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Abstract

Spotting graphical symbols from the computer-aided de-
sign (CAD) drawings is essential to many industrial appli-
cations. Different from raster images, CAD drawings are
vector graphics consisting of geometric primitives such as
segments, arcs, and circles. By treating each CAD draw-
ing as a graph, we propose a novel graph attention net-
work GAT-CADNet to solve the panoptic symbol spotting
problem: vertex features derived from the GAT branch are
mapped to semantic labels, while their attention scores are
cascaded and mapped to instance prediction. Our key con-
tributions are three-fold: 1) the instance symbol spotting
task is formulated as a subgraph detection problem and
solved by predicting the adjacency matrix; 2) a relative
spatial encoding (RSE) module explicitly encodes the rel-
ative positional and geometric relation among vertices to
enhance the vertex attention; 3) a cascaded edge encod-
ing (CEE) module extracts vertex attentions from multiple
stages of GAT and treats them as edge encoding to predict
the adjacency matrix. The proposed GAT-CADNet is intu-
itive yet effective and manages to solve the panoptic sym-
bol spotting problem in one consolidated network. Exten-
sive experiments and ablation studies on the public bench-
mark show that our graph-based approach surpasses exist-
ing state-of-the-art methods by a large margin.

1. Introduction

Computer-aided design (CAD) is the use of computers to
generate digital 2D or 3D illustrations of a product, aiding
the creation, modification, analysis, or optimization process
during designing and manufacturing. This technology has
been widely used in modern architecture, engineering and
construction (AEC) industries. The CAD drawings usu-

*Equal contribution.
Corresponding author.

(c) Reconstructed BIM model

Figure 1. A patch of floor plan (a) and its panoptic symbol spotting
results (b), where line semantics are color coded and instances are
presented by translucent rectangles. The BIM model (c) with com-
plete semantic and accurate geometry can be reconstructed from
such annotated floor plan. We only show 3D model of wall, win-
dows and doors for the sake of clarity.

ally convey accurate geometry, rich semantic, and domain-
specific knowledge of a product design, with basic geomet-
ric primitives, such as segments, arcs, circles, and ellipses,
as illustrated in Figs. la and 1b.

Spotting and recognizing symbols from the CAD draw-
ings is the first step towards understanding its content,
which is crucial to many real-world industrial applications.
For example, building information modeling (BIM) has
growing demand in various architecture engineering ar-
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Figure 2. Illustration of the panoptic symbol spotting in a bath-
room. Symbols of countable things (a), and uncountalbe stuff, e.g.,
wall (b). The panoptic symbol spotting proposed by [15] considers
both types of symbols in a unified scheme (c).

eas such as pipe arrangement, construction inspection and
equipment maintenance. A floor plan usually contains com-
plete details of a storey in an orthogonal top-down view.
Therefore, a BIM model can be precisely reconstructed
from a group of 2D floor plans with accurate semantic and
instance annotations, as demonstrated in Fig. lc.

Traditional symbol spotting usually deals with instance
symbols representing countable things [32], like table, sofa,
and bed. Following the idea in [23], Fan et al. [15] ex-
tended the definition with recognizing semantic of uncount-
able stuff, and named it panoptic symbol spotting, as shown
in Fig. 2. Therefore, all components in a CAD drawing
are covered in one task altogether. For example, the wall
represented by a group of parallel lines was properly han-
dled by [15], which however was treated as background
by [27,28,33,35].

Large-scale dataset of high quality annotations is the
fundamental ingredient to recent advances in supervised
methods with deep learning, e.g., ImageNet [10] for im-
age classification, COCO [26] for image detection, and
ShapeNet [2] for 3D shape analysis. Existing datasets for
symbol spotting on floor plan, i.e., SESYD [9] and FPLAN-
POLY [34], are either synthetic, or inaccurate, both with
only a few hundreds of samples. Fan ef al. [15] built the
first large-scale real-world FloorPlanCAD dataset of over
10, 000 floor plans in the form of vector graphics, and pro-
vided line-grained panoptic annotations.

CAD drawings are composed of domain-specific items,
which are usually represented by abstract symbols. Human
perception of CAD drawings is usually a multi-modal cross-
context reference process requiring strong domain related
knowledge. Meanwhile, the large intra-class variance and
small inter-class dissimilarity of symbols make it a more
challenging task for computers, as shown in Fig. 3.

Representing a CAD drawing as a graph of primitives is
an intuitive way to retain the property of vector graphics,
and has been proven effective for the semantic symbol spot-
ting task in [15]. In this work, we present a novel graph
attention network GAT-CADNet to solve the panoptic sym-
bol spotting problem. The network achieved state-of-the-art

EBEQ&Dﬁjﬂg?

OOoOooUlo odmo

oG H o 0 O

(a) Tables.

i
?DEEJ

(b) Wall, window, bay window, and curtain wall are high lighted in red.

Figure 3. The inter-class variance (a) and intra-class similarity (b)
in the public FloorPlanCAD dataset.

performance and our main contributions are:

* We formulate the instance symbol spotting task as a
subgraph detection problem, and solve it by predicting
the adjacency matrix.

* We explicitly encode the relative relation among ver-
tices, using a relative spatial encoding (RSE) module,
to enhance the vertex attention.

* We treat the vertex attention as edge encoding for pre-
dicting the adjacency matrix, and design a cascaded
edge encoding (CEE) module to aggregate vertex at-
tentions from multiple GAT stages.

2. Related Work

In this section we briefly summarize methods in related
areas, including symbol spotting, panoptic segmentation,
graph neural networks, and attention.

Symbol spotting. It is the process of finding target sym-
bols from an image or a document [35,37]. Optical char-
acter recognition (OCR) can be viewed as a specific case
where symbols are from a standard character set. Tradi-
tional non-data-driven methods usually design hand-crafted
descriptors [27,28, 35], then the query symbol is matched
to the document by sliding window or graph matching ap-
proaches [12—-14]. With recent development in deep learn-
ing, data-driven approaches [15, 33] reported better results
on various datasets [9, 34].

Panoptic segmentation. In the computer vision commu-
nity, object detection often refers to identifying countable
things from an image such as cats, dogs, and cars [17, 24,

]. On the other hand, semantic segmentation is partition-
ing an image into multiple regions without distinguishing
instances with the same semantic [5, 40]. However, there
is uncountable stuff that has no instance but only semantic,
such as sky, road, and pavement [4,5,36]. Panoptic segmen-
tation is first introduced by Kirillov et al. [23], which treated
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Figure 4. The segment approximation for graphic primitives (arc,
circle, and ellipse) are shown as dash lines.

countable instance things and uncountable stuff as one vi-
sual recognition task [22,23,44]. Chen et al. [6] improved
the panoptic segmentation quality with a bidirectional path
between the semantic and instance segmentation branches.
Wu et al. [43] constructed modular graph structure to rea-
son their relations. Inspired by [23], Fan et al. [15] general-
ized the traditional symbol spotting problem and considered
both countable things and uncountable stuff symbols as one
recognition task. They also provided a reasonable evalua-
tion metric and a well-annotated public dataset.

Graph neural networks. The graph convolutional net-
works (GCNs) proposed by Thomas et al. [20] operated
directly on graphs via a local first-order approximation of
spectral graph convolutions. To enable the training of tra-
ditional neural networks on the graphs, Zhang et al. [47]
sorted graph vertices in a consistent order. Ying et al. [46]
introduced a differentiable graph pooling module that can
generate hierarchical representations of graphs. Some
works [15, 16,41] tried to fuse image features to enhance
the GCNs. Thomas et al. [2 1] proposed graph auto encoders
(GAE) and variational graph auto encoders (VGAE), where
vertex features are used to restore adjacency matrix.

Attention. Transformers have brought the machine trans-
lation and natural language processing to a higher level [8,

,42,45]. The success has stimulated the development
of self-attention networks for various image perception
tasks [11, 18, 29,48]. Bello et al. [1] augmented CNN
with relative self-attention to integrate global information
to the network. Dosovitskiy et al. [11] cut images into grid
patches and apply attention on the sequence. Vaswani et
al. [39] proposed self attention which is permutation invari-
ant for sequence data. In the same paper, they added posi-
tional embedding to the networks. In long sequence cases,
Dai et al. [8] found attention matrix is usually sparse and
local focused. Hence, they proposed a method to encode
not absolute but relative position.

3. Methodology

Our GAT architecture takes CAD drawings of vector
graphics as input and predicts the semantic and instance at-
tributes of every geometric primitive in it.

Figure 5. Graph construction: blue dots represent vertices v;, and
red arrows are edges staring from vg. Note that v1, v2, vs are con-
nected to vg due to their closeness (the orange area is the € enve-
lope of vg), while ve is connected due to their collinearity.

3.1. Graph Construction

A graph G = (V, &) is constructed for one input CAD
drawing, where vertex v; € V is the segment approximation
of a geometric primitive. The segment approximation of an
arc is the line connecting its start and end points, while the
horizontal diameter or major axis are approximations for a
circle and ellipse respectively, see Fig. 4 for illustrations.
Such simplifications are acceptable, because segments are
the majority in CAD drawings.

An edge connecting two vertices v; and v; is added if
their distance d;; is below certain threshold €, where:

dij = minPGUz‘-,qGUj ”p - QH (D
Since CAD drawings are usually drawn by professionals to
depict man-made objects with strong regularity, we add ex-
tra edges for collinear primitives. To keep the graph com-
plexity low, at most K edges are allowed for every vertex
by random dropping. Fig. 5 demonstrates the graph con-
struction around a door symbol, where only edges starting
from vy are illustrated. In the following experiments, we set
€ = 300mm and K = 30.

Instance and subgraph. An instance symbol of count-
able things, e.g., tables or doors, usually consists of a set
of locally connected primitives. Naturally, an instance cor-
responds to an connected subgraph G, C G. Therefore we
formulate the instance symbol spotting task as a subgraph
detection problem, which can be solved by predicting the
adjacency matrix.

Vertex feature. We define the vertex features v; € R7 as:

v; = [cos(2ay;), sin(2ay),1;, t;], 2)

where a; € [0, ) is the clockwise angle from the z positive
axis to v;, and [; measures the length of v;. Note that our
direction features are continuous when « jumps between 0
and m. We encode the primitive type (segment, arc, circle,
or ellipse) into a one hot vector ¢; € R* to make up the
missing information of segment approximations.
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Figure 6. Architecture of the proposed GAT-CADNet. The middle branch includes the main GAT stages of gray blocks followed by the
semantic and instance symbol spotting heads. The upper blue branch is the RSE module, and the lower orange branch is the CEE module.

Edge features. Besides vertex features, we explicitly en-
code relation between two vertices as edge features. The
positional offset §;; from v; to v; is defined as:

3)

where m; is the middle point of v;. The directional offset
4;; is defined as the acute angle between v; and v;. The
length ratio between v; and v; is computed as:

d;j = m; —my,

Li
rii = ——.
* l; +1 j
As illustrated in Fig. 1 and reported in [15], the parallelism
and orthogonality between two line segments are common
and play crucial role in CAD drawings. We add three binary
indicators to emphasize such regularities:

“4)

®)

where ||Zj and 1 ;; indicates whether v; is parallel or orthog-
onal to v;, and —;; is used to indicate whether v; and v;
share a same end point. Putting the aforementioned terms
together, we obtain the edge features e;; € R as:

9ij = [llij> Lig, izl

(6)

In our experiments, the angle and distance threshold used in
g,;; are set to 5° and 100mm respectively.

eij = [0, £ijy i, 9ij] -

3.2. Network Architecture

Based on the graph constructed from the CAD drawing
in Sec. 3.1, we propose a novel GAT-CADNet to solve the
panoptic symbol spotting problem, as shown in Fig. 6. The
network 1) formulates the instance symbol spotting task as
an adjacency matrix prediction problem, 2) enhances the
vertex attention with edge feature encoding, 3) aggregates
vertex attentions from multiple GAT stages for predicting
the sparse adjacency matrix.

The initial vertex features v; and edge features e;; are
embedded to ¥; and é;; with two separate multilayer per-
ceptron (MLP) blocks. For each vertex v;, we enhance its
features by its connected edges as:

v) = Concat(®;, MaxPooling({&;;})). @)
Vertex features are stacked to V0 € RVX128 N = ||, as
the input for the following GAT stages.

Relative spatial encoding (RSE). When processing point
cloud [49] or natural language [39], researchers often use
relative position encoding to make the network invariant to
translation and aware of distance. Similarly, we pass the
initial edge features through another MLP block to encode
the relative spatial relations among vertices:

®)

where E € RV*NXT7 i5 the edge features by expanding ||
edges to N x N. The RSE encoding R € RV *N*H ig then
fed to every stage of the main GAT branch, where H is the
number of heads in the GAT statge.

R =MLP(E),

Graph attention stage. The stem of our network is the
GAT branch of S stages, as illustrated in Fig. 7. The s-th
stage takes vertex features V*~! from previous stage and
outputs vertex features V¢ of the same dimension. In the
h-th head of the GAT block, we project V° to a query ma-
trix Qn, € RV*?, akey matrix K;, € RV*? and a value
matrix V;, € RY*?_ Then the multihead attention score
A% € RVXNXH can be formulated as:

A5 = QunKj,
A® = Concat(A7, ..

€))

AL, (10)
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Figure 7. A GAT stage in Fig. 6, where the gray area contains the
multihead attention [39]. The vertex attention score is fed to the
CEE module as edge encoding (orange arrow), and then enhanced
with edge encoding from the RSE module (blue arrow).

Note that A® expresses the relation among vertices in the
embedding space. Similar to the relative position encoding
in [39,49], we add our relative spatial encoding R to A® to
enhance their attention explicitly. Therefore the aggregated
value matrix V; € RV >4 is obtained by:

V)| = Softmax(A® + R)V}, (11)

which is passed through a MLP block and added to V571,
producing the output vertex features V'° of current stage.
The semantic symbol spotting head maps vertex features
from the final stage to the classification prediction:

Y = Softmax(MLP(V*)), (12)
with the semantic loss as:

1088sem = CrossEntropy (Y, Y9'). (13)

Cascaded edge encoding (CEE). Recall that vertex at-
tentions A® can be viewed as relational intensity among ver-
tices, which are good choice for predicting the adjacency
matrix. Therefore, we cascade attention scores from all
GAT stages { A®} as implicit edge encoding to capture local
and global vertex connectivity:

C:ZAS. (14)

Each valid edge encoding ¢;; in C € RNYXNXH jg then
concatenated with vertex features of its two endpoints from
the last GAT stage to form the final edge feature:

€,; = Concat(c;;, v;g, vf) (15)

Finally, the adjacency matrix prediction Z € RN*V is
given by the instance symbol spotting head:

Z = Sigmod(MLP(E)), (16)

where E € RV*N*(H+256) denotes the stacked final edge
features {€;; }. The loss for instance symbol spotting is de-
fined as:

l0ssins = BinaryCrossEntropy(Z, Z9" w), 17

where weights w for punishing incorrect predictions are de-
fined as:

w |z =0 Z¥=1
V=Y 20 2
gt gt
Y7 #Y, 1 0
Note that an edge connecting two vertices with the same se-
mantic label (V7" = Y/ *) but belong to different instances
(Z% = 0) has largest weight of 20.

Panoptic loss. The panoptic symbol spotting loss of our
network is the linear combination of the semantic and in-
stance loss terms:

1085pan = 1085gem + A0S Sips. (18)

In our implementation, the attention is conducted within the
one-ring neighbors and our N x N matrices are sparse.

4. Experiment

Qualitative and quantitative evaluations of our GAT-
CADNet are conducted for the panoptic symbol spotting
task on the public CAD drawing dataset. We also com-
pare our method with typical image-based instance detec-
tion [30,31,38] and semantic segmentation methods [5,40].
Extensive ablation study is performed to validate the design
choice of our network.

Dataset and panoptic metric. Although there are several
small vector graphics datasets [9, 34] for traditional symbol
spotting, we use the latest large-scale FloorPlanCAD [15]
dataset in our experiment, which has 11, 602 CAD drawings
of various floor plans with segment-grained panoptic anno-
tation. The dataset consists of 10m x 10m squared blocks
covering 30 things and 5 stuff classes. Similar to [23], it
also provides a panoptic metric defined on vector graphics:

PQ = RQ x SQ
_ Z(sP’SQ)GTP IOU(Sp’ Sg)
ITP|+ §|FP|+ 3|FN|’

19)

where R() is the F score measuring the recognition quality
and S( is the segmentation quality computed by averaging
IoUs of matched symbols. For the detailed IoU evaluation
of a predicted symbol sP and the ground truth symbol s? at
primitive level, please refer to [15].
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Figure 8. Qualitative comparison of semantic symbol spotting results on the FloorPlanCAD [15] dataset. Two close-ups of region A (upper

row) and B (lower row) are listed from left to right.

Methods F1 length-weighted F1
HRNetsV2 W18 [40] | 0.656 0.683
HRNetsV2 W48 [40] | 0.666 0.693
DeepLabv3+R50 [4] 0.680 0.705
DeepLabv3+R101 [4] | 0.688 0.714

PanCADNet [15] 0.806 0.798
Ours 0.850 0.823

Table 1. Statistical results of different image semantic segmenta-
tion models and our GAT-CADNet.

Implementation. In the following experiments, our GAT-
CADNet is configured with 8 GAT stages and H = 8, A =
2 if not specified. We use the Adam optimizer with 3; =
0.9, B2 = 0.99, Ir = 0.001 and set the decay rate to 0.7
for every 20 epochs. We train our GAT-CADNet for 100
epochs and take the best model on the validation split. The
number of graph vertices and their neighbours are limited
to 4096 and 30 respectively for each CAD drawing to fit
graphics card memory. All other image-based networks are
trained with the latest release of OpenMMLab [3, 7].

During inference, we prune the resulted adjacency ma-
trix by a threshold of 0.7, producing a directed graph. Ver-
tices of the same semantics are grouped first, and then
instances are found by searching connected components
within each group. Please refer to the supplementary ma-
terial for more results and feel free to zoom in since they
are vector graphics.

4.1. Quantitative Evaluation

Semantic symbol spotting. To compare with existing im-
age segmentation methods, the CAD drawings are rendered
as images with line width of 2 pixels. The semantic of a
primitive in G is then retrieved by sampling on the predicted
mask with a majority voting strategy. PanCADNet [15] is
a GCN architecture for semantic symbol spotting and re-
lies on image features from a CNN backbone. Tab. 1 com-

c P
]HT\ i_,; A ‘J*
o
(a) GT _(b) FRCNN [31] (c) Ours

Figure 9. Prediction quality comparison. Our primitive-level pre-
diction produces clearer boundary and can exclude background
(grey lines) in an instance symbol.

pares the results of popular segmentation methods [4, 40]
with different configurations. Qualitative comparion are
shown in Fig. 8 where DeepLabv3 [5] and HRNetV?2 [40]
are with the W48 and RO1 configuration in Tab. | respec-
tively. While our GAT-CADNet is built on the graph en-
tirely and requires geometric features only, it manages to
outperform other image-based methods.

Instance symbol spotting. As reported in [15, 33], tra-
ditional symbol spotting algorithms [27,28,35] have lower
generalization ability and are omitted in the comparison. By
rendering CAD drawings into images, our GAT-CADNet
is compared with various image detection methods, in-
cluding the two stage Faster-RCNN [31], the one stage
YOLOV3 [30] and the more recent FCOS [38]. Note that
the instance head in PanCADNet [ 1 5] is from Faster-RCNN
and is not listed here.

The image based detection methods [30, 31, 38] predict
bounding boxes directly, while we predict instance labels
for each geometric primitive. For a fair comparison, we
compute the bounding box of each instance symbol and use
its averaged connection intensity as the confidence score.
Quantitative comparison are listed in Tab. 2 and our GAT-
CADNet surpasses other methods by a large margin.
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Figure 10. Instance symbol spotting comparison with image detection methods. (a) The input CAD drawing with close-ups of regions
in blue rectangles. Two close-ups of region A (upper row) and B (lower row) are listed from (c) to (f). Wrong predictions are marked

by red rectangle with dash lines. Faster R-CNN [31] and YOLOV3 [

] mistakenly recognize two more sliding doors in region A. Both

YOLOv3 [30] and FCOS [38] fail to recognize some windows at bottom left in region B. Compared to the image based methods, our

GAT-CADNet gives closer bounding boxes to ground truth.

Methods AP50 | AP75 | mAP
Faster R-CNN [31] | 0.693 | 0.631 | 0.568
YOLOV3 [30] 0.656 | 0.431 | 0.395
FCOS [38] 0.648 | 0.572 | 0.525
Ours 0.735 | 0.680 | 0.690

Table 2. Comparison on instance symbol spotting with typical im-
age detection methods.

One thing noteworthy is that our average precision (AP)
does not drop dramatically when increasing the IoU thresh-
old and has a much higher mAP score. Since CNNs rely on
local patch texture for recognition and may ignore features
at border, it is not a surprise that their box predictions are
less accurate due to the low texture in CAD drawings. Such
phenomenon can be observed in Figs. 9 and 10 where our
primitive-level prediction has clearer bounding boxes.

Panoptic symbol spotting. Converting CAD drawings
into images and applying panoptic segmentation algorithms
on them is a straightforward approach. However, as demon-
strated in the aforementioned comparison sections, the im-
age based methods are less capable of recognizing abstract
symbol at geometric primitive level. PanCADNet [15] pro-
vides a CNN-GCN architecture for the panoptic symbol
spotting. It constructs a graph on the CAD drawing first,
then fetches CNN multi-layer features to each vertex and
uses a simple GCN structure for recognition. Since Pan-
CADNet [15] adopts Faster-RCNN as its backbone and de-
tection head, there is no surprise that it has much lower
recognition quality than our model, second and last row
in Tab. 3. In addition, it does not encode inter-vertex rela-
tion explicitly and even has lower recognition and segmen-
tation than our baseline model, third row in Tab. 3.

Model RSE CEE | RQ SQ PQ
PanCADNet[15] | - - | 0.660 | 0.838 | 0.553
baseline 0.687 | 0.875 | 0.602

b. + RSE v 0.734 | 0.891 | 0.654

b. + CEE v | 0749 | 0.896 | 0.671

v 2nd | 0761 | 0.903 | 0.687

v 4th | 0768 | 0.903 | 0.694

v 6th | 0.768 | 0.904 | 0.695

v 8th | 0.786 | 0.908 | 0.714

Ours v v | 0807 | 0914 | 0.737

Table 3. Ablation study of different network configurations. Num-
bers in the CEE column represent the nth GAT stage.

4.2. Ablation study

Various controlled experiments are conducted to verify
specific design decisions in our GAT-CADNet architecture.
Discussion about initial geometric feature selection and the
number of GAT stages are also included.

The RSE module. The baseline architecture of our model
is the multi-stage GAT branch in the middle of Fig. 6. Fol-
lowing the black arrows in Fig. 6, it takes initial vertex and
edge features and maps to the semantic and instance heads.
The blue branch in Fig. 6 is the RSE module that attaches
relative spatial relation to the vertex attention in every GAT
stage. Adding the RSE module to the baseline shows clear
improvement in both recognition and segmentation quality
by 4 and 5 percentage points respectively, as shown in the
third row in Tab. 3. It is evident that the explicitly encoded
primitive spacial relations, e.g. parallelism and orthogonal-
ity, enhances vertex attention and thus yields better perfor-
mance in the panoptic recognition.
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Figure 11. Visual results of our network on various scenes. Miss-
ing symbols are highlighted with rectangles of red dash lines. For
more results, please refer to the supplementary materials.
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Figure 12. Evaluation on different numbers of GAT stages.

The CEE module. Our CEE module is the orange branch
in Fig. 6, which views attention among vertices as affinity
in feature space and cascades them to predict instance ad-
jacency matrix. Adding the CEE module to the baseline
boosts the R() metric up to 6 percentage points as shown in
the fifth row in Tab. 3. It proves that the CEE module is able
to gather connections between vertices effectively and as-

sist in collecting primitives of the same instance. If we add
both RSE and CEE modules to the baseline, our method
achieves state-of-the-art performance, which exceeds Pan-
CADNet [15] in RQ, SQ and P(Q metrics by 14.7, 7.6 and
18.4 percentage points respectively.

To further verify the cascaded structure in CEE, we take
attention score from only one GAT stage and test their per-
formance. Specifically, the attention in the 2nd, 4th, 6th
and 8th GAT stage are fed to the instance head separately.
Statistics listed in Tab. 3 (sixth to eighth row) show steady
improvement in the R() metric, indicating the higher level
information is gathered form deeper GAT stage. Our cas-
caded structure is able to merge multi-stage local and global
features for instance symbol spotting.

Edge regularity features. Theoretically, the parallel and
orthogonal indicators in Eq. (6) are redundant if we have the
angle between two vertices. However, if we drop the regu-
larity term in the initial edge features, the RQ, SQ and PQ
metrics decrease to 0.58, 0.85 and 0.49 respectively. This
suggests that the regularities in CAD drawings are essential
to recognizing symbols and our extra geometric regularity
properties help the network to find a better solution.

Number of GAT stages. We also test the effect on dif-
ferent number of GAT stages. The number of GAT stage is
configured from 2 to 16 and the results are plotted in Fig. 12.
As the number of stages increases, the performance gets
better. However, if the number of stages reaches to 16, our
network does not benefit from it.

5. Conclusion

In this work we present an intuitive yet effective architec-
ture named GAT-CADNet for panoptic symbol spotting on
CAD drawings. It formulates the instance symbol spotting
task as an adjacency matrix prediction problem. The rela-
tive spatial encoding module explicitly encodes the relative
relation among vertices to enhance their attention. The cas-
caded edge encoding module extracts vertex attentions from
multiple GAT stages capturing both local and global con-
nectivity information. With the help of the RSE and CEE
modules, our GAT-CADNet surpasses other approaches by
a large margin.

Limitation and future work. It is undeniable that our
method is still far from perfection, and the panoptic sym-
bol spotting remains an open problem. One shortcoming of
our network is that it can only process drawings with a lim-
ited number of primitives, otherwise it will suffer from GPU
memory shortage. A possible solution is cutting the draw-
ing into smaller blocks and fuse the results. We will keep
exploring more efficient networks to alleviate such issue.
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