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Abstract

Image animation brings life to the static object in the
source image according to the driving video. Recent
works attempt to perform motion transfer on arbitrary ob-
jects through unsupervised methods without using a priori
knowledge. However, it remains a significant challenge for
current unsupervised methods when there is a large pose
gap between the objects in the source and driving images.
In this paper, a new end-to-end unsupervised motion trans-
fer framework is proposed to overcome such issues. Firstly,
we propose thin-plate spline motion estimation to produce
a more flexible optical flow, which warps the feature maps
of the source image to the feature domain of the driving
image. Secondly, in order to restore the missing regions
more realistically, we leverage multi-resolution occlusion
masks to achieve more effective feature fusion. Finally, ad-
ditional auxiliary loss functions are designed to ensure that
there is a clear division of labor in the network modules,
encouraging the network to generate high-quality images.
Our method1 can animate a variety of objects, including
talking faces, human bodies, and pixel animations. Experi-
ments demonstrate that our method performs better on most
benchmarks than the state of the art with visible improve-
ments in motion-related metrics.

1. Introduction
Image animation (Fig. 1) transfers the motion of the ob-

ject in the driving video to the static object in the source
image, which is widely used for video conferencing [31],
movie effects [21] and entertainment videos. It can stimu-
late people’s creativity to create more interesting works.

Researches have been done on motion transfer by using a
priori knowledge of objects, such as 3D models, landmarks,
domain labels [6,9,11,18,23,27,30,35,37]. However, these
approaches, which rely on labeled data, only work for spe-
cific objects, such as faces [9, 11, 30, 35] and human bod-
ies [6, 18, 23, 27, 37]. It is costly to obtain such labeled

1Our source code is publicly available: https://github.com/yoyo-
nb/Thin-Plate-Spline-Motion-Model.
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Figure 1. Example animations generated by our method trained on
different datasets.

data or pre-trained keypoint extractors. Therefore, these ap-
proaches cannot be applied to objects without labeled data.

Recently, some unsupervised motion transfer methods
have been proposed that do not require a priori knowledge
of objects [25, 26, 28, 32]. These methods use two frames
sampled from a video for training, where one frame is used
as the source image to reconstruct the other frame as the
driving image. And the methods are optimized using recon-
struction losses to learn the motion representations. Some
unsupervised methods [25, 26, 28] divide motion transfer
into two steps. First, an optical flow is estimated using
the motion representation that warps the feature maps of
the source image to the feature domain of the driving im-
age. Second, an occlusion mask is predicted to indicate the
missing regions of the warped feature maps, which are then
inpainted in the network. Experiments have shown that un-
supervised methods can perform motion transfer on various
objects [25, 26, 28].

However, there are still some challenges with the unsu-
pervised methods. First, the motion representation is not
flexible enough, making it difficult for the network to learn
the large pose gap between the objects in the source and
driving images during training. This deficiency results in
large discrepancies between the warped feature maps and
the feature domain of the driving image. Moreover, the area
of the occlusion mask will increase, making motion transfer
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too dependent on the inpainting capability of the network,
which leads to the second problem: inadequate inpainting
capability of the network. Previous works [25, 26, 28] did
not take full advantage of features at different scales to in-
paint the missing regions, so it is difficult to generate more
realistic images.

Some unsupervised methods [26, 28] improve the qual-
ity of the animation by combining local affine transforma-
tions to estimate the motion. However, the affine trans-
formation is linear, which makes it difficult to represent
complex motions. In fact, the motions of objects are of-
ten not linear locally (for example, when people open their
mouths, their lips are curved). To overcome this, we in-
troduce a more flexible nonlinear transformation, thin-plate
spline (TPS) transformation, to approximate the motion
and propose a new end-to-end unsupervised motion trans-
fer framework. First, we predict several sets of keypoints
to generate TPS transformations and combine them with
the affine background transformation [28] to estimate the
optical flow. Furthermore, we perform dropout for mul-
tiple TPS transformations during the early stage of train-
ing so that each TPS transformation contributes to the es-
timated optical flow. TPS motion estimation makes the es-
timated optical flow more flexible, stable and robust than
previously estimated [26,28]. Second, we predict occlusion
masks for each layer of warped feature maps, making the
feature maps have a different focus for more efficient fea-
ture fusion. Finally, we design the auxiliary loss functions
to make each module have a clearer division of labor, en-
couraging the network to generate high-quality images. The
proposed framework approximates the motion more accu-
rately and has a stronger inpainting capability. To summa-
rize, the main contributions are as follows:

• We present TPS motion estimation to approximate the
motion from the source image to the driving image. In
addition, we perform dropout on multiple TPS trans-
formations before combining them during the early
stage of training.

• We propose a new end-to-end unsupervised motion
transfer framework. It warps the feature maps of the
source image using the estimated optical flow and then
leverages multi-resolution occlusion masks to indicate
the missing regions for inpainting.

• Experiments demonstrate that our method outperforms
previous unsupervised motion transfer methods on var-
ious datasets, including talking faces, taichi videos,
TED-talk videos and pixel animations. In particular,
there is a visible improvement in motion-related met-
rics.

2. Related Work
Motion transfer. There are many supervised motion trans-
fer methods that require a priori knowledge of moving ob-

jects, such as landmarks [6, 11, 23, 27, 35, 37], 3D mod-
els [9, 18, 30] or domain labels [7]. Specially, GANima-
tion [22] uses the Facial Action Coding System (FACS) [10]
to describe facial expressions. However, these methods can-
not be applied to new objects without labeled data, such as
pixel animations.

As a comparison, unsupervised methods do not need to
introduce a priori knowledge of the animated object dur-
ing training [25, 26, 28, 32]. X2Face [32] learns the identity
representation of the source image by the embedding net-
work, and then generates an optical flow to warp the embed-
ded image. Some unsupervised methods attempt to model
the motion representation and disentangle identity and pose
from the image. Monkey-Net [25] estimates optical flow for
animating by predicting several pairs of unsupervised key-
points. Based on this, first order motion model (FOMM)
[26] performs first-order Taylor expansions near each key-
point and approximates the motion in the neighborhood of
each keypoint using local affine transformations, which sig-
nificantly improves the quality of motion transfer. Siarohin
et al. proposed motion representations for articulated ani-
mation (MRAA) [28], which improves the shortcomings of
FOMM [26] and achieves state-of-the-art performance of
unsupervised methods. MRAA [28] uses PCA-based mo-
tion estimation, which has better quality in representing ar-
ticulated motions (e.g., human body). In addition, it adds
background motion estimation to eliminate the negative ef-
fects of camera motion. These unsupervised methods can
perform motion transfer on arbitrary objects. Comparing
these methods, our approach uses TPS motion estimation,
which estimates optical flow more flexibly and works better
for large-scale motions.

Multi-scale feature fusion. Multi-scale feature fusion has
proven to be effective in several tasks in computer vi-
sion, including keypoint prediction [4, 29, 33], segmenta-
tion [19, 24, 36] and image generation [8, 15, 16]. Exten-
sive experiments have demonstrated that different layers of
the network focus on different levels of features [8, 16, 17].
Lower scale feature maps focus on the overall patterns of
the image, while larger scale feature maps emphasize de-
tailed textures. The unsupervised motion transfer meth-
ods [26, 28] estimate an occlusion mask for the missing re-
gions of the warped feature maps and inpaint them through
feature fusion ways. FOMM [26] uses an hourglass net-
work to upsample the warped feature maps gradually to re-
construct the driving image. While Monkey-Net [25] and
MRAA [28] warp multi-scale feature maps and add them
to the decoder part of the hourglass network via skip con-
nections [27]. However, they use a single occlusion mask
for feature maps at different scales, which is not conducive
to the network that learns features with different focuses at
multiple scales. Our approach also uses a skip-connected
hourglass network for inpainting. The difference is that we
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Figure 2. Overview of our model. The BG Motion Predictor predicts the affine transformation, representing the background motion from
the source image to the driving image. At the same time, we estimate K sets of keypoints using the Keypoint Detector, each of which
generates a TPS transformation. The Dense Motion Network will then combine the K + 1 transformations (K TPS transformations and
one affine transformation) for estimating optical flow and multi-resolution occlusion masks. Finally, we feed the source image into the
Inpainting Network, warp the feature maps extracted by the encoder using optical flow, and mask them with the corresponding resolution
occlusion masks. The generated image will be output at the last layer of the Inpainting Network.

estimate multi-resolution occlusion masks for feature maps
at different scales, allowing features to be more fully fused
for more realistic inpainting.

3. Method

Fig. 2 shows the overview of our proposed model. It
generates the reconstructed driving image D̂ given a source
image S and a driving image D. The model consists of
following modules:

• Keypoint Detector. The Keypoint Detector Ekp re-
ceives S and D to predict K ×N pairs of keypoints to
generate K TPS transformations.

• BG Motion Predictor. The concatenation of S and D
is fed into the BG Motion Predictor Ebg to estimate the
parameters of the affine background transformation.

• Dense Motion Network. The module is an hourglass
network. It receives K TPS transformations from Ekp

and one affine transformation from Ebg . The optical
flow will be estimated by combining these K+1 trans-
formations. At the same time, the multi-resolution oc-
clusion masks are predicted by different layers of the
decoder part to indicate missing regions of the warped
feature maps.

• Inpainting Network. It is also an hourglass network.
It warps the feature maps of the source image using the
estimated optical flow and inpaints the missing regions
of the feature maps for each scale. The generated im-
age is output at the last layer.

3.1. TPS Motion Estimation

Motion estimation aims to approximate the mapping T
such that T (S) = D. In contrast to the combination of local
affine transformations in FOMM [26] and MRAA [28], we
propose TPS motion estimation to approximate T .

TPS transformation [2] is a flexible, nonlinear trans-
formation that allows representing more complex motions.
Given corresponding keypoints in two images, we can warp
one to the other with minimum distortion by using TPS
transformation Ttps:

min

∫∫
R2

((
∂2Ttps
∂x2

)2

+ 2

(
∂2Ttps
∂x∂y

)2

+

(
∂2Ttps
∂y2

)2
)
dxdy,

s.t. Ttps(PS
i ) = PD

i , i = 1, 2, . . . , N,

(1)

where PX
i is the keypoints of image X. We use the Key-

point Detector to predict K × N keypoints for S and D,
where K is the number of TPS transformations. Every N
pairs (N = 5 for this paper) of keypoints generate one TPS
transformation from S to D. According to the derivation
in [2] , the kth TPS transformation is obtained as follows:

Tk(p) = Ak

[
p
1

]
+

N∑
i=1

wkiU
(∥∥PD

ki − p
∥∥
2

)
, (2)

where p = (x, y)⊤ is pixel coordinates, Ak ∈ R2×3 and
wki ∈ R2×1 are the TPS coefficients obtained by solving
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Eq. (1), U(r) is a radial basis function, which represents the
influence of each keypoint on the pixel at p:

U(r) = r2 log r2. (3)

Besides, the camera motion in videos will cause the pre-
dicted keypoints to appear in the background area, leading
to deviations in the motion estimation. To address this prob-
lem, we additionally predict an affine background transfor-
mation like MRAA [28] to model the background motion:

Tbg(p) = Abg

[
p
1

]
, (4)

where Abg ∈ R2×3 is an affine transformation matrix pre-
dicted by the BG Motion Predictor.

Now, we will combine the K+1 transformations (K TPS
transformations and one affine transformation) to approxi-
mate the mapping T . We use the K + 1 transformations to
warp S, cascade the warped images and feed them into the
Dense Motion Network. The module predicts K + 1 con-
tribution maps M̃k ∈ RH×W , k = 0, . . . ,K, where H and
W are the height and width of the image, M̃0 corresponds
to Tbg . The contribution maps are activated by softmax to
make them sum to 1 at any pixel location:

Mk(p) =
exp(M̃k(p))∑K
i=0 exp(M̃i(p))

, k = 0, . . . ,K, (5)

where Mk(p) is the value of Mk at coordinate p. We use
Mk, k = 0, . . . ,K to combine the K + 1 transformations
to compute the optical flow:

T̃ (p) = M0(p)Tbg(p) +
K∑

k=1

Mk(p)Tk(p), (6)

which is the result of our approximate mapping T . We use
T̃ to warp the feature maps of S extracted by the encoder of
the Inpainting Network and reconstruct D in the decoder.
Dropout for TPS transformations. We use K TPS trans-
formations to approximate the motion, but only a few of
them may work for the estimated optical flow at the early
stage of training. Their contribution maps have zero values
at any pixel location after softmax, and will have no contri-
bution during the entire training stage. Therefore, the net-
work can easily fall into local optimums, resulting in poor
quality of the generated images.

We use dropout [13] for TPS transformations to avoid
this, which is a technique for regularization. Specifically,
exp(M̃k(p)), k = 1, . . . ,K are set to zero respectively with
probability P in softmax, such that some of K TPS transfor-
mations do not work for estimating optical flow in this mini-
batch training. And the terms not set to zero are divided by
1 − P to ensure that the expectation of

∑K
i=1 exp(M̃i(p))
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Figure 3. Implementation details of the Inpainting Network.

remains constant. Let bi, i = 1, . . . ,K obeys Bernoulli dis-
tribution with parameter 1− P , we change Eq. (5) by:

Mk(p) =

{
exp(M̃0(p))/MT (p), k = 0

bk exp(M̃k(p))/(1− P )MT (p), else
,

(7)
where

MT (p) = exp(M̃0(p))+

K∑
i=1

bi exp(M̃i(p))/(1−P ). (8)

Dropout keeps the network from excessive reliance on a
few TPS transformations in the early stage of training,
and increases the robustness of the network. We remove
the dropout operation when each TPS transformation con-
tributes to the estimated optical flow after training several
epochs.

3.2. Multi-resolution Occlusion Masks

For the Dense Motion Network and the Inpainting Net-
work, we employ the hourglass architecture network to fuse
features of different scales, which has been proven effective
in various works [4, 17, 24]. In [26, 28], Dense Motion Net-
work estimates a single occlusion mask for the warped fea-
ture maps to inpaint the missing regions. However, many
experiments have shown that the focus of the feature map
changes with its scale [8, 16, 17]. Low-scale feature maps
focus on abstract patterns, while high-scale feature maps are
more concerned with detailed textures. If a single occlu-
sion mask is used to mask out the feature maps of different
scales, what it learns during training will be the trade-off
among the focus of different scale feature maps. Hence,
we predict occlusion masks of different resolutions for each
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layer of the feature map. The Dense Motion Network will
not only estimate the optical flow but also predict the multi-
resolution occlusion masks by using an additional convolu-
tion layer at each layer of the decoder. The estimated op-
tical flow and the multi-resolution occlusion masks are fed
together into the Inpainting Network.

In the Inpainting Network, we fuse multi-scale features
to generate high-quality images, the details are shown in
Fig. 3. We feed S into the encoder and use optical flow T̃ to
warp the feature map of each layer. The warped feature map
is then masked using the occlusion mask of corresponding
resolution and is concatenated to the decoder part via a skip
connection. The feature map is then upsampled after pass-
ing through two residual blocks. The generated image is
output at the final layer.

3.3. Training Losses

Following FOMM [26] and MRAA [28], we use a pre-
trained VGG-19 [14] network to calculate the reconstruc-
tion loss between D and the generated image D̂ at multi-
resolutions:

Lrec =
∑
j

∑
i

∣∣∣Vi(Dj)− Vi(D̂j)
∣∣∣ , (9)

where Vi is the ith layer of the pre-trained VGG-19 net-
work, and j represents that the image is downsampled j
times. Equivariance loss is also used to constrain the Key-
point Detector in [26, 28]:

Leq = |Ekp(Tran(S))− Tran(Ekp(S))| , (10)

where Tran is the random nonlinear transformation. We
use the random TPS transformation like FOMM [26] and
MRAA [28]. In addition, we designed auxiliary loss func-
tions for the modules, namely bg loss and warp loss.

We used an affine transformation to model the back-
ground motion, and we made additional constraints on the
BG Motion Predictor to make the predicted parameters
more accurate and stable. We cascade in the order of S and
D and feed them into the BG Motion Predictor to obtain
the affine transformation matrix Abg , representing the back-
ground’s motion from S to D. We then re-cascade them in
reverse order to obtain the affine transformation matrix A′

bg .
We expect the two affine transformation matrices to remain
consistent: [

A′
bg

0 0 1

]
=

[
Abg

0 0 1

]−1

. (11)

However, we cannot use Eq. (11) as a loss function because
it is easy to make the BG Motion Predictor output a zero
matrix that minimizes the difference between the two sides
of the equation. We reformulate Eq. (11) in the following
way:

Lbg =

∣∣∣∣[ A′
bg

0 0 1

] [
Abg

0 0 1

]
− I

∣∣∣∣ , (12)

where I is 3× 3 identity matrix.
An additional constraint is also designed for the Inpaint-

ing Network. We feed D into the encoder of the Inpainting
Network. The warped encoder feature maps of S are used
to compute the loss with the encoder feature maps of D at
each layer:

Lwarp =
∑
i

∣∣∣T̃ (Ei(S))− Ei(D)
∣∣∣ , (13)

where Ei is the ith layer of the Inpainting Network en-
coder. Lwarp can encourage the network to estimate the
optical flow more reasonably, making the warped feature
maps closer to the feature domain of D.

The final loss is the sum of terms:
L = Lrec + Leq + Lbg + Lwarp. (14)

3.4. Testing Stage

At the testing stage, we use a source image S and a
driving video {Dt}, t = 1, 2, . . . , T for image animation.
FOMM [26] has two modes for image animation: standard
and relative. The standard mode uses each frame Dt and S
directly to estimate the motion using Eq. (6), while the rel-
ative mode estimates the motion between Dt and the first
frame D1 and then applies it to S. However, the standard
mode does not perform well when there is a large mismatch
between identities (for example, animate a thin person ac-
cording to the motion of a fat person). The relative mode
requires that the pose of D1 be similar to the pose of S.
MRAA [28] proposes a new mode, animation via disentan-
glement (avd), that uses an additional trained network to
predict the motion that should be applied to S, and we use
the same mode for image animation.

We train a shape and a pose encoder as in MRAA [28].
The shape encoder learns the shape of the keypoints of S,
and the pose encoder learns the pose of the keypoints of Dt.
Then a decoder reconstructs the keypoints, preserving the
shape of S and the pose of Dt. Both the encoders and the
decoder are implemented by fully connected layers. We use
keypoints of two frames from a video to train the networks,
where the keypoints of one frame are randomly deformed to
simulate the pose of a different identity. L1 loss is used to
encourage the networks to reconstruct the keypoints before
deformation. For image animation, we feed the keypoints
of S and Dt into the shape and pose encoders to get the
reconstructed keypoints, and then use Eq. (6) to estimate
the motion.

4. Experiments
4.1. Benchmarks

We trained on multiple types of datasets, including talk-
ing faces, human bodies and pixel animation. The pre-
processing and training-test splitting strategies for each
dataset are the same as in [28]. The datasets are as follows:
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TaiChiHD TED-talks VoxCeleb MGif
L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 AKD AED L1

X2Face [32] 0.080 (17.65, 0.109) 0.27 - - - 0.078 7.69 0.405 -
Monkey-Net [25] 0.077 (10.80, 0.059) 0.288 - - - 0.049 1.89 0.199 -

FOMM [26] 0.055 (6.62, 0.031) 0.164 0.033 (7.07, 0.014) 0.163 0.041 1.29 0.135 0.0225
MRAA [28] 0.048 (5.41, 0.025) 0.149 0.026 (4.01, 0.012) 0.116 0.040 1.29 0.136 0.0274

Ours 0.045 (4.57, 0.018) 0.151 0.027 (3.39, 0.007) 0.124 0.039 1.22 0.125 0.0212

Table 1. Video reconstruction: comparison with the state of the art on four different datasets. K = 10 for all methods. (Lower is better,
best result in bold)

• VoxCeleb [20]: Videos of different celebrities talking
downloaded from youtube cropped to 256*256 resolu-
tion according to the bounding boxes of the faces. The
length of the videos ranges from 64 to 1024 frames.

• TaiChiHD [26]: Videos of full bodies TaiChi perfor-
mance downloaded from youtube cropped to 256*256
resolution according to the bounding boxes of the bod-
ies.

• TED-talks [28]: Videos of TED talk downloaded from
youtube, which is a new dataset proposed in MRAA.
The videos were downscaled to 384*384 resolution ac-
cording to the upper part of the human bodies. The
length of the videos ranges from 64 to 1024 frames.

• MGif [25]: A dataset of .gif files of pixel anima-
tions about animals running, which was collected us-
ing google searches.

In previous work, video reconstruction was used to eval-
uate the quality of motion transfer by taking the first frame
D1 of a video as the source image to reconstruct {Dt}, t =
1, 2, . . . , T . We used the same quantitative metrics:

• L1: Average L1 distance between the generated and
driving image pixel values.

• Average keypoint distance (AKD): AKD evaluates the
poses of the generated images. We use the same pre-
trained detectors for bodies [5] and faces [4] as MRAA
[28] to extract keypoints from the generated and driv-
ing images. Then calculate the average distance of the
corresponding keypoints.

• Missing keypoint rate (MKR): The proportion of key-
points extracted from the pre-trained model [4, 5] that
are present in the driving image but missing in the gen-
erated image.

• Average Euclidean distance (AED): AED evaluates
the identity of the generated images. We use the same
pre-trained re-identification networks for bodies [12]
and faces [1] as MRAA [28] to extract identities from
the generated and driving images. Then calculate the
average L2 distance of the extracted identity pairs.

4.2. Comparison
We used two GeForce RTX 3090 GPUs to train 100

epochs on each dataset. VoxCeleb, TaiChiHD, and MGif for

Source Driving MRAA Ours

Figure 4. Some bad cases of MRAA [28], while our method shows
high quality on video reconstruction task.
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Figure 5. Our method has better temporal continuity than MRAA
[28] on the video reconstruction task.

three days, while TED-talks was trained for eight days due
to higher resolution. We compared our method with the cur-
rent state-of-the-art unsupervised motion transfer method,
MRAA [28], on video reconstruction and image anima-
tion tasks. We also compared with other baseline methods
FOMM [26], Monkey-Net [25] and X2Face [32] on video
reconstruction. FOMM [26], MRAA [28] and our methods
are trained for the same number of epochs with K = 10.
Video reconstruction. Quantitative results of video recon-
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Figure 6. Qualitative comparison with MRAA [28] on image animation task: TaiChiHD (top left), TED-talks (top right), VoxCeleb (bottom
left), MGif (bottom right).

struction are shown in Tab. 1. Our method reaches state-of-
the-art results on VoxCeleb, TaiChiHD and MGif datasets,
with significant improvements in motion-related metrics on
TaiChiHD dataset (15.5% for AKD and 28.0% for MKR).
This suggests that our method estimates motions more accu-
rately than others. Our method also outperform MRAA [28]
on TED-talks dataset with motion-related metrics (AKD),
but was slightly worse in other metrics (L1 and AED). The
latter metrics are related to identity. Fig. 4 shows several
bad cases in MRAA [28] on TED-talks dataset while our
method has better reconstruction quality in hand, arm, and
head areas.

Another advantage of our method is that the recon-
structed video has a better temporal continuity. MRAA [28]
uses local affine transformations near the keypoints to es-
timate the motion. Therefore, the temporal continuity of
the reconstructed video depends on the smoothness of the
keypoints change. If the location of the keypoints in two
adjacent frames change greatly, it will cause pixel jitter (as
shown in Fig. 5, the video reconstructed by MRAA [28]
has a redundant finger at frames 111 and 113, but not at
frames 110 and 112). Instead, we use TPS motion estima-
tion and each transformation is generated by multiple key-
points, which increases the robustness of motion estimation.
Image Animation. Fig. 6 shows selected image animation
results of our method compared with MRAA [28] on the
four datasets. Both MRAA [28] and our method use the
avd mode to generate image animation. The results show
that our method has better motion transfer performance for
human bodies (TaiChiHD and TED-talks), but the ability to

Continuity Authenticity

TaiChiHD 71.30% 86.14%
TED-talks 63.93% 58.44%
VoxCeleb 80.95% 61.54%

Table 2. User study on image animation, numbers respect the pro-
portion (%) of users that prefer our method over MRAA [28].

maintain image details such as clothes and faces is slightly
poor. For human faces (VoxCeleb), ghosts will appear in
the images generated by MRAA [28], while our method has
better generation quality. Our method also performs better
than MRAA [28] on pixel animations (MGif). However,
when the size of the identity differs greatly, neither MRAA
[28] nor our method works well (for example, animate a
puppy according to the motion of a giraffe).

In order to quantitatively evaluate the quality of im-
age animation, we designed a questionnaire containing ran-
domly selected 20 pairs of videos generated by our method
and MRAA [28] on TaiChiHD, TED-talks and VoxCeleb
for user preference study. People were invited to judge
which of the two videos was better for continuity and au-
thenticity. Results are reported in Tab. 2. Our method per-
forms much better on temporal continuity than MRAA [28],
and most users prefer the videos generated by our method
for authenticity.

4.3. Ablations
We perform ablation experiments on TaiChiHD dataset

to demonstrate the improvement from each of our proposed
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K=5, (K=2 for ours) K=10, (K=4 for ours) K=20, (K=8 for ours)
L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 (AKD, MKR) AED

FOMM [26] 0.062 (7.34, 0.036) 0.181 0.056 (6.53, 0.033) 0.172 0.062 (8.29, 0.049) 0.196
MRAA [28] 0.049 (6.04, 0.029) 0.162 0.048 (5.41, 0.025) 0.149 0.046 (5.17, 0.026) 0.141

Ours 0.048 (5.24, 0.022) 0.166 0.046 (4.84, 0.020) 0.156 0.045 (4.67, 0.019) 0.150

Table 3. Additional experiments on TaiChiHD for different K and similar bottleneck sizes for MRAA and ours. (Best result in bold.)

L1 (AKD, MKR) AED

MRAA [28] 0.048 (5.41, 0.025) 0.149
TPS 0.048 (4.96, 0.020) 0.153

+ Dropout 0.048 (4.66, 0.018) 0.156
+ Multi-Masks 0.046 (4.73, 0.018) 0.150

+Lbg 0.046 (4.64, 0.020) 0.151
+Lwarp 0.045 (4.57, 0.018) 0.151

Table 4. Ablation study for video reconstruction on TaiChiHD.
(Lower is better, best result in bold)

components. We add our components in turn and compare
the video reconstruction metrics with MRAA [28]. Firstly,
we use TPS transformations to estimate the optical flow in-
stead of local affine transformations in MRAA [28]. Then
we added the dropout operation and the multi-resolution oc-
clusion masks. Finally, we add Lbg and Lwarp during train-
ing. Quantitative results are shown in Tab. 4.

The second row of Tab. 4 demonstrates that TPS motion
estimation improves AKD and MKR, resulting in more ac-
curate motion estimation. Comparing the second and third
rows of Tab. 4, dropout can bring lower AKD and MKR,
which indicates that dropout makes each TPS transforma-
tion contributes to the optical flow to distort the object in
S into a more accurate pose. However, dropout also af-
fects AED because the more complex optical flow means
the larger area of missing regions in warped feature maps,
resulting in insufficient information for the Inpainting Net-
work to revise the image. The fourth row of Tab. 4 shows
that the multi-resolution occlusion masks bring an improve-
ment to L1 and AED, which can help the Inpainting Net-
work to generate higher quality images. Fig. 7 shows the
multi-resolution occlusion masks we learned by our full
method, compared with the single occlusion mask learned
by the method in the third row of Tab. 4. But at the same
time, it brings a higher AKD, which is not what we ex-
pected. When we add Lbg and Lwarp, AKD gradually de-
creases, the full method can achieve a better balance on the
four metrics.

As with MRAA and FOMM, one of the most impor-
tant hyper-parameters in our model is the number of TPS
transformations, K, which corresponds to the dimension of
the motion representation. The dimensions of FOMM and
MRAA are K ∗ (2+4) and (K+1) ∗ (2+4), while ours is

Source Driving
Multi-resolution occlusion masks

Single mask32 × 32 64 × 64 128 × 128 256 × 256

Figure 7. Comparison of learned multi-resolution occlusion mask
and single occlusion mask.

K ∗ (6+5∗2)+6. When K = 5, 10, and 20, the dimensions
of MRAA are 36, 66, and 126, respectively. We set K of
our method to be 2, 4, and 8 to compare with them, and the
dimensions are 38, 70, and 118, respectively, which is sim-
ilar to MRAA. Tab. 3 shows the experiment results, which
demonstrates that our method can achieve better motion-
related metrics than MRAA when using similar motion de-
scription dimensions.

5. Discussion and Conclusion
In this paper, we first discuss the drawbacks of using lo-

cal affine transformations to approximate motions in previ-
ous works and propose TPS motion estimation to estimate
an optical flow that warps the feature maps of the source
image to the feature domain of the driving image. In addi-
tion, we use dropout for TPS transformations before com-
bining them in the early stage of training, which keeps the
network from excessive reliance on a few TPS transforma-
tions and avoids the network falling into local optimums.
Secondly, the multi-resolution occlusion masks are used to
achieve more effective feature fusion instead of a single oc-
clusion mask. Finally, we design additional auxiliary loss
functions and proved experimentally effective.

Our method achieves state-of-the-art performance on
most benchmarks with visible improvements in motion-
related metrics. However, our approach does not perform
well when an extreme identity mismatch occurs. Unsuper-
vised motion transfer remains a worthwhile challenge.
Potential negative societal impact. While the proposed
method may be used to make fake videos for spoofing, some
detection software will easily determine the authenticity of
videos by analyzing the color textures [3] or using the depth
information obtained through the proximity sensors, which
cannot be simulated by 2D image generating methods. And
our approach can create a new benchmark for face anti-
spoofing researches [34].
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