and the range of the distance
between seed point and surface [D;, D,,] decide the num-
ber of seed points. However, the number is also depended
on the shape of input point cloud. To ensure that enough
points are generated, we set [ = 0.004 and [D;, D,] =
[0.011,0.015]. Under this condition, the minimum num-
ber of generated points is 99001 (Chair), which meets the
demands of 16 or higher scale upsampling. The specific
direction n, in normalization can be arbitrarily chosen. We
set n; = (1,0,0) in our experiments. The number of near-
est points k is set as 100 in Section 2.2 and 30 in Sec-
tion 2.3. The number of nearest point M for computing
Dist(C(z,y,2), S) affects the number of outliers and continu-
ity of seed points. We set M/ = 10 and further discuss the
effect of different M in ablation study.

4.3. Objective Performance Comparison

Objective Evaluation. We employ six popular metrics
for objective evaluation: 1) Chamfer Distance (CD) and
Earth Mover Distance (EMD) [21]: which evaluate the
similarity between the predicted points and ground truth
one in the Euclidean space. For both metrics, smaller is
better. 2) F-score [18]: which treats upsampling as a clas-
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Scale 2% 4x
p(10~2) 0.2% | 0.4% | 0.6% | 0.8% | 1.0% | 0.2% | 0.4% | 0.6% | 0.8% | 1.0% |
PU-Net [21] 3.05(6) | 2.33(6) | 2.03(6) | 1.86(6) | 1.75(6) 272(7) | 2.19(7) | 1.97(7) | 1.84(7) | 1.76 (7)
Fixed MPU [20] - - - - - 2.53(6) | 2.03(6) | 1.80(6) | 1.67(6) | 1.59 (6)
Scale PU-GAN [7] 246(3) | 1.86(3) | 1.62(4) | 1.50(4) | 1434 2454) | 1.94(5) | 1L.73(5) | 1.62(5) | 1.56(5)
PU-GCN [13] 2.68(5) | 2.06(5) | 1.80(5) | 1.65(5) | 1.57(5) 2403) | 1934 | 1.724) | 161 (4) | 1.54(4D
PU-DR [8] 1.83(1) | 1.34(1) | 1.17(1) | 1.09(1) | 1.06 (1) 1.77(2) | 146 (2) | 1.34(2) | 1.28(2) | 1.24(2)
Arbitrary | Meta-PU [19] 253(@4) | 1.86(3) | 1.58(3) | 1.43(3) | 1.35(3) 250(5) | 1.87(3) | 1.60(3) | 1.45@3) | 1.37(3)
Scale Proposed 196(2) | 1.50(2) | 1.33(2) | 1.25(2) | 1.21(2) 1.72.(1) | 1.40(1) | 1.27(1) | 1.21(1) | 1.19(1)
Scale 8% 16 x
p (10~2) 0.2% | 0.4% | 0.6% J 0.8% | 1.0% | 0.2% | 0.4% | 0.6% J 0.8% | 1.0% |
PU-Net [21] 2.64(5) | 221(6) | 2.02(6) | 1.91(6) | 1.84(6) 2.86(6) | 242(6) | 2.22(7) | 2.10(7) | 2.02(7)
Fixed MPU [20] - - - - - 230(4) | 196(4) | 1.82(4) | 1.73(4) | 1.69 (4)
Scale PU-GAN [7] 1.72(22) | 1.473) | 1.38(3) | 1.34(3) | 1.32(3) 1.793) | 1.57(3) | 148@3) | 144 (3) | 1.41(3)
PU-GCN [13] 231 (4) | 193@) | 1.75@) | 1.65(5) | 1.59(5) 242 (5) | 207(5) | 1.91(5) | 1.82(5) | 1.76 (5)
PU-DR [8] 142 (1) | 1.20(1) | 1.13(1) | L.11(1) | L.11(1) 1.56 (1) | 1.38(1) | 1.32(1) | 1.29(1) | 1.28(1)
Arbitrary | Meta-PU [19] 2.72(6) | 2.05(5) | 1.76 (5) | 1.60(4) | 1.51(4) 327(7) | 2.51(7) | 2.14(6) | 1.93(6) | 1.79 (6)
Scale Proposed 1.72(2) | 145@2) | 1.34(22) | 1.29(2) | 1.27(2) 1.75(2) | 1.51(2) | 1.41(2) | 1.36(2) | 1.33(2)

Table 2. Uniformity performance comparison with respect to NUC scores. The ranking numbers are also provided.

() (b) (©) (d)

® @ (h) ®

Figure 2. 4x point upsampling results of Chair, Camel and Fandisk. (a) the input point cloud; (b) the ground truth; (c) to (i) the results of
PU-Net [21] , MPU [20], PU-GAN [7], PU-GCN [13], PU-DR [8], Meta-PU [19] and ours. Please enlarge the PDF for more details.

sification problem. For this metric, larger is better. 3)
mean and std [21]: which evaluate the distance between
the predicted point cloud and ground truth mesh. For both
metrics, smaller is better. 4) Normalized Uniformity Co-
efficient (NUC) [21]: which evaluates the uniformity of
points on randomly selected disk with different area per-
centage p = 0.2%,0.4%,0.6%, 0.8%, 1.0%. For this met-
ric, smaller is better.

In Table 1, we offer the comparison results for four scale

factors [2x,4x,8x,16x] with respect to CD, EMD, F-
score, mean and std. Surprisingly, it can be found that,
although our model is trained in a self-supervised manner
without accessing to the ground-truth, it achieves competi-
tive performance with those supervised learning based ones
with respect to metrics CD, EMD, F-score and mean. Tak-
ing CD for example, our method is ranked #2, #2, #2 and
#3 among seven compared methods for [2x,4x,8x,16x]
respectively. Similar results can be found for F-score, for
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Input 4x 16x 64 x

Figure 3. 4, 16x and 64 x upsampling results of Moai.

which our method is ranked #2 for all cases. Note that our
method performs worst with respect to std, which is because
that outliers cannot be completely removed.

Table 2 shows the uniformity evaluation results with re-
spect to NUC. Our method is ranked #2 for [2x, 8, 16x],
just blow PU-DR [8]. In the case of 4x, our method is
ranked #1. These results demonstrate that the proposed
method produces dense and uniform point clouds.
Inference Time Cost Comparison. This experimental
analysis is conducted on a server with two 1080Ti GPU.
In our inference process, estimation of direction and length
are the most time-consuming steps. According to the exper-
iments, generating 40000 projected points by our method
would cost 46s in average. As a comparison, the time costs
of generating 40000 points (16x) are 342.4s by MPU [20]
and 0.228s by Meta-PU [19]. It should be noticed that the
estimation of each point is independently performed and
thus can be done in parallel to speed up significantly.

4.4. Subjective Performance Comparison

Visual Comparison. Figure 2 illustrates the 4x upsam-
pling results generated by our method and the compared
state-of-the-art methods on three models Chair, Camel and
Fandisk. The results show that our method achieves better
visual performance than other methods. The produced high-
resolution point clouds are dense and uniform, which also
have continuous and complete contours. Specifically, re-
sults of the highlighted part of Chair show that our method
succeeds in recovering structure from very few points; re-
sults of the highlighted part of Camel show that our method
can handle complex contour. Furthermore, our method can
reconstruct the edge region very well, as demonstrated in
the highlighted part of Fandisk. The above visual compar-
isons verify the superiority of our proposed method.
Results on Variable Scales. Figure 3 shows the upsam-
pling results of Moai with different scale factors. It can be
observed that the contours of all the results are consistent,
and the uniformity of points is well preserved.

Robustness against Varying Sizes of Input. Figure 4
shows the 4x upsampling results of Eight with different

512 points 1024 points 2048 points 4096 points

Figure 4. 4x Upsampling results of Eight with varying size of
input. The first row are the inputs, the second row are the corre-
sponding upsampling results.

Clean 1% 2%

Figure 5. 4x Upsampling results of Star with different additive
Gaussian noise level.

sizes of input point sets. Our method generates consistent
outlines regardless of the number of input points. Figure 5
shows the 4x upsampling results of star with noise level
0%, 1% and 2%. Our scheme also works well on the noisy
input while the uniformity is well preserved. Overall, our
method is robust to the input size and noise.

Result on Real-world Sample. We choose one real-world
sample from KITTI [3] to evaluate the generalization capa-
bility of our method. In Figure 6, the upsampling results
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Figure 6. 8 x Upsampling result on a real-world sample from KITTI. Please enlarge the PDF for more details.
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(a) (b) (c)

Figure 7. Ablation on the choice of M. (a) input point cloud, (b)

M = 3, (c) M = 10.
m} |} O
0 0 O

(a) (b) (©

Figure 8. Ablation on the outliers removal. (a) input point cloud,
(b) without outliers removal, (c) with outliers removal.

of three different regions are presented. It can be found
that, even though the input point cloud is sparse and non-
uniform, our scheme can still recover the high-resolution
one very well.

4.5. Ablation Study

About the choice of M. M works in the distance approxi-
mation of a seed point to the underlying surface, which af-
fects the number of outliers and the continuity of projected
points. When M increases, both the continuity and the
number of outliers increase. To show the effect of differ-
ent M, we provided the 4 x upsampling result of cow with
M = 3 and M = 10. The results are shown in Figure 7. It
can be observed that, when M = 3, no outlier is introduced
to the blue box. However, the surface is discontinuous in
the red box. When M = 10, the surface in the red box be-
comes continuous, however, a few amount of outliers is still
introduced to the blue box after outliers removal.

About the necessity of outliers removal. To show the ef-

fect of outliers removal, we provid the 4 x upsampling re-
sult of cow with and without outliers removal. The results
are shown in Figure 8. It can be observed that the outliers
removal does not affect the smooth region in the red box,
while it can remove most of the outliers in the blue box.

4.6. Limitations

The limitation of our method are two-fold. Firstly, even
outliers removal is performed, there still exist a certain num-
ber of outliers. Secondly, our method cannot precisely con-
trol the number of upsampled point set. We have to first
generate a dense one with over-sampled points and then ad-
just the number of vertices to the target number by the far-
thest point sampling algorithm.

5. Conclusion

In this paper, we present a novel and effective point
clouds upsampling method via implicit neural representa-
tion, which can achieve self-supervised and arbitrary-scale
upsampling simultaneously. We formulate point clouds up-
sampling as the task of seeking nearest projection points
on the implicit surface for seed points, which can be
done by two implicit neural functions trained without the
ground truth dense point clouds. Extensive experimen-
tal results demonstrate that our method can produce high-
quality dense point clouds that are uniform and complete,
and achieves competitive objective performance and even
better visual performance compared with state-of-the-art
supervised methods.
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