
Bridging Global Context Interactions for High-Fidelity Image Completion

Chuanxia Zheng1 Tat-Jen Cham2 Jianfei Cai1 Dinh Phung1

1Department of Data Science & AI, Monash University, Australia
2School of Computer Science and Engineering, Nanyang Technological University, Singapore
chuanxia.zheng@monash.edu, ASTJCham@ntu.edu.sg, {Jianfei.Cai,dinh.phung}@monash.edu

(a) Masked input (b) CRFill [54]ICCV’2021 (c) Ours TFill

(a) Masked input (b) PIC [60]CVPR’2019 (c) Ours TFill

(a) Masked input (b) HiFill [51]CVPR’2020 (c) Ours TFill

(a) Masked input (b) DSI [37]CVPR’2021 (c) Ours TFill (a) Masked input (b) ICT [47]ICCV’2021 (c) Ours TFill
Figure 1. Example completion results of our method on different sceneries with various masks (missing regions shown in white, a
transparency ratio is set for better visualization). Our TFill model not only effectively removes large objects (left), but also infers reasonable
contents and plausible appearances for semantical image completion on various settings (right). (Zoom in to see the details.)

Abstract

Bridging global context interactions correctly is impor-
tant for high-fidelity image completion with large masks.
Previous methods attempting this via deep or large recep-
tive field (RF) convolutions cannot escape from the dom-
inance of nearby interactions, which may be inferior. In
this paper, we propose to treat image completion as a di-
rectionless sequence-to-sequence prediction task, and de-
ploy a transformer to directly capture long-range depen-
dence. Crucially, we employ a restrictive CNN with small
and non-overlapping RF for weighted token representation,
which allows the transformer to explicitly model the long-
range visible context relations with equal importance in
all layers, without implicitly confounding neighboring to-
kens when larger RFs are used. To improve appearance
consistency between visible and generated regions, a novel
attention-aware layer (AAL) is introduced to better exploit
distantly related high-frequency features. Overall, exten-
sive experiments demonstrate superior performance com-
pared to state-of-the-art methods on several datasets. Code

is available at https://github.com/lyndonzheng/TFill.

1. Introduction
Image completion refers to the task of filling reasonable

content with photorealistic appearance into missing regions,
conditioned on partially visible information (as shown in
Fig. 1). Earlier methods infer the pixels of missing re-
gions by propagating pieces from neighboring visible re-
gions [1–3,9], while more recent ones directly learn to gen-
erate content and appearance using deep neural networks
[17, 28, 29, 35–37, 47, 51, 52, 54, 60].

A main challenge in this task is the requirement of bridg-
ing and exploiting visible information globally, after it had
been degraded by arbitrary masks. As depicted on the left
of Fig. 1, when the entire person is masked, the natural ex-
pectation is to complete the masked area based on the visi-
ble background context. In contrast, on the right of Fig. 1,
when large free-form irregular masks cover the main parts
but leave the partial information visible, it is necessary but
highly challenging to correctly capture long-range depen-
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dencies between the separated foreground regions, so that
the masked area can be completed in not just a photorealis-
tic, but also semantically correct, manner.

To achieve this goal, several two-stage approaches [35,
37, 51, 52, 54] have been proposed, consisting of a con-
tent inference network and an appearance refinement net-
work. They typically infer a coarse image/edge/semantic
map based on globally visible context in a first phase, and
then fill in visually realistic appearances in a second phase.
However, this global perception is achieved by repeating
local convolutional operations, which have several limita-
tions. First, due to the translation equivariance, the informa-
tion flow tends to be predominantly local, with global infor-
mation only shared gradually through heat-like propagation
across multiple layers. Second, during inference, the ele-
ments between adjacent layers are connected via learned but
fixed weights, rather than input-dependent adaptive weight-
ings. These issues mean long-distance messages are only
delivered inefficiently in a very deep layer, resulting in a
strong inclination for the network to fill holes based on
nearby rather than distant visible pixels (cf . Fig. 1).

In this paper, we propose an alternative perspective by
treating image completion as a directionless sequence-to-
sequence prediction task. In particular, instead of model-
ing the global context using deeply stacked convolutional
layers, we design a new content inference model, called
TFill, that uses a Transformer-based architecture to Fill rea-
sonable content into the missing holes. An important in-
sight here is that a transformer directly exploits long-range
dependencies at every encoder layer through the attention
mechanism, which creates an equal flowing opportunity for
all visible pixels, regardless of their relative spatial posi-
tions (Fig. 4 (c)). This reduces the proximity-dominant in-
fluence that can lead to semantically incoherent results.

However, it remains a challenge to directly apply these
transformer models to visual generation tasks. In partic-
ular, unlike in NLP where each word is naturally treated
as a vector for token embedding [10, 39, 40, 46], it is un-
clear what a good token representation should be for a vi-
sual task. If we use every pixel as a token, the memory cost
will make this infeasible except for very small downsam-
pled images [8, 47]. To mitigate this issue, our model em-
beds the masked image into an intermediate latent space for
token representation, an approach also broadly taken by re-
cent vision transformers [6, 12, 49, 62, 64]. However, unlike
these models that use conventional CNN-based encoders
to embed the tokens, without considering the visible infor-
mation flow in image completion, we propose a restrictive
CNN for token representation, which has a profound influ-
ence on how the visible information is connected in the net-
work. To do so, we ensure the individual tokens represent
visible information independently, each within a small and
non-overlapping patch, and forces the long-range context

relationships between tokens to be explicitly and co-equally
perceived in every transformer encoder layer. As a result,
each masked pixel will not be gradually affected by neigh-
boring visible pixels.

While the proposed transformer-based architecture can
achieve better results than state-of-the-art methods [12, 51,
52, 60], by itself it only works for a fixed sequence length
because of the position embedding (Fig. 2(a)). To allow our
approach to flexibly scale to images of arbitrary sizes, es-
pecially at high resolution, a fully convolutional network
(Fig. 2(b)) is subsequently applied to refine the visual ap-
pearance, building upon the coarse content previously in-
ferred. A novel Attention-Aware Layer (AAL) is inserted
between the encoder and decoder that adaptively balances
the attention paid to visible and generated content, leading
to semantically superior feature transfer (Figs. 5 and 9).

We highlight our main contributions as follows: 1) A re-
strictive CNN head is introduced for individual weighted to-
ken representation, which mitigates the proximity influence
when propagating visible information to missing holes. 2)
Through a transformer-based architecture, the long-range
interactions between these tokens are explicitly modeled,
in which the masked tokens are perceptive of other visible
tokens with equal opportunity, regardless of their positions.
3) A novel attention-aware layer with adaptive attention bal-
ancing is introduced in a refined stage to obtain higher qual-
ity and resolution results. 4) Finally, extensive experiments
demonstrate that the proposed model outperforms the exist-
ing state-of-the-art image completion models.

2. Related Work
Image Completion: Traditional image completion (also
known as “image inpainting” [3]) methods, like diffusion-
based [1, 4, 26] and patch-based [2, 9, 18], mainly focus on
background completion, by directly copying and propagat-
ing the background pixels to masked regions.

Driven by the advances of GANs [13], CGANs [34] and
VAEs [25], a series of CNN-based methods [17, 28, 35, 36,
44, 52, 59, 60] have been proposed to hallucinate semantic
meaningful content. In particular, Pathak et al. [36] intro-
duced GANs into image completion for large holes. Iizuka
et al. [17] extended [36] to random regular mask. Yu et
al. [52] combined the patch-based idea into learning-based
architecture, which is followed by [42, 43, 51, 54, 55, 60].
Liu et al. [28] addressed random irregular masks. Zheng et
al. [60, 61] introduced a pluralistic image completion task,
aiming to generate multiple and diverse results, which is
followed by [30, 37, 47, 58]. Nazeri et al. [35] brought the
auxiliary edge information for image completion. Then,
more auxiliary information were combined into this task,
e.g. Faceshape [38], DeepFill v2 [53], SC-FEGAN [20],
SWAP [27], and MST [5]. Most of these models are built
upon on a CNN-based architecture, in which the masked re-
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Figure 2. The overall pipeline of our proposed method. (a) Masked input is resized to a fixed resolution (256 × 256) and it is then fed
into a transformer encoder to generate semantically correct content. (b) The inferred content is merged with the original high-resolution
image and passed to a refinement network with an Attention-Aware Layer (AAL) to transfer high-quality information from both visible
and generated regions. Note the recomposed input has repeating artifacts, which are ameliorated in our refined network.

gions are gradually affected by the neighboring visible pix-
els. Our model will solve this problem by utilizing a trans-
former to directly model the global context dependencies.

Visual Transformer: The Transformer was firstly pro-
posed by Vaswani et al. [46] for machine translation. In-
spired by the dramatic success of transformers in NLP
[10, 40], recent works have explored applying a standard
transformer for vision tasks [32], such as image classifica-
tion [8,11,14], object detection [6,64], semantic segmenta-
tion [48,62], image generation and translation [8,12,16,19],
and completion [31, 47]. Many of these embed tokens us-
ing methods shown in Fig. 3(a)-(c), without considering the
specific information flow in image completion. In contrast,
our restrictive CNN is particularly well suited due to its
compact representation in the form of local patches.

Context Attention: Context attention [52] is a specific
cross-attention that aims to copy high-frequency details
from high-resolution encoded features to generate high-
quality images. It has recently been widely applied in image
completion [42,50–52,54,60]. However, the existing works
mainly copy from visible regions [42, 50–52, 54], which is
not possible for newly generated content. In addition, our
AAL automatically selects features from both “visible” en-
coded and “missing” generated features, instead of selecting
through fixed weights [60].

3. Methods

Given a masked image Im, degraded from a real image
I by masks, our goal is to learn a model Φ to infer seman-
tically reasonable content for missing regions, as well as
filling in with visually realistic appearance.

To achieve this, our framework, illustrated in Fig. 2,
consists of a content inference network (TFill-Coarse,
Fig. 2(a)) and an appearance refinement network (TFill-
Refined, Fig. 2(b)). The former is responsible for capturing
the global context through a transformer encoder. The em-
bedded tokens have small receptive fields (RF) and limited
capacity, preventing masked pixels’ states from being im-
plicitly dominated by visible pixels nearby than far. While
similar transformer-based architectures have recently been
explored for visual tasks [6–8,11,12,47,48,62,64], we dis-
cover how the token representation has a profound effect
on the flow of visible information in image completion, in
spite of the supposedly global reach of transformers. The
latter network is designed to refine appearance by utilizing
high-resolution visible features globally, and also frees the
limitation to fixed sizes.

3.1. Content Inference Network: TFill-Coarse

Our TFill-Coarse depends on the self-attention
module in a transformer-encoder to equally perceiving
global visible context for the completed content generation.
Considering the fixed length position embedding and dra-
matically increased computational cost, we first downsam-
ple images with arbitrary sizes to a fixed size, e.g. 256×256.
However, it is still not feasible to run a transformer model
if we directly flatten image pixels into a 2D sequence.

To obtain a practicable number of visual tokens, differ-
ent embedding methods (Fig. 3(a)-(c)) have been used in
current visual transformer-based works [6, 8, 11, 12, 16, 19,
47, 48, 62, 64]. These visual tokens’ RF is either as small
as a pixel (e.g. iGPT [8]) that loses important context de-
tails due to the large-scale downsampling, or is as large as
the full image size (e.g. VQGAN [12]) that has firstly been
gradually influenced by neighboring pixels in deep CNN
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Figure 3. Token representation. (a) Pixel to token. (b) Patch to
token. (c) Feature to token. (d) Restrictive Receptive Field (RF)
feature to token. Note our token has a small and non-overlapping
RF like VIT [11], but uses a stacked (x4) CNN embedding. Each
token represents locally isolated patches, leaving the global con-
text relationship to be cleanly modeled in a transformer encoder.

layers. While patch embedding [11] achieves impressive
performance in many tasks, one-layer linear projection is
still not good enough [49].

Restrictive CNN: In contrast to these methods, our to-
ken representation is extracted using a restrictive CNN
(Fig. 3(d)) in 4 blocks. In each block, the 1 × 1 filter and
layernorm is applied for non-linear projection, followed
by a partial convolution layer [28] that uses a 2×2 filter
with stride 2 to extract visible information. In particular, if
half of the regions in a window are masked, we only em-
bed the other 50% comprising visible pixels as our token
representation, and establish an initial weight of 0.5 for the
next weighted self-attention layer. To do this, we ensure
each token represents only the visible information in a lo-
cal patch, leaving the long-range dependencies to be explic-
itly modeled by a transformer, without cross-contamination
from implicit correlation due to larger CNN RF.

In fact, some latest works also begin to explore the in-
fluence of different token embeddings. Swin [32] used shift
windows to get multi-scales embedded features. ViTc [49]
demonstrated an early CNN token embedding is important
for visual transformer. However, they do not consider in-
formation flowing from visible to masked regions. When a
large RF is applied into a deep CNN embedding, the masked
holes will be gradually determined by the neighboring vis-
ible pixels. In Fig. 4, we empirically show this is precisely
the case for prior CNN-based models. Because masked re-
gions originally hold zero values, they will take the neigh-
boring visible pixels as a filled and reasonable value for
the next layer. In contrast, as the small patch is directly
embedded using local visible information with important
weight, the proposed restrictive CNN is better suited for im-
age completion task.

xi

xi

xi

xi

(a) Masked input (b) HiFill [51]CVPR’2020 (c) Ours TFill

Figure 4. An example of information flow in image comple-
tion. The position xi’s response (flow) is calculated by inferring
the Jacobian matrix between it to all pixels in the given masked
input. Here, only the highest flows are shown. Our TFill correctly
captures long-range visible context flow, even with a large mask
splitting two semantically important zones.

Weighted Self-Attention Layer: To further bias the im-
portant visible values, we replace the self-attention layer
with a weighted self-attention layer, in which a weight is
applied to scale the attention scores. The initial weight
w(1) ∈ (0.02, 1.0] is obtained by calculating the fraction
of visible pixels in a small patch, e.g. 192/(16× 16) means
192 pixels in the 16 × 16 patch are visible. It will then be
gradually amplified by updating w(i+1) ←

√
w(i) after ev-

ery encoder layer, to reflect visible information flow. This
initial ratio for each token is efficiently implemented in our
restrictive CNN encoder.

CNN-based Decoder: Following existing works [51, 52,
60], a gradual upsampling decoder is implemented to gen-
erate photorealistic images. Instead of sequentially gener-
ating tokens, our model directly predict all tokens in one
step, resulting in a much faster testing time than existing
transformer-based generation networks [8,12,47] (Table 3).

3.2. Appearance Refinement Network: TFill-Refined

Although the proposed TFill-Coarse model correctly in-
fers superiorly reasonable content (shown in Figs. A.1, A.2,
and A.3) by equally utilizing the global visible context in
every layer, two limitations remain. First, it is not suitable
for high-resolution input due to the fixed length position em-
bedding. Second, the realistic completed results may not be
fully consistent with the original visible appearances, e.g.
the completed eye in Fig. 5 (c).

Attention-Aware Layer (AAL): To mitigate these is-
sues, a refinement network, trained on high-resolution im-
ages, is proposed (Fig. 2 (b)). In particular, to further utilize
the visible high-frequency details in global, an Attention-
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(a) Ground truth (b) Masked input

(c) TFill-Coarse (d) TFill-Refined

Figure 5. Coarse and Refined results. (a) Ground truth. (b)
Masked input. (c) Coarse output. (d) Refined output. The refine-
ment network not only increases image quality to a high resolution
(2562 vs 5122), but also encourages the left eyeball to be consis-
tent with the visible right eyeball using our attention-aware layer.

Aware Layer (AAL) is designed to copy long-range infor-
mation from both encoded and decoded features.

As depicted in Fig. 6, given a decoded feature xd, we
first calculate the attention score of:

A = ϕ(xd)
⊺θ(xd), (1)

where Aij represents the similarity of the ith feature to the
jth feature, and ϕ, θ are 1×1 convolution filters.

Interestingly, we discover that using A directly in a stan-
dard self-attention layer is suboptimal, because the xd fea-
tures for visible regions are generally distinct from those
generated for masked regions. Consequently, the attention
tends to be insular, with masked regions preferentially at-
tending to masked regions, and vice versa. To avoid this
problem, we explicitly handled the attention to visible re-
gions separately from masked regions. So before softmax
normalization, A is split into two parts: Av — similarity to
visible regions, and Am — similarity to generated masked
regions. Next, we get long-range dependencies via:

zv = softmax(Av)xe , zm = softmax(Am)xd (2)

where zv contains features of contextual flow [52] for
copying high-frequency details from the encoded high-
resolution features xe to masked regions, while zm has fea-
tures from the self-attention that is used in SAGAN [56] for
high-quality image generation.
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Figure 6. Attention-aware layer. The feature maps are shown
as tensors. “

⊗
” denotes matrix multiplication, “

⊙
” denotes

element-wise multiplication and “
⊕

” is element-wise sum. The
blue boxes denote 1× 1 convolution filters that are learned.

Instead of learning fixed weights [60] to combine zv and
zm, we learn the weights mapping based on the largest at-
tention score in each position. Specifically, we first ob-
tain the largest attention score of Av and Am, respectively.
Then, we use the 1×1 filter γ and α to modulate the ratio of
the weights. Softmax normalization is applied to ensure
wv+wm=1 in every spatial position:

[wv,ww] = softmax([γ(max(Av)), α(max(Am)])) (3)

where max is executed on the attention score channel. Fi-
nally, an attention-balanced output z is obtained by:

z = wv · zv +wm · zm (4)

where wv,wm ∈ RB×1×H×W hold different values for
various positions, dependent on the largest attention scores
in the visible and masked regions, respectively.

4. Experiments
4.1. Experimental Details

Datasets: We evaluated the proposed TFill model with ar-
bitrary mask types on various datasets, including CelebA-
HQ [22, 33], FFHQ [23], Places2 [63], and ImageNet [41].

Metrics: Following existing works [35,47,61], we mainly
reported the traditional patch-level image quality metrics,
including peak signal-to-noise ratio (PSNR) and structure
similarity index (SSIM), and the latest learned feature-level
LPIPS [57] and FID [15] metrics.

Implementation Details: Our model is trained in two
stages: 1) the TFill-Coarse is first trained for 256 × 256
resolution; and 2) the TFill-Refined is then trained for
512 × 512 resolution. Unless other noted, TFill indicates
the whole model in the paper. Both networks are optimized
using the loss L = Lpixel +Lper +LGAN , where Lpixel is
the ℓ1 reconstruction loss, Lper is the perceptual loss [21],
and LGAN is the discriminator loss [13]. More implemen-
tation details are provided in Appendix C.
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(a) Masked input (b) GL [17] (c) DeepFillv2 [53] (d) HiFill [51] (e) CRFill [54] (f) ICT [47] (g) Ours TFill

Figure 7. Qualitative comparison on various datasets with free-form masks. Here, we show results for ImageNet [41] (top two
examples) and Places2 [63] (bottom two examples). Our model generated more reasonable object and scene structures, with better visual
results. Please zoom in to see the details. More comparisons are provided in Figs. A.4, A.5, and A.6.

PSNR↑ SSIM↑ LPIPS↓ FID↓
Mask Ratio 20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50% 20-30% 30-40% 40-50%
GL [17]SIGGRAPH’2017 21.33 19.11 17.56 0.7672 0.6823 0.5987 0.1847 0.2535 0.3189 39.22 53.24 68.46
PIC [60]CVPR’2019 24.44 22.32 20.71 0.8520 0.7850 0.7119 0.1183 0.1666 0.2245 21.62 29.59 41.60
DeepFillv2 [53]ICCV’2019 23.58 21.50 19.94 0.8319 0.7712 0.7074 0.1234 0.1639 0.2079 23.18 28.87 35.21
HiFill [51]CVPR’2020 22.54 20.15 18.48 0.7838 0.7057 0.6193 0.1632 0.2258 0.3053 26.89 38.40 56.24
CRFill [54]ICCV’2021 24.38 21.95 20.44 0.8476 0.7983 0.7217 0.1189 0.1597 0.1993 17.58 23.05 29.97
ICT [47]ICCV’2021 24.53 22.84 21.11 0.8599 0.7995 0.7228 0.1045 0.1563 0.1974 17.13 22.39 28.18
Ours TFill 25.10 22.89 21.22 0.8686 0.8063 0.7391 0.0918 0.1328 0.1796 15.28 19.99 25.88

Table 1. Quantitative comparisons on Places2 [63] with free-form masks [28]. Without bells and whistles, TFill outperformed all existing
learning-based models. The results are reported on 256× 256 resolution, as earlier works were trained only on this scale.

4.2. Main Results

We firstly compared with the following state-of-the-art
image completion methods: GL [17]SIGGRAPH’2017, Deep-
Fillv2 [53]ICCV’2019, PIC [60]CVPR’2019, HiFill [51]CVPR’2020,
CRFill [54]ICCV’2021, and ICT [47]ICCV’2021 using their pub-
licly released codes and models.

Quantitative Results: Table 1 shows quantitative evalua-
tion results on Places2 [63], in which the images were de-
graded by free-form masks provided in the PConv [28] test-
ing set. The mask ratio denotes the range of masking pro-
portion applied to the images. The original mask ratios hold
six levels, from 0 to 60%, increasing 10% for each level.
Here, following ICT [47], we only compare the results on
middle-level mask ratios. As can be seen, the proposed
TFill model outperformed the CNN-based state-of-the-art
models in all mask scales. Specifically, it achieves aver-

aging relative 18.8% and 13.3% improvements for LPIPS
and FID scores, respectively. While the latest ICT [47] uti-
lized the transformer architecture with much more blocks
and more expensive computer cost, they downsampled the
original image into 32×32, or 48× 48 resolution, and then
embedded each pixel as a token, resulting in important in-
formation is lost during such large-scale downsampling.

Qualitative Results: The qualitative comparisons are vi-
sualized in Figs. 7 and 9. The proposed TFill achieved
superior visual results even under challenging conditions.
In Fig. 9, we compared with CA [52], PIC [60], and CR-
Fill [54] on Celeba-HQ dataset. Our TFill generates pho-
torealistic high-resolution (512 × 512) results, even when
significant semantic information is missing.

Fig. 7 shows visual results on natural images that were
degraded by random masks. Here, we mainly compared
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(a) Masked input (b) iGPT [8] (c) VIT [11] (d) VQ [12] Comp (e) VQ [12] Recomp (f) ICT [47] w/ Refine (g) TFill-Coarse

Figure 8. Comparing results under different token representations. All transformers are based on the same transformer backbone
[46]. For VQGAN [12], we report completed (Comp) image and recomposed (Recomp) image. ICT [47] used two-stages networks as the
original paper. TFill-Coarse is our model with configure E in Table 2, i.e. TFill w/o the refinement network.

Method CelebA-HQ FFHQ
LPIPS↓ FID↓ LPIPS↓ FID↓

CA [52]CVPR’2018 0.104 9.53 0.127 8.78
PIC [60]CVPR’2019 0.061 6.43 0.068 4.61
MEDFE [29]ECCV’2020 0.067 7.01 - -
A Traditional Conv 0.060 6.29 0.066 4.12
B + Attention in G 0.059 6.34 0.064 4.01
C + Restrictive Conv 0.056 4.68 0.060 3.87
D + Transformer 0.051 4.02 0.057 3.66
E + Masked Attention 0.050 3.92 0.057 3.63
F + Refine Network 0.048 3.86 0.053 3.50

Table 2. Learned Perceptual Image Patch Similarity (LPIPS) and
Fréchet Inception Distance (FID) for various completion networks
on center masked images. In this paper, we calculate the LPIPS
and FID using all images in the corresponding test sets.

the results for semantic content completion, while visualiz-
ing the easily traditional object removal results in Appendix
A.3 (Figs. A.7, A.8, and A.9). GL [17], DeepFillv2 [53],
and HiFill [51], while good at object removal, failed to in-
fer shapes needed for object completion, e.g. the content
for animals. CRFill [54] provided plausible appearance, yet
the animals’ shapes are unaligned, e.g. malposed leg and
body of the dog. Our TFill inferred the correct shapes for
even heavily masked objects in ImageNet, e.g. the fish even
with head and tail separated by a large mask. It also out-
performed all previous methods on high-resolution masked
images in Places2, especially for some large masked re-
gions. More comparisons are presented in Appendix A.2
(Figs. A.4, A.5, A.6). Please zoom in to see the details.

4.3. Ablation Experiments

We ran a number of ablations to analyze the effectiveness
of each component in our TFill. Results are shown in Tables
2, 3, and 4, and Figs. 8 and 9.

TFill Architecture: We first evaluated components in the
redesigned image completion architecture in Table 2, which
experimentally demonstrates that the new architecture con-
siderably improves the performance. Our baseline configu-
ration (A) used an encoder-decoder structure derived from

VQGAN [12], except here attention layers were removed
in advance for a pure CNN-baseline. When combined with
the powerful discriminator of StyleGANv2 [24], the perfor-
mance was comparable to previous state-of-the-art CNN-
based PIC [60, 61]. We first added the self-attention layer
[56], not context mapping from the encoder [52, 60], to
the decoder (Generator, G) in (B), but the performance re-
mained similar to baseline (A). Interestingly, when we use
the proposed restrictive CNN in (C) to embed information
in the local patch, the performance improved substantially,
especially for FID (relative 20.2% on CelebA-HQ). This
suggests that the input feature representation is significant
for the attention layer to equally deliver all messages, as
explained in Fig. 4. We then improved this new baseline
by adding the transformer encoder (D), which benefits from
globally delivered messages at multiple layers. Finally, we
introduced masked weights to each attention layer of the
transformer (E), improving results further.

Token Representation: Tables 2 and 3 report the influ-
ence of the token representation. Our TFill achieved much
better performance when using the restrictive-CNN. iGPT
[8] downsamples the image to a fixed scale, e.g. 32×32, and
embeds each pixel to a token. While this may not impact the
classification [45], it has a large negative effect on generat-
ing high-quality images. Furthermore, the autoregressive
form results in the completed image being inconsistent with
the bottom-right visible region (Fig. 8 (b)), and each im-
age runs an average of 26.45s on an NVIDIA 1080Ti GPU.
ICT [47] improved iGPT by using bidirectional attention
and adding a guided upsampling network. While the re-
fined performance can almost match our coarse results, the
running time is ruinously expensive (average 152.48s/img)
and the content is not aligned well in Figs. 1 and 7. In con-
trast, VIT [11] embeds each patch to a token. As shown
in Table 3 and Fig. 8, it can achieve relatively good quan-
titative and qualitative results. However, some details are
perceptually poor, e.g. the strange eyes in Fig. 8. Finally,
VQGAN [12] employs a large RF CNN to embed the im-
age. It generates a visually realistic completion (Fig. 8 (d)),
but when pasted to the original input (Fig. 8 (e)), there is an
obvious gap between generated and visible pixels. When
we used large convolutional kernels for large RF (229), the
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Method LPIPS↓ FID↓ Mem↓ Time↓
IGPT [8]ICML’2020(RF 1) 0.609 148.42 3.16 26.45
VIT [11]ICLR’2021(RF 16) 0.062 5.09 1.16 0.167
VQGAN [12]CVPR’2021 0.226 11.92 2.36 4.29
ICT [47]ICCV’2021(RF 1) 0.061 4.24 3.87 152.48
E TFill-Coarse (RF 229) 0.062 3.92 1.25 0.188
E TFill-Coarse (RF 16) 0.057 3.63 1.15 0.180

Table 3. The effect of restrictive token representation on FFHQ
dataset. “RF” indicates the Receptive Field size. “Mem” denotes
the memory (GB) cost during testing and “Time” is the testing
time (s) for each center masked image.

LPIPS↓ FID↓
Mask Type center random center random
SA [56]ICML’19 0.0584 0.0469 3.62 2.69
CA [52]CVPR’2018 0.0608 0.0443 3.86 2.66
SLTA [60]CVPR’2019 0.0561 0.0452 3.61 2.64
Ours-AAL 0.0533 0.0412 3.50 2.57

Table 4. The effect of various attention layers on FFHQ dataset.
“center” denotes the center mask, “random” denotes the random
mask. These attention layers were implemented within our refine-
ment framework, while using the same content generator.

holes will firstly be filled in with neighboring visible pixels,
resulting in worse results.

AAL vs. Others Context Attention Modules: An eval-
uation of our proposed AAL is shown in Table 4. For this
quantitative experiment we used the same content genera-
tor (our TFill-Coarse), but different attention modules in
the refinement network. As can be seen, even using the
same content, the proposed AAL reduces LPIPS and FID
scores by averaging relative 6.0% and 2.8%, over the exist-
ing works [52,56,60]. This is likely due to our AAL selects
features based on the largest attention scores, using weights
dynamically mapped during inference, instead of depending
on fixed weights to copy features as in PIC [60].

The qualitative comparison is visualized in Fig. 9. CA
[52], PIC [60], and CRFill [54] used different context at-
tention in image completion. Here, we directly use their
publicly models for visualization. As can be seen in the
Fig. 9, these state-of-the-art methods cannot handle large
holes. While TFill-SA used the good but lower-resolution
(256 × 256) coarse content from TFill-Coarse, the mouth
exhibits artifacts with inconsistent color. Our TFill-AAL
(TFill-Refined) shows no such artifacts.

5. Conclusion and Limitation

Through our analyses and experiments, we demonstrate
that correctly perceiving and propagating the visible infor-

(a) Masked input (b) Ours TFill-SA (c) Ours TFill-AAL

(d) CA [52]CVPR’2018 (e) PIC [60]CVPR’2019 (f) CRFill [54]ICCV’2021

Figure 9. Results with different attention modules in various
methods. Our attention-aware layer is able to adaptively select the
features from both visible and generated content.

mation is significantly important for masked image comple-
tion. We experimentally demonstrate the transformer-based
architecture has exciting potential for content generation,
due to its capacity for effectively modeling soft-connections
between distant image content. However, unlike recent vi-
sion transformer models that either use shallow projections
or large receptive fields for token representation, our re-
strictive CNN projection provides the necessary separation
between explicit global attention modeling and implicit lo-
cal patch correlation that leads to substantial improvement
in results. We also introduced a novel attention-aware layer
that adaptively balances the attention for visible and masked
regions, further improving the completed image quality.

Limitations: Although our TFill model outperformed ex-
isting state-of-the-art methods on various images that were
degraded by random irregular masks, the model is still not
able to reason about high-level semantic knowledge. For
instance, while our TFill model provided better plausible
results in the third row of Fig. 7, it directly redesigned win-
dows based on the visible windows, without understanding
the physical world, that a door is necessary for a house.
Therefore, a full understanding and imagination of seman-
tic content in an image still needs to be further explored.
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