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Abstract

Recently, the dense correlation volume method achieves
state-of-the-art performance in optical flow. However, the
correlation volume computation requires a lot of memory,
which makes prediction difficult on high-resolution images.
In this paper, we propose a novel Patchmatch-based frame-
work to work on high-resolution optical flow estimation.
Specifically, we introduce the first end-to-end Patchmatch
based deep learning optical flow. It can get high-precision
results with lower memory benefiting from propagation and
local search of Patchmatch. Furthermore, a new inverse
propagation is proposed to decouple the complex opera-
tions of propagation, which can significantly reduce calcu-
lations in multiple iterations. At the time of submission,
our method ranks 1st on all the metrics on the popular
KITTI2015 [28] benchmark , and ranks 2nd on EPE on
the Sintel [7] clean benchmark among published optical
flow methods. Experiment shows our method has a strong
cross-dataset generalization ability that the F1-all achieves
13.73%, reducing 21% from the best published result 17.4%
on KITTI2015. What’s more, our method shows a good de-
tails preserving result on the high-resolution dataset DAVIS
[1] and consumes 2× less memory than RAFT [36]. Code
will be available at github.com/zihuazheng/DIP

1. Introduction

Optical flow, the 2D displacement field that describes ap-
parent motion of brightness patterns between two succes-
sive images [13], provides valuable information about the
spatial arrangement of the viewed objects and the change
rate of the arrangement [39]. Since Horn and Schunck (HS)
[13] and Lucas and Kanade (LK) [25] proposed the differ-
ential method to calculate optical flow in 1981, many ex-
tension algorithms [22, 30, 42] have been proposed. Hence,
optical flow has been widely used in various applications
such as visual surveillance tasks [43], segmentation [38],
action recognition [31], obstacle detection [12] and image
sequence super-resolution [26].

(a) Image (b) RAFT [36]

(c) SCV [19] (d) Ours

Figure 1. Comparisons on high-resolution (1080 × 1920) images
from DAVIS dataset. Compared with RAFT and SCV, our method
has achieved better details with lower memory.

Recently, deep learning has made great progress in solv-
ing the problem of optical flow. Since FlowNetC [10], many
methods have achieved state-of-the-art results. For deep
learning, in addition to accuracy, performance and mem-
ory are also challenges especially when predicting flow at
high-resolution. To reduce complexity of computation and
usage of memory, previous approaches [16–18, 34, 46] use
coarse-to-fine strategy, they may suffer from low-resolution
error recovery problems. In order to maintain high accuracy
on large displacements, especially for fast moving small
targets, RAFT [36] constructs an all-pairs 4D correlation
volume and look up with a convolution GRU block. How-
ever, it runs into memory problems when predicting high-
resolution optical flow.

In order to reduce the memory while maintaining high
accuracy, instead of using the sparse global correlation
strategies like [19, 44] which suffer from loss of accuracy,
we introduce the idea of Patchmatch to the computation
of correlation. Patchmatch implements a random initial-
ization, iterative propagation and search algorithm for ap-
proximate nearest neighbor field estimation [5, 6, 14]. It
only needs to perform correlation calculations on nearby
pixels and propagate its cost information to the next match-
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ing point iteratively, without the need to construct a global
matching cost. Therefore, the Patchmatch algorithm greatly
reduces the memory overhead caused by the correlation vol-
ume. Moreover, the iterative propagation and search in
Patchmatch can be easily achieved using GRU [36]. To
this end, we propose a Patchmatch-based framework for
optical flow, which can effectively reduce memory while
maintaining high accuracy. It contains two key modules:
propagation module and local search module. The prop-
agation module reduces the search radius effectively, and
the local search module accelerates convergence and further
improves accuracy. At the same time, we have achieved
high-resolution predictions of high-precision optical flow
through adaptive-layers iterations.

Furthermore, a new inverse propagation method is pro-
posed, which offsets and stacks target patches in advance.
Then, it only needs to do warping once for all propagations
compared with propagation which requires offset and warp-
ing in each propagation, so as to reduce the calculation time
significantly.

We demonstrate our approach on the challenging Sin-
tel [7] and KITTI-15 [28] datasets. Our model ranks first
on KITTI-15 and second on Sintel-Clean. Fig. 1 shows the
results of our Deep Inverse Patchmatch(DIP). Comparing
to previous approaches [20, 36], DIP keeps the best effect
while memory usage is the lowest. At the same time, our
method has a strong cross-dataset generalization that the
F1-all achieves 13.73%, reduced 21% from the best pub-
lished result 17.4% on KITTI2015 [28]. In addition, the
supplementary material shows the domain invariance of our
DIP in the Stereo field.

To sum up, our main contributions include:

• We design an efficient framework which introduces
Patchmatch to the end-to-end optical flow prediction
for the first time. It can improve the accuracy of op-
tical flow while reducing the memory of correlation
volume.

• We propose a novel inverse propagation module. Com-
pared with propagation, it can effectively reduce calcu-
lations while maintaining considerable performance.

• Our experiments demonstrate that the method achieves
a good trade-off between performance and memory, a
comparable results with the state of the art methods on
public datasets and a good generalization on different
datasets.

2. Related Work
Deep Flow Methods The first end-to-end CNN-based
version for flow estimation can be traced back to [10],
which proposed a U-net like architecture FlowNetS to pre-
dict flow directly. A correlation layer was included in a di-
verse version named FlowNetC. In FlowNet2, Ilg et al. [18]

introduced a warping mechanism and stacked hourglass net-
work to promote the performance on small motion areas.
PWC-Net [34] used feature warping and a coarse-to-fine
cost volume with a context network for flow refinement,
further improving the accuracy and reducing the model size
simultaneously. To address ambiguous correspondence and
occlusion problem, Hui et al. [15] proposed LiteFlowNet3
with adaptive affine transformation and local flow consis-
tency restrictions. RAFT [36] introduced a shared weight it-
erative refinement module to update the flow field retrieved
from a 4D all-pair correlation volume. To reduce the com-
putation complexity of 2D searching in high-resolution im-
ages, Xu et al. [44] factorized the 2D search to 1D in two
directions combined with attention mechanism. Jiang et
al. [20] proposed to construct a sparse correlation volume
directly by computing the k-Nearest matches in one feature
map for each feature vector in the other feature map. The
memory consumption of them is less compare to RAFT but
their accuracy is inferior. Another line of work is focused
on joining image segmentation and flow estimation task to-
gether [8,9,33,37], which propagated two different comple-
mentary features, aiming at improving the performance of
flow estimation and vice versa.

Patchmatch Based Methods Patchmatch has been orig-
inally proposed by Barnes et al. [5]. Its core work is to
compute patch correspondences in a pair of images. The
key idea behind it is that neighboring pixels usually have
coherent matches. M Bleyer et al. [6] applied Patchmatch
to stereo matching and proposed a slanted support windows
method for computing aggregation to obtain sub-pixel dis-
parity precision. In order to reduce the error caused by the
motion discontinuity of Patchmatch in optical flow, Bao et
al. [3] proposed the Edge-Preserving Patchmatch algorithm.
Hu et al. [14] proposed a Coarse-to-Fine Patchmatch strat-
egy to improve the speed and accuracy of optical flow. In
deep learning, Bailer et al. [2] regarded Patchmatch as a 2-
classification problem and proposed a thresholded loss to
improve the accuracy of classification. Shivam et al. [11]
developed a differentiable Patchmatch module to achieve
real-time in the stereo disparity estimation network. But
this method is sparse and only works on the disparity di-
mension. Wang et al. [40] introduced iterative multi-scale
Patchmatch, which used one adaptive propagation and dif-
ferentiable warping strategy, achieved a good performance
in the Multi-View Stereo problem.

3. Approach

We start with our observation and analysis of different
correlation volume in optical flow task. These methods
require high memory usage and computation to compute
the correlation volume. Inspired by the high efficiency of
Patchmatch on the correspondence points matching, we use
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(a) propagation (b) inverse propagation

Figure 2. The correlation calculation process of propagation and inverse propagation. Where the red points in the graph represent shift
operator on the optical flow or images according to the seed points, the green points represent warping operator on the images according to
the optical flow, and the blue points represent correlation caculating operator between the source image and the warped images. The blue
box in (b) represents the initialization stage, and the red box represents the running stage.

it to reduce the search space of optical flow.

3.1. Observations

Local Correlation Volume In modern local correlation
volume based optical flow approaches [10], the computation
of it can be formulated as follows:

Corr = {F1(x) · F2(x + d)|x ∈ X,d ∈ D} , (1)

where F1 is the source feature map and F2 is the target fea-
ture map, d is the displacement along the x or y direction.
X = [0, h) × [0, w), D = [−dmax, dmax]2, h is the height
of feature map, w is the width of feature map. So the mem-
ory and calculation of the correlation volume are linear to
hw(2dmax + 1)2 and quadratic to the radius of the search
space. Limited by the size of the search radius, it is diffi-
cult to obtain high-precision optical flow in high-resolution
challenging scenes.

Global Correlation Volume Recently, RAFT [36] pro-
posed an all-pairs correlation volume which achieved the
state-of-the-art performance. The global correlation com-
putation at location (i, j) in F1 and location (k, l) in F2 can
be defined as follows:

Corrmijkl =
1

22m

2m∑
p

2m∑
q

(F1(i, j) · F2(2mk + p, 2ml + q)) ,

(2)
wherem is the pyramid layer number. 2m is the pooled ker-
nel size. Compared with local correlation volume, global
correlation volume contains N2 elements, where N = hw.
When the h or w of F increases, the memory and calcula-
tion will multiply. So the global method suffers from insuf-
ficient memory when inferring at high- resolution.

Patchmatch Method Patchmatch is proposed by Barnes
et al. [5] to find dense correspondences across images for
structural editing. The key idea behind it is that we can get

some good guesses by a large number of random samples.
And based on the locality of image, once a good match is
found, the information can be efficiently propagated to its
neighbors. So, we propose to use the propagation strategy to
reduce the search radius and use local search to further im-
prove accuracy. And the complexity of Patchmatch method
is hw(n + r2), where n is the number of propagation, r is
the local search radius, and both values are very small and
do not change with the increase of displacement or resolu-
tion. Details are described in the next subsection.

3.2. Patchmatch In Flow Problem

The traditional Patchmatch methods [5, 6, 14, 23] has
three main components. 1) Random initialization. It gets
some good guesses by a large number of random samples.
2) Propagation. Based on image locality, once a good match
is found, the information can be efficiently propagated from
its neighbors. 3) Random search. It is used in the subse-
quent propagation to prevent local optimization and make
it possible to obtain the good match when no good match
exist in its neighbors.

Iterative propagation and search are the key points to
solve the flow problem. In propagation stage, we treat a
point of feature maps as a patch and select 4 neighbor seed
points. So every point can get the flow candidates from its
neighbors by shifting the flow map toward the 4 neighbors.
Then we can compute a 5 dimension correlation volume
based on the neighbor flow candidates and its flow. Given a
shift ∆p for all flow, the correlation calculation of propaga-
tion can be defined as:

Corr = F1 ·W(F2,S(flow,∆p)), (3)

Where, S(flow,∆p) refers to shift flow according to ∆p,
W refers to warp F2 with shifted flow. There is no doubt
that the more seed points are selected, the more operations
are needed. When choosing n seed points for m iterations
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(a) DIP Architecture

(b) Inverse Propagation Block (c) Local Search Block

Figure 3. (a) Architecture overview. Given a pair of flow images, we first extract deep 1/4 and 1/16 scale features and context information.
The extracted features and context information are then used to the initialization of 1/16 inverse Patchmatch, which is fed into the inverse
propagation Block, local search Block and GRU modules for iterative optimization of flow. Then we use the optical flow predicted on 1/16
for the initialization of 1/4 inverse Patchmatch, and repeat the operation of Inverse Patchmatch Network. Please note that the parameters
used by 1/4 and 1/16 Inverse Patchmatch Network are exactly the same. (b) Inverse Propagation Block propagates neighbor information.
(c) Local Search Block is used to refine the flow.

of propagation, propagation needs to shift the optical flow
n × m times and warp the source feature n × m times.
This increases memory operations and interpolation calcu-
lations, especially when predicting high-resolution optical
flow. In order to reduce the number of options, for the first
time we replace propagation with inverse propagation. In
the search stage, we change the random search to a local
search method which is more suitable for end-to-end net-
work and achieves higher accuracy. More details in patch-
match method can be seen in the supplementary.

3.3. Deep Inverse Patchmatch
Inverse Propagation In propagation, the optical flow shift
and feature warping are serial and coupled, since the warp-
ing process depends on the shifted flow. Moreover, multiple
flow shifts are necessary in each iteration, so the compu-
tations increase. In theory, the spatial relative position of
shifting the flow to the down-right is the same as shifting
the target to the top-left. And the correlation maps of the
two methods have one pixel offset in the absolute space co-
ordinates. We name the way of shifting targets as inverse
propagation, and the inverse propagation can be formulated
as follows:

Corr = F1 · S(F
′
2 ,−∆p), (4)

and
F

′
2 = W(S(F2,∆p), f low) (5)

In theory, combining Eq. (5) and Eq. (4) is completely

equivalent to Eq. (3). Since ∆p is very small, we ignore the
process of back propagation in our implementation. Then
Eq. (4) can be replaced with:

Corr = F1 · F
′

2 (6)

In inverse propagation, a target feature point is scattered to
its seed points and warped by the optical flow of the seed
points. Thus, we can shift and stack the target features in ad-
vance, then perform warping only once to obtain the warped
target features in each iteration. The details of inverse prop-
agation can be described in Fig. 3b.

In this work, the seed points is static and do not change
with the increase of iterations. Hence target features only
need to be shifted to seed points once and shifted target fea-
tures can be reused in every iteration. In this way, if there
are n seed points for m iterations of propagation, we only
need to shift target features n times and warp the shifted
target features m times. Fig. 2b shows the inverse propa-
gation stage and whole the stage can be divided into two
sub-stages:

• Initialization Stage: Input source feature, target fea-
ture. Shift the target feature according to the seed
points, and then stack these shifted target features as
shared target features along the depth dimension.

• Running Stage: Input a flow, warp shared target fea-
tures according to the flow, and compute correlation
between source feature and warped target features.
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Local Search It is difficult to obtain very accurate op-
tical flow by patch propagation alone, since the range of
randomly initialized flow values is very sparse. Therefore,
a local neighborhood search is performed after each patch
propagation in this work. Unlike [5], which performs a ran-
dom search after each propagation and reduces the search
radius with increasing iteration. We only perform a fixed
small radius search after each propagation and call it local
search. The entire local search block is shown in Fig. 3c.
Given an optical flow increment ∆f , the local search can
be formulated as:

Corr = F1 · S(W(F2, f low),∆f) (7)

In this work, we set the final search radius to 2 according
to the experimental results. Details are described in Sec-
tion 4.2.

To this end, the Inverse Patchmatch module, as shown in
Fig. 3a, consists mainly of the Inverse Propagation Block
and the Local Search Block. In each iteration, an inverse
propagation is followed by a local search. It is worth noting
that both blocks use GRU [36] for cost aggregation.

3.4. Network Architecture

In order to obtain high-precision optical flow on high-
resolution images, we designed a new optical flow predic-
tion framework named DIP. The overview of DIP can be
found in Fig. 3. It can be described as two main stages: (1)
feature extraction; (2)multi-scale iterative update.

Feature Extraction At first, a feature encoder network is
applied to the input images to extract the feature maps at 1/4
resolution. Unlike previous works [19,20,36,44] which use
a context network branch to specifically extract the context.
DIP directly activates the source feature map as a context
map. Then we use the Average Pooling module to reduce
the feature maps to 1/16 resolution. And we use the same
backbone and parameters for both 1/4 resolution and 1/16
resolution. Therefore, DIP can be trained in two stages,
and we use more stages for inference when processing large
images.

Multi-scale Iterative Update Our method is based on
neighborhood propagation and thus must iteratively update
the optical flow. Our network consists of two modules, an
inverse propagation module and a local search module. In
the training stage, we start the network with a random flow
of size 1/16 and then iteratively optimize the optical flow at
both scale 1/16 and scale 1/4 using a pyramid method. Dur-
ing the inference stage, we can perform the same process as
in the training stage. To obtain a more accurate optical flow,
we can also refine the optical flow at scale 1/8 and then op-
timize the result at scale 1/4. More high-resolution detailed
comparisons can be found in the supplementary material.

Our network also accepts the initialized optical flow as
input in the inference stage. In this case, we adapt the num-
ber of inference layers of the pyramid according to the max-
imum value of the initialized optical flow. For example, the
forward interpolation of the optical flow of the previous im-
age is used as input for the current image when the optical
flow of the video images is processed. With the information
of the previous optical flow, we can use two or more pyra-
mids for large displacements to ensure accuracy, and use
one pyramid for small displacements to reduce inference
time.

4. Experiments
In this section we demonstrate the state-of-the-art per-

formance of DIP on Sintel [7] and KITTI [28] leaderboards
and show that it outperforms existing methods in the zero-
shot generalization setting on Sintel and KITTI. The end-
point error (EPE) is reported in the evaluation. For KITTI,
another evaluation metric, F1-all, is also reported, which in-
dicates the percentage of outliers for all pixels. For bench-
mark performance evaluation, d0−10 and d10−60 on Sintel
are also used to estimate the optical flow in small motion
regions. Here, d0−10 means the endpoint error over regions
closer than 10 pixels to the nearest occlusion boundary.

4.1. Training schedule

DIP is implemented in Pytorch [29] with 16 RTX 2080
Ti GPUs. Following RAFT [36], we use the AdamW [24]
optimizer and the OneCycle learning rate schedule [32] in
the training process.

Training Details In the generalization experiment, we
train our model on the datasets FlyingChairs [10] and Fly-
ingThings3D [27] and evaluate the generalization ability on
the training set of Sintel [7] and KITTI2015 [28]. In the
pre-train stage, we decide to combine FlyingChairs and Fly-
ingThings3D in a ratio of 1:10. First, the training size is set
to 512 × 384, and the model is trained for 100k steps with
a batch size of 32. Then the model is finetuned on size of
768 × 384 for another 100k steps with batch size of 16.
During training and inference of ablation studies, we use 6
iterations for DIP flow regression. And the number of itera-
tions is set to 12 during benchmark performance evaluation.

We also performed fine-tuning on Sintel [7], KITTI [28]
and HD1K [21] datasets. We perform fine-tuning on Sin-
tel for 100k by combining data from Sintel and FlyingTh-
ings3D [27] and training size is 768 × 384. Finally, we
perform fine-tuning using a combination of data from Fly-
ingThings, Sintel, KITTI-15, and HD1K for 100k with a
training size of 832× 320.

Loss Our loss function is similar with RAFT [36]. DIP
outputs two optical flows for each iteration. Thus, N =
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Method Sintel (train) KITTI-15 (train)
Params

448×1024 1088×1920

Clean Final EPE F1-all Memory Time(ms) Memory Time (ms)

Sparse global [20] 1.29 2.95 6.80 19.30 5.00M 3.04G 839 5.98G 3971
Dense global 1.30 2.97 4.96 14.02 3.40M 10.47G 234 OOM -

only p(N=4) 1.62 3.40 7.63 19.81 2.78M 1.48G 112 3.27G 325
only ls(r=1) 1.48 3.02 12.38 23.76 3.40M 1.56G 96 3.45G 373

pm(N=4, r=1) 1.26 2.93 4.89 14.33 5.10M 1.56G 106 3.70G 372

Table 1. Ablation study concerning correlation volume. Models are trained on FlyingChairs [10] and FlyingThings3D [27]. Memory and
inference time are measured on a RTX2080 Ti GPU. global means global correlation volume. only p(N=4), ls(r=1) means that only use
propagation with seeds of 4 or local search with radius 1. pm(N=4, r=1) means Patchmatch that combines propagation and local search.
The number of iterations is set to 6 for Patchmatch and 12 for other methods. The best results are marked with bold and the second best
results are marked with underline.

pm Sintel KITTI-15 1088×1920

N r clean final EPE F1-all Time(ms)

4 1 1.26 2.93 4.89 14.33 372
4 2 1.27 2.83 4.41 13.51 432
4 3 1.31 2.85 4.54 13.80 523
8 2 1.28 2.79 4.45 13.77 503

Table 2. Ablation study of the number of seeds and the local search
radius based on Patchmatch. Validated on Sintel and KITTI-15
training datasets and iteration is set to 6. The best results are
marked with bold and the second best results are marked with un-
derline.

Method Sintel KITTI-15 1088×1920

clean final EPE F1-all Time(ms)

pm 1.27 2.83 4.41 13.51 432
ipm 1.30 2.82 4.29 13.73 327

Table 3. Ablation study of Patchmatch and inverse Patchmatch on
Sintel and KITTI-15 training datasets. Where pm means Patch-
match and ipm means inverse Patchmatch. Among them, the
seeds of propagation is 4. The radius of local search is 2. The
best results are marked in bold.

iters× 2× 2 predictions are output throughout the training
process whenN iterations are used at both 1/16 and 1/4 res-
olution. Since there are multiple outputs for supervise, we
use the similar strategy with RAFT, to compute a weighting
sequence and sum the loss of the prediction sequence with
it. The total loss can be formulated as follows:

loss =

i=N∑
i=0

wi ·M(|fi − fgt|), (8)

where N is the length of the prediction sequence, M(x)
represent the mean of the matrix x, and the wi can be com-
puted by Eq. (9), we use γ = 0.8 in our training.

wi = γN−i−1 (9)

4.2. Ablation study

Correlation Volume We first analyze the accuracy, mem-
ory and inference time of key components in our pro-
posed method in Tab. 1. In this comparative experiment,
SCV(Sparse global) [20] is selected as a benchmark be-
cause it has low correlation volume in memory and state-
of-the-art performance. In addition, we construct 4D cor-
relation volumes with a resolution of (Dense global) 1/16
and 1/4 resolution respectively, and each iteration performs
a lookup like RAFT [36]. Using these benchmarks, we have
conducted a partial experimental comparison. In the exper-
iment, we implement a propagation experiment with a seed
point of 4 and a local search experiment with a radius of
1 respectively. The results are clearly that only propaga-
tion(only p) or local search(only ls) has great advantages
in terms of memory and speed at large resolutions, but the
accuracy is reduced compared to the global method. The
combination of propagation and local search (pm) uses less
time and memory to achieve comparable or better results
than the global method. Especially, DIP consumes 10× less
inference time than SCV on the size of 1088×1920.

Hyperparameters Based on Patchmatch, we further ex-
periments with hyperparameters and present them in Tab. 2.
At first, the number of propagation seed points is set to 4,
and the radius of local search is changed from 1 to 3. We can
see that the accuracy is further improved when the search
radius is increased from 1 to 2. When it is increased to 3,
the accuracy is basically the same as radius 2, but the model
inference time increases by 21% . So the radius of the lo-
cal search is fixed at 2. Then we change the number of
propagation seed points from 4 to 8. However, the result is
not improved significantly, but the model consumption in-
creases. So we set the number of seed points to 4 for further
optimization.
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Figure 4. Visual comparison of optical flow estimates on the Sintel-Clean dataset. Compared with RAFT and SCV, our method performs
particularly well, and our result is close to GT in the enlarged image frame. More results can be found in supplementary materials.

Patchmatch and Inverse Patchmatch Finally, we veri-
fied the effectiveness of the inverse Patchmatch and showed
it in Tab. 3. In this experiment, we replaced the calculation
method of correlation from propagation to inverse propaga-
tion, and adopted the previous training and evaluation strat-
egy. The experiment shows that inverse propagation can
achieve almost the same results as propagation. With a size
of 1088×1920, the inference time of inverse Patchmatch is
reduced by 24% compared to Patchmatch.

In summary, based on our Patchmatch framework, we
can achieve better performance with lower memory, and
use inverse Patchmatch instead of Patchmatch to achieve
the same performance with faster inference speed.

4.3. Comparison with Existing Methods

To demonstrate the superiority of our method, we have
made a comprehensive comparison with the existing meth-
ods, including generalization, memory and special results.
Generalization In order to verify the generalization of
the model, we choose to use FlyingChairs [10] and Fly-
ingThings3D [27] for training and Sintel [7], KITTI [28]
for test. Details are described in Section 4.1 and results are
show in Tab. 4. Experiments show that our method exhibits
strong generalization and achieves state-of-the-art results in
the KITTI-15 dataset. Among them, F1-all is 13.73%, re-
ducing 21% from the best published result (17.4%). On the
Sintel dataset, we have also achieved results comparable to
the state-of-the-art methods.
Memory and High-resolution Results We measure the
accuracy and memory of different correlation volume algo-
rithms at different resolutions in Fig. 5. Since there are few
real and high-resolution datasets for the flow task, in the

Method
Sintel(Train) KITTI-15(train)

Clean Final EPE F1-all

HD3 [46] 3.84 8.77 13.17 24.0
LiteFlowNet [16] 2.48 4.04 10.39 28.50

PWC-Net [34] 2.55 3.93 10.35 33.7
LiteFlowNet2 [17] 2.24 3.78 8.97 25.90

VCN [45] 2.21 3.68 8.36 25.10
MaskFlowNet [47] 2.25 3.61 - 23.10

FlowNet2 [18] 2.02 3.54 10.08 30
DICL [41] 1.94 3.77 8.70 23.60
RAFT [36] 1.43 2.71 5.04 17.40

Flow1D [44] 1.98 3.27 6.69 22.95
SCV [20] 1.29 2.95 6.80 19.30

ours 1.30 2.82 4.29 13.73

Table 4. Results on Sintel and KITTI. EPE refers to the average
endpoint error and F1-all refers to the percentage of optical flow
outliers over all pixels. The best results are marked with bold and
the second best results are marked with underline. Missing entries
’-’ indicates that the result is not reported in the compared paper.

experiment we use the up-sampled kitti dataset for mem-
ory and accuracy evaluation. It can be seen that under the
limitation of 11GB memory, the maximum output image
scale of RAFT [36] is only 2.25. Moreover, the accuracy of
SCV [20] is rapidly decreasing as the image scale increases.
This demonstrates the effectiveness of our approach in sav-
ing memory and stabling accuracy when scaling correlation
volumes to higher resolutions.

Benchmark Results The performances of our DIP on the
Sintel and KITTI-15 benchmarks are shown in Tab. 5. We
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Method

Sintel (test) KITTI-15 (test)

Clean Final F1-all

EPE d0-10 d10-60 EPE d0-10 d10-60 All pixels Non-Occ pixels

2-view

FlowNet2 [18] 4.16 3.27 1.46 5.74 4.81 2.55 11.48 6.94
PWC-Net+ [35] 3.45 3.91 1.24 4.6 4.78 2.04 7.72 4.91

LiteFlowNet2 [17] 3.48 3.27 1.43 4.69 4.04 1.89 7.74 4.42
HD3 [46] 4.79 3.22 1.37 4.67 3.58 1.76 6.55 -
VCN [45] 2.81 3.26 0.86 4.4 4.38 1.78 6.3 3.89

MaskFlowNet [47] 2.52 2.74 0.9 4.17 3.78 1.74 6.1 3.92
ScopeFlow [4] 3.59 3.45 1.26 4.1 4.02 1.68 6.82 4.45

DICL [41] 2.12 2.2 0.58 3.44 3.27 1.28 6.31 -
RAFT [36] 1.94 - - 3.18 - - 5.1 3.07

Flow1D [44] 2.24 2.18 0.87 3.81 3.60 1.75 6.27 -
SCV [20] 1.72 1.39 0.45 3.6 3.24 1.42 6.17 3.43

Ours 1.67 1.18 0.45 3.22 2.68 1.23 4.21 2.43

warm-start
RAFT 1.61 1.62 0.51 2.86 3.11 1.13 - -
SCV 1.77 - - 3.88 - - - -
Ours 1.44 1.10 0.41 2.83 2.72 1.09 - -

Table 5. Benchmark performance on Sintel and KITTI Test datasets. Missing entries ’-’ indicates that the result is not reported in the
compared paper and could not found on online benchmark. The best results are marked with bold and the second best results are marked
with underline.

Figure 5. Upsampling to high-resolution size results. The memory
limit is 11GB and the area of the bubbles is a mapping of the F1-
all metric. We use upsampling of the KITTI dataset to evaluate
memory and accuracy, and the resolution at the scale of 1 is 375 x
1242. ’OOM’ means out of memory.

have achieved state-of-the-art results (1.72 → 1.67) on the
Sintel-Clean dataset in the two-view case. Similar to RAFT,
we also adopt the “warm-start” strategy which initialises
current optical flow estimation with the flow estimates of
the previous frame. On the Sintel-Clean benchmark our
method ranks second for EPE. Compared with RAFT, we
have improved the EPE from 1.61 to 1.44 (10.5% improve-
ment). What’s interesting is that our method achieves the

best results on the d0−10 and d10−60, which shows that our
method has obvious advantages in estimating the optical
flow in small motion areas. Fig. 4 shows qualitative results
of DIP on Sintel. Compared with RAFT and SCV, our re-
sults are much closer to the ground truth in the fine structure
area.

On the KITTI-15 benchmark, our method ranks first on
all the metrics among the published optical flow methods.
Compared with RAFT, we have improved the F1-all from
3.07% to 2.43% (20.8% improvement) on Non-occluded
pixels and the F1-all from 5.10% to 4.21% (17.5% improve-
ment) on all pixels.

5. Conclusions

We propose a deep inverse Patchmatch framework for
optical flow that focuses on reducing the computational
cost and memory consumption of dense correlation volume.
By reducing the computational and memory overhead, our
model can work at a high-resolution and preserve the details
of fine-structure. We also show a good trade-off between
performance and cost. At the same time, we achieve com-
parable results with the state-of-the-art methods on public
benchmarks and good generalization on different datasets.
We believe that our inverse Patchmatch scheme can be used
in more tasks, such as stereo matching, multi-view stereo vi-
sion and so on. In the future, more attention will be paid on
the motion blur, large occlusion and other extreme scenes.
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