
HyperDet3D: Learning a Scene-conditioned 3D Object Detector

Yu Zheng1,3 Yueqi Duan2† Jiwen Lu1,3 Jie Zhou1,3 Qi Tian 4

1Department of Automation, Tsinghua University
2Department of Electronic Engineering, Tsinghua University

3Beijing National Research Center for Information Science and Technology
4Huawei Cloud & AI, China

zhengyu19@mails.tsinghua.edu.cn, {duanyueqi,lujiwen,jzhou}@tsinghua.edu.cn, tian.qi1@huawei.com

Figure 1. Exemplified predictions that highlight the importance of scene-conditioned knowledge. In the upper example, by observing the
detection candidate in the object level, we can easily recognize it as cabinet by comparing it with groundtruth cabinets, or relating it with
other surrounding cabinets. However, conditioned on the prior knowledge that the object candidate lies in a kitchen-like scene, we may
infer that it is a fridge. We also illustrated 5 wrong detections which go against the scene-conditioned knowledge in the lower half, which
are bathtub in a library, sink in an office, cabinet or bed in a laundry room, and chair embedded in the wall of a meeting room. Note that
point clouds are all colored only for easy illustration and not utilized in our method. (Best viewed in color.)

Abstract

A bathtub in a library, a sink in an office, a bed in a
laundry room – the counter-intuition suggests that scene
provides important prior knowledge for 3D object detec-
tion, which instructs to eliminate the ambiguous detection
of similar objects. In this paper, we propose HyperDet3D
to explore scene-conditioned prior knowledge for 3D ob-
ject detection. Existing methods strive for better represen-
tation of local elements and their relations without scene-
conditioned knowledge, which may cause ambiguity merely
based on the understanding of individual points and object
candidates. Instead, HyperDet3D simultaneously learns
scene-agnostic embeddings and scene-specific knowledge
through scene-conditioned hypernetworks. More specifi-
cally, our HyperDet3D not only explores the sharable ab-
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stracts from various 3D scenes, but also adapts the detector
to the given scene at test time. We propose a discriminative
Multi-head Scene-specific Attention (MSA) module to dy-
namically control the layer parameters of the detector con-
ditioned on the fusion of scene-conditioned knowledge. Our
HyperDet3D achieves state-of-the-art results on the 3D ob-
ject detection benchmark of the ScanNet and SUN RGB-D
datasets. Moreover, through cross-dataset evaluation, we
show the acquired scene-conditioned prior knowledge still
takes effect when facing 3D scenes with domain gap.

1. Introduction
3D object detection has gained much attention in recent

years, which is fundamental for applications such as au-
tonomous driving, robotic navigation and augmented real-
ity. Early works adopt sliding window [42] or 2D prior [16]
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to locate objects from RGB-D data. However, the order-
less and sparse characteristic of point cloud makes it hard
to directly employ the recent advances in 2D detection. To
tackle this, view-based methods [4] project the points into
multiple 2D planes and apply standard 2D detectors. Volu-
metric convolution-based methods [18, 23] split points into
regular grids, which is feasible for 3D convolutions.

Different from the aforementioned view-based and vol-
umetric convolution-based methods, PointNet++ [35] fo-
cuses on the local geometries while elegantly consuming
raw point cloud, and thus widely used as backbone net-
work in 3D detectors. Built on the PointNet++ network,
VoteNet [32] yields outstanding results by regressing off-
set votes to object centers from seed coordinates and cor-
responding local features. Following works incorporate
probabilistic voting [8], multi-level contextual learning [9,
48, 49] and self-attention based transformer [22, 24, 28] to
further enhance the local representations. These methods
underline the importance of exploiting object-based and
relation-based representation of local elements, such as in-
dividual points, detection candidates and irregular local ge-
ometries in a given point scan.

However, the attributes of similar objects are ambiguous
if we only look at themselves or relations. In this paper,
we discover that the scene-level information provides prior
knowledge to eliminate such ambiguity. As shown in Fig-
ure 1, with the absence of scene-conditioned knowledge,
inferring the object-level features or their relations is inad-
equate for detecting the object candidate, which may lead
to counter-intuitive detection results in the aspect of scene-
level understanding. To our best knowledge, the acquisition
of such scene-level information among various scenes by
3D detectors is yet to be fully studied.

To this end, we propose HyperDet3D for 3D object de-
tection on point cloud which leverages hypernetwork-based
structure. Compared with the existing methods that fo-
cus on point-wise or object-level representation, our Hy-
perDet3D learns the scene-conditioned information as prior
and incorporates such scene-level knowledge into network
parameters, so that our 3D object detector is dynamically
adjusted in accordance with different input scenes. Specif-
ically, the scene-conditioned knowledge can be factorized
into two levels: scene-agnostic and scene-specific informa-
tion. For the scene-agnostic knowledge, we maintain a
learnable embedding which is consumed by a hypernetwork
and iteratively updated along with the parsing of various in-
put scenes during training. Such sharable scene-agnostic
knowledge generally abstracts the characteristics of training
scenes and can be utilized by the detector at test time. More-
over, since conventional detectors maintain the same set of
parameters when recognizing objects in different scenes,
we propose to incorporate the scene-specific information
which adapts the detector to the given scene at test time.

To this end, we attentionally measure how well the cur-
rent scene matches a general representation (or how much
they differ) by using the specific input data as query. We
simultaneously learn the two levels of scene-conditioned
knowledge by proposing a Multi-head Scene-Conditioned
Attention (MSA) module. The learned prior knowledge is
aggregated with object candidate features by late fusion,
therefore providing more powerful guidance to detect the
objects. Extensive experiments on the widely used Scan-
Net [7] and SUN RGB-D [41] datasets demonstrate that
our method surpasses state-of-the-art methods by an obvi-
ous margin. Moreover, through cross-dataset evaluation, we
show the scene-conditioned prior knowledge acquired by
our HyperDet3D still takes effect when faced with domain
gap.

2. Related Work
3D Object Detection for Point clouds: Since spa-

tial information is better preserved in point cloud, most
state-of-the-art approaches consume raw 3D coordinates as
input [19, 37, 51, 54]. Early methods group point cloud
into stacked 3D voxels [23, 55] to generate more structured
data, or restricts the grouping operation within the ground
plane to achieve real-time detection [17]. RCNN meth-
ods [5, 19, 37, 38] adopt PointNet-based [34, 35] module
or use hybrid representation for better extracting and ag-
gregating the point-wise feature. Inspired by the codebook
learning in Hough Voting in 2D object detection [11, 44],
VoteNet [32] pioneerly construct the codebook of voting
supervision from points to object centers by sampling and
grouping proposed in PointNet++ [35]. Based on the frame-
work of VoteNet [32], H3DNet [53] incorporates the votes
to additional 3D primitives such as centers of box edges
and surfaces. BRNet [6] revisits the back-tracing opera-
tion in hough voting by querying the neighboring points
around the object candidates. These methods enhance the
feature representation of local elements by improving the
voting mechanism itself. On the other hand, RGNet [10]
models the relation of object proposals by graph struc-
tures. SPOT [8] takes the probabilistic voting into account
by measuring the information entropy of different local
patches. MLCVNet [48, 49] and PointFormer [28] incor-
porate multi-level attentional learning for object candidates
and their contextual information. GroupFree3D [22] and
3DETR [24] introduce the classical Transformer [46] ar-
chitectures to the detection framework and achieve state-
of-the-art performance. These methods explore the rela-
tion between local elements such as object candidates, local
patches, point coordinates and their clusters.

HyperNetworks in Deep Neural Networks: Hyper-
Networks [13] output the weights of the target network
(called primary network) conditioned on specific input em-
bedding. HyperNetworks have been embedded to replace
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Figure 2. Illustration of the proposed method. For a detection network in the lower half, our HyperDet3D in the upper half attentionally
learns both scene-specific and scene-agnostic knowledge. Such scene-conditioned knowledge is then aggregated with object-level features
in the decoder layers of detection network, so that the 3D detector is dynamically adjusted in accordance with different input scenes. The
scene-agnostic knowledge is the sharable abstract learned from various scenes. The scene-specific knowledge attentionally measures how
well a specific scene matches the general embedding (or how much they differ) by using the current scene as query. (Best viewed in color.)

the convolution or linear layers in image recognition [13],
semantic segmentation [27], neural architecture search [2]
and natural language modeling [13]. In the field of 3D
understanding, HyperCloud [43] and HyperCube [30] pro-
pose to produce a variety of shape representation for a
single object by modifying the input to the hypernetwork.
SDF-SRN [20] and MetaSDF [40] use hypernetworks to
implicitly learn the object semantics within a category.
More relevant to our work is HyperGrid [45] which designs
the task-conditioned input embeddings of hypernetworks
for a multi-task Transformer-based [46] language model.
Our HyperDet3D instead implicitly constructs the scene-
specific and scene-agnostic embeddings for 3D object de-
tection and, to our knowledge, is the first to incorporate hy-
pernetworks in this task.

3. Approach
In this section, we first briefly introduce the overall ar-

chitecture and some preliminaries. Next, we elaborate our
proposed method. Finally, we provide the implementation
details of the proposed method.

3.1. Overview and Preliminaries

Figure 2 illustrates 3 key components in our proposed
HyperDet3D, which are the backbone encoder, object de-
coder layer and detection head. Given an input point cloud
P ∈ RN×3, the backbone firstly downsamples the dense
points into initial object candidates, as well as coarsely ex-
tracts their features through hierarchical architectures. For
fair comparison, we consider PointNet++ [35] as the back-
bone network similar to previous works [22, 32, 53], which
uses furthest point sampling (FPS) to uniformly cover the

3D space. Then the object decoder layers refine the can-
didate features by incorporating scene-conditioned prior
knowledge into object-level representation (elaborated in
Sec. 3.2). Finally the detection head regresses the bounding
boxes from the location and refined features of those object
candidates (elaborated in Sec. 3.3).

To enable HyperDet3D the awareness of scene-level
meta information, we adopt HyperNetwork [13] which is
a neural network used to parameterize learnable parameters
for another network (called primary network). For a target
layer in primary network, its learnable parameters W are
usually generated by feeding a learnable embedding z or
intermediate features x into a hypernetwork H:

W = H(z) or W = H(x) (1)

Unlike conventional deep neural networks that keep the
layer fixed at test time, hypernetworks enable flexibility of
learnable parameters by modifying its input.

In HyperDet3D, we propose to use a scene-conditioned
hypernetwork to inject prior knowledge into the layer pa-
rameters in Transformer decoder, which dynamically ad-
justs the detection network in accordance with different in-
put scenes.

3.2. Scene-Conditioned HyperNetworks

For the feature representation o of a set of object candi-
dates produced by the backbone encoder, the goal of our
scene-conditioned hypernetworks is to endow it with the
prior knowledge parameterized by {W , b}:

ô = Wo+ b (2)

where W ∈ RCout×Cin and b ∈ RCout are weight and bias pa-
rameters in primary detection network. The parameters are
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produced by our scene-conditioned hypernetworks, which
can be categorized into scene-agnostic and scene-specific
hypernetworks.

Scene-Agnostic HyperNetwork: Take the weight pa-
rameters W of primary network for example. For scene-
agnostic knowledge, we firstly maintain a set of n scene-
agnostic embedding vectors Za = {zaj ∈ RCa}nj=1. Za is
then consumed by a scene-agnostic hypernetwork ha

θ which
projects zaj into another RCui space, and the output W a pa-
rameterizes our scene-agnostic knowledge:

W a := {wa
j ∈ RCui}nj=1, w

a
j = ha

θ(z
a
j ) (3)

where Cui is unit fan-in channel size, and satisfies:

mod (Cout, n) ≡ 0, mod (Cin, Cui) ≡ 0 (4)

While the object features are iteratively refined by a se-
ries of decoder layers [22, 24], they can be consistently
incorporated with the output of scene-agnostic hypernet-
work which abstracts the prior knowledge of various 3D
scenes. In this way, we not only maintain the general scene-
conditioned knowledge throughout the decoder layers, but
also save the computational cost by sharing the knowledge
with rich feature hierarchies.

Scene-Specific HyperNetwork: For scene-specific
knowledge, we also learn a set of embedding vectors Zs =
{zsk ∈ RCs}nk=1 similar to Za. The difference is, to adapt
Zs to the input scene, our scene-specific hypernetwork hs

θ

uses the input scene Pi as a scene-specific query. Inspired
by the alignment [1] in language model, we measure how
well zs

w matches the input scene (or how much they differ)
in the embedding space through attention mechanism:

W s := {ws
k ∈ RCui}nk=1

ws
k = hs

θ(z
s
k,Pi

d) = Wf (z
s
k||WpPi

d)
(5)

where Pi
d ∈ RNd×3, Wp ∈ RCn×Nd are a subset of the cur-

rent input scene, and transformation matrix which projects
Pi
d into the embedding space of Zs. Wf represents the

weight matrix with Tanh the activation function. As we in-
tend to get responses from the latent embedding space, we
use concatenation (·||·) as coding of query points and em-
bedding vectors similar to SDF query [29]. We adopt the
downsampled representation Pi

d instead of Pi because hy-
pernetworks, as suggested by the previous research [27], do
not fully capture the high-resolution information.

From the set of scene-specific attentional scores W s and
scene-conditioned knowledge W a, now we can get unit
block for W :

W u = W s ⊙W a (6)

where ⊙ denotes the element-wise multiplication.

Figure 3. The comparison between Multi-Head Attention [46], our
proposed Multi-Head Scene-Conditioned Attention (MSA) and
Single-Head Scene-Conditioned Attention (SSA).

Multi-Head Scene-Conditioned Attention: For the i-
th input scene Pi, the abovementioned process can be en-
capsulated into 2 scene-conditioned attention operations:

W u = Att2({zaj },Att1({zsk},Pi)) (7)

where Att1 and Att2 correspond to the attention in (5) and
(6) respectively. To fit the shape of target weights W ∈
RCout×Cin for primary network, a simple solution is to repeat
W u by Cout

n ×Cin
Cui

times and tile them along its 2 dimensions.
The feasibility is guaranteed by (4). As Za and Zs are
initialized and consumed by hypernetworks only once, we
name it Single-Head Scene-Conditioned Attention (SSA).

To allow the primary detector to jointly attend to the
scene-conditioned knowledge in various sub-spaces, we
further propose Multi-Head Scene-Conditioned Attention
(MSA) based on SSA. The idea of multi-head attention is
proposed in [46] which consumes the same set of input via
parallel attention modules. However, as target weights W
are conditioned on the input of hypernetworks in our case,
we instead implement MSA by re-initializing Za and Zs

multiple times. Therefore, our MSA can be formulated as:

W = Concat(W u
(1),W

u
(2), . . . ,W

u

(Cout
n ×Cin

Cui
)
) (8)

where W u
(l) denotes the result in (7) produced by the l-th

initialization of Za and Zs. The Concat operation tiles the
matrices along 2 dimensions similar to SSA.

In Figure 3, we illustrate the comparison between the
original Multi-Head Attention [46], our Multi-Head Scene-
Conditioned Attention (MSA) and Single-Head Scene-
Conditioned Attention (SSA). The computation overhead
for a single input sample in [46] is proportional to the num-
ber of parallel attention modules which define the atten-
tional sub-spaces. Instead, the MSA network is shared be-
tween all training samples in our HyperDet3D. Moreover,
as we mine the sub-spaces via hypernetwork structures,
MSA exploits the flexibility of scene-conditioned knowl-
edge via modifying the input in (1). In comparison, SSA
consumes the same set of embedding vectors and is inferior
to MSA in terms of expressiveness, which we verify in the
ablation experiments.

5588



The pipeline of obtaining the bias parameters b is similar
to that of W , which we display in the supplementary pages.
W and b are aggregated with object features as in (2). The
renewed representation ô is then consumed by the detection
head to generate the detection results.

3.3. Disentangled Detection Head

Following [32], existing works locate the object center
ci via directly regressing an offset (∆qi) from the candidate
location qi by a detection head parameterized by Wc:

ci = qi +∆qi, ∆qi = Wcôi (9)

Here we use a Disentangled variant of Detection Head
(DDH) which factorizes the offset regression into 2
branches. Given a predicted ∆qi, one branch regresses a
scalar r ∈ R1 to modulate its length, and another regresses
a 4-dim vector, R ∈ R4, to modulate its orientation. Each
branch contains a light-weighted regression head. R is re-
garded as the real part of a quaternion, which can be trans-
formed into a rotation matrix to modulate the orientation of
∆qi. Therefore, the final offset ∆q

′

i is computed as follows:

∆q
′

i = fT (R) ∗ (r∆qi) (10)

where ∗ denotes dot production. fT is the transformation
function defined in [39] which converts the quaternion into
a 3x3 rotation matrix. Note that R is firstly L2-normalized
when being transformed.

3.4. Implementation Details

The backbone network PointNet++ [35] in HyperDet3D
contains 4 set abstraction layers which downsample the in-
put scan into {2048,1024,512,256} points consecutively.
The radius for ball query is {0.2m,0.4m,0.8m,1.2m}. Then
2 feature propagation layers recover them into 1024 points
and produce the point-wise features. We use the KPS pro-
posed in [22] to generate object candidates from the original
locations of these 1024 points, as it saves the computational
cost in O(N2) search space of FPS [35].

To obtain o in each decoder layer, we follow [22, 24]
to employ the standard multi-head attention layer to com-
pute the self-attention of object candidates, followed by the
cross-attention between object candidates and downsam-
pled points produced by the backbone. The scene-agnostic
hypernetwork in (3) contains 2 linear layers. The scene-
specific hypernetwork in (5) contains 1 linear layer followed
by Tanh activation function. Each linear layer is parame-
terized by a weight matrix and bias vector, initialized by
Xavier [12] and zeros. For the scene query Pi

d of scene-
specific hypernetwork, we use the off-the-shelf downsam-
pled results of KPS.

As for detection head, each light-weighted regression
head mainly contains a fully-connected (FC) layer to map

fi into r or R. In r-head, the output of FC layer is processed
by sigmoid function and further normalized into [0.9,1.1] to
control the extent of adjustment. In R-head, identity quater-
nion is added to R before transformation (fT ), which can
simultaneously hold the possibility of identity rotation and
control the rotation degree.

4. Experiment
In experiment section, we firstly introduce the datasets

and evaluation metrics of the benchmark for 3D object de-
tection (Sec. 4.1). We then display the thorough experimen-
tal results by comparing HyperDet3D with state-of-the-art
approaches both quantitatively and qualitatively (Sec. 4.2).
We also analyze the design choice and effectiveness of Hy-
perDet3D by ablation studies and cross-dataset evaluation
(Sec. 4.3). Finally we point out the limitation of our work
(Sec. 4.4). More analysis and visualizations are provided in
the supplementary pages.

4.1. Datasets and Settings

ScanNet V2: The ScanNet V2 dataset [7] includes
1,513 scanned and reconstructed indoor scenes, with axis-
aligned bounding box labels for 18 object categories. The
point cloud data are converted from reconstructed meshes.
Following [32], we employ 1,201 scenes as the training set
and the rest 312 validation scenes as the test set.

SUN RGB-D V1: The SUN RGB-D V1 dataset [41]
contains 10k single-view indoor RGB-D images, 5,285 for
training and 5,050 for testing. It’s densely annotated with
64k oriented 3D bounding boxes. The whole dataset is cat-
egorized into 37 indoor object classes. For fair comparison,
we follow the evaluation protocol in [32] which selects the
10 most common categories.

For both datasets, we only employ point cloud data as
the input. No scene-level supervision is employed by Hy-
perDet3D. Following [32], we report the detection perfor-
mance on the validation sets by computing mean Average
Precision (mAP) with 3D IoU threshold 0.25 (mAP@0.25)
and 0.5 (mAP@0.5). Detection performance on individual
categories and their average results are displayed.

As for the training strategy, in the first 100 epochs of both
datasets, the detection head directly consumes o rather than
ô in (2). Then the network was finetuned for 300 and 500
epochs on ScanNet and SUN RGB-D respectively, using ô
instead. The strategy aims for the stability of loss curves
when incorporated with hypernetworks. The finetuned net-
work was used for inference at test time. The details of
hyper-parameters for 2 datasets can be found in the supple-
mentary material.

4.2. Main Results

Quantitative results: We compare our HyperDet3D
quantitatively with a number of reference methods, which
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Table 1. 3D object detection results on the ScanNet V2 validation set (left) and the SUN RGB-D V1 validation set (right). Evaluation
metric is average precision with 3D IoU thresholds as 0.25 and 0.50. Results of H3DNet [53] are reported under 4 PointNet++ backbones
settings. Results of 3DETR [24] are reported on its stronger 3DETR-m variant with inductive biases.

ScanNet V2 Input mAP@0.25 mAP@0.50
DSS [42] Geo + RGB 15.2 6.8
MRCNN [14] Geo + RGB 17.3 10.5
F-PointNet [33] Geo + RGB 19.8 10.8
GSPN [52] Geo + RGB 30.6 17.7
3D-SIS [15] Geo + 5 views 40.2 22.5
VoteNet [32] Geo only 58.6 33.5
GCENet [21] Geo only 60.7 -
HGNet [3] Geo only 61.3 34.4
DOPS [25] Geo only 63.7 38.2
H3DNet* [53] Geo only 67.2 48.1
BRNet [6] Geo only 66.1 50.9
VENet [47] Geo only 67.7 -
RGNet [10] Geo only 48.5 26.0
SPOT [8] Geo only 59.8 40.4
MLCVNet [48] Geo only 64.7 42.1
PointFormer [28] Geo only 64.1 42.6
3DETR* [24] Geo only 65.0 47.0
GF3D [22] Geo only 69.1 52.8
Ours Geo only 70.9 57.2

SUN RGB-D Input mAP@0.25 mAP@0.50
DSS [42] Geo + RGB 42.1 -
2D-driven [16] Geo + RGB 45.1 -
PointFusion [50] Geo + RGB 45.4 -
COG [36] Geo + RGB 47.6 -
F-PointNet [33] Geo + RGB 54.0 -
VoteNet [32] Geo only 57.7 32.9
H3DNet* [53] Geo only 60.1 39.0
VENet [47] Geo only 62.5 39.2
GCENet [21] Geo only 60.8 40.1
HGNet [3] Geo only 61.6 -
ImVoteNet [31] Geo + RGB 63.4 -
BRNet [6] Geo only 61.1 43.7
3DETR* [24] Geo only 59.1 32.7
RGNet [10] Geo only 59.2 -
MLCVNet [48] Geo only 59.8 -
SPOT [8] Geo only 60.4 36.3
PointFormer [28] Geo only 61.1 36.6
GF3D [22] Geo only 63.0 45.2
Ours Geo only 63.5 47.3

can be divided into 3 categories: early approaches that re-
quire 2D guidance to locate 3D objects [15, 16, 33, 36, 42,
50, 52], voting-based approaches that explore optimal local
representation to provide informative cues [3, 6, 21, 25, 31,
32, 47, 53], and relation-based approaches that explore the
interaction between local elements such as objects or point
clusters [8, 10, 22, 24, 28, 48]. The experimental results are
shown in Table 1 and Table 2. Bold indicates the best results
under the corresponding metrics.

From the comparison results in Table 1, we can ob-
serve that the state-of-the-art relation-based GF3D [22]
outperforms all the other compared methods, except for
ImvoteNet [31] which incorporates 2D image votes. How-
ever, thanks to the acquired scene-conditioned prior knowl-
edge, our HyperDet3D stills achieves leading average on
2 metrics of both ScanNet V2 (+1.8% mAP@0.25, +4.4%
mAP@0.5) and SUN RGB-D V1 (+0.5% mAP@0.25,
+2.1% mAP@0.5) validation set. Note that compared with
SUN RGB-D, ScanNet is annotated with 1.8x as many cat-
egories for 3D detection task. Therefore, the scene-level
prior knowledge learned by HyperDet3D content is rela-
tively richer in ScanNet than SUN RGB-D, and yields more
significant mAP gain on the former dataset.

We then look into the per-category results of mAP@0.5
on ScanNet V2 validation set, which is the benchmark
with more categories, more challenging threshold for eval-
uation, and more performance gain by our method. The
detailed results are displayed in Table 2. For the cat-
egories largely conditioned on the scene prior (such as
bed in bedroom, fridge in kitchen/canteen, shower cur-
tain/toilet/sink/bathtub in bathroom), they consistently ob-

tain notable AP gain compared with the baseline meth-
ods. This indicates the effectiveness of learned scene-
conditioned knowledge by HyperDet3D. The performance
drops on the counter category which is less conditioned on
the scene-level semantics. We display the detailed results
on SUN RGB-D in the supplementary pages.

In Table 3, we compare our method with the state-of-the-
art GF3D [22] furtherly1. It can be seen that in a normal or
light-weighted version of network configurations, our ap-
proach outperforms GF3D in both metrics while contain-
ing notably fewer learnable parameters. Therefore, Hyper-
Det3D is likely to efficiently absorb the external data due
to the mechanism of scene-conditioned hypernetworks and
knowledge sharing in different layers.

Qualitative Results: In Figure 4, we illustrate the rep-
resentative 3D object detection results of 4 scans in Scan-
Net V2 validation set. Taking groundtruth annotations (GT)
and real image scans as reference, we compare our Hyper-
Det3D with the state-of-the-art GF3D [22] which involves
the dense interaction between object candidates. The first 3
scans highlight the ambiguity in the aspect of largely inter-
sected bounding boxes, where the baseline module mistakes
a refrigerator or washing machine for a cabinet, or detect a
sink in an office. With the help of scene-conditioned prior
knowledge, our HyperDet3D can obtain better detection re-
sults on these objects. The ambiguous detections also in-
clude the mistaken detections. For example, in the last scan,
the baseline method mistakes a cabinet in a bedroom for a

1In Table 3, as suggested by [22], L denotes the number of decoders;
O denotes the number of object candidates; and w2× denotes the feature
dimension in backbone is expanded by 2 times.
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Table 2. 3D object detection results on the ScanNet V2 validation dataset. We show per-category results of mean average precision (mAP)
with 3D IoU threshold 0.5 as proposed in [41], and mean of AP across all semantic classes with 3D IoU threshold 0.5.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP
Votenet [32] 8.1 76.1 67.2 68.8 42.4 15.3 6.4 28.0 1.3 9.5 37.5 11.6 27.8 10.0 86.5 16.8 78.9 11.7 33.5
DOPS [25] 25.2 70.2 75.8 54.8 41.2 27.8 12.1 21.4 12.3 9.5 39.4 24.4 33.7 17.3 80.6 35.7 71.0 35.0 38.2
MLCVNet [48] 16.6 83.3 78.1 74.7 55.1 28.1 17.0 51.7 3.7 13.9 47.7 28.6 36.3 13.4 70.9 25.6 85.7 27.5 42.1
PointFormer [28] 19.0 80.0 75.3 69.0 50.5 24.3 15.0 41.9 1.5 26.9 45.1 30.3 41.9 25.3 75.9 35.5 82.9 26.0 42.6
H3DNet [53] 20.5 79.7 80.1 79.6 56.2 29.0 21.3 45.5 4.2 33.5 50.6 37.3 41.4 37.0 89.1 35.1 90.2 35.4 48.1
BRNet [6] 28.7 80.6 81.9 80.6 60.8 35.5 22.2 48.0 7.5 43.7 54.8 39.1 51.8 35.9 88.9 38.7 84.4 33.0 50.9
GF3D [22] 26.0 81.3 82.9 70.7 62.2 41.7 26.5 55.8 7.8 34.7 67.2 43.9 44.3 44.1 92.8 37.4 89.7 40.6 52.8
Ours 33.1 90.1 83.8 83.8 60.3 43.6 31.7 52.2 4.2 20.9 78.5 49.0 61.1 56.3 95.9 43.9 100 42.3 57.3

Figure 4. Qualitative comparisons between our approach and GF3D [22] baseline approach on the ScanNet V2 validation set. The
groundtruth annotations (GT) and 2D image scans are taken as reference. Our method achieves favourable results compared to the baseline
method. Fewer ambiguous detections are observed in our results. The point clouds are colored only for easy illustration, and not utilized
in the compared method nor ours. (Best viewed in color.)

Table 3. Comparison with GroupFree-3D [22] (GF3D) with var-
ious configurations on the ScanNet V2 validation set. The upper
section shows results for GF3D models reported in [22].

Model backbone #params mAP@0.5

GF3D-(L6,O256) PointNet++ 14.5M 48.9
GF3D-(L12,O512) PointNet++w2× 29.6M 52.8

Ours-(L6,O256) PointNet++ 11.1M 51.0
Ours-(L12,O512) PointNet++w2× 22.6M 57.2

counter.

4.3. Ablation Study and Discussions

To analyze the importance of learned scene-conditioned
knowledge in our HyperDet3D network, we conducted
ablation experiments on various combinations of design
choices. The quantitative results are shown in Table 4. The

baseline model only uses disentangled detection head and
we gray its corresponding row for clear comparison. Ap-
plying the SSA to learn scene-conditioned knowledge leads
to improvement of mAP@0.25 by 1.2%, and mAP@0.5 by
1.2%. The multi-head variant (MSA) further brings +1.1%
mAP@0.25 and +2.5% mAP@0.5. As expected, only
learning scene-agnostic or scene-specific prior knowledge
is inadequate for thorough scene-conditioned understand-
ing. For the challenging mAP@0.5 metric, only learning
scene-agnostic or scene-specific knowledge causes perfor-
mance drop by -1.8% and -3.4% respectively. The removal
of disentangled regression of center offsets leads to a per-
formance drop by -0.6% mAP@0.25 and -0.4% mAP@0.5,
which indicates that the exquisite regression of targets helps
to leverage the learned scene-conditioned knowledge.

Cross-dataset evaluation: Since HyperDet3D learns
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Table 4. Experimental results of ablation studies on the ScanNet
V2 validation set. The baseline method only applies the disentan-
gled detection head (DDH) on candidate features without scene-
conditioned prior knowledge (the row colored in gray).

Scene-Conditioned Attention DDH mAP@0.25 mAP@0.5agnostic specific SSA MSA
✓ 68.6 53.5

✓ ✓ ✓ ✓ 69.8 54.7
✓ ✓ ✓ 70.6 55.4

✓ ✓ ✓ 70.0 53.8
✓ ✓ ✓ 70.3 56.8
✓ ✓ ✓ ✓ 70.9 57.2

Table 5. Cross-dataset evaluation results on the ScanNet V2 val
dataset, which is pre-trained on the SUN RGB-D V1 val dataset.
We show mAPs of 8 shared categories between ScanNet V2 and
SUN RGB-D, and all 18 categories of ScanNet V2. The 3D IoU
threshold of mAP is 0.5.

bed chair sofa tabl bkshf desk toil bath mAP8 mAP18

VoteNet 30.3 21.7 12.4 8.3 4.4 4.4 21.7 33.4 17.1 8.4
GF3D 66.6 21.3 46.9 17.8 0.4 25.6 54.6 48.6 35.2 19.1
Ours 78.9 22.7 58.0 16.0 2.4 40.1 58.9 71.4 43.6 22.2

the scene-conditioned knowledge as prior, we infer such
knowledge acquired by the detector still takes effect when
faced with domain gaps. To validate this, we conducted
cross-dataset evaluation in comparison with VoteNet [32]
and GF3D [22] as the baseline detectors. We firstly pre-
trained the baseline detectors and HyperDet3D on the SUN
RGB-D V1 validation set then finetuned on the ScanNet
V2 validation set. The backbone networks in all 3 ap-
proaches and the scene-conditioned hypernetworks in ours
were frozen during finetuning.

In Table 5, we show the detection mAP of 8 shared cate-
gories between SUN RGB-D and ScanNet with IoU thresh-
old set as 0.5, as well as average mAP over all 18 (mAP8)
categories in ScanNet or the shared 8 (mAP18) categories.
The observation is two-fold. Our HyperDet3D surpasses
the baseline methods on both mAP8 and mAP18, especially
on the shared categories between 2 datasets. This indi-
cates that the scene-conditioned knowledge learned on the
source dataset can be well transferred to the target dataset
by our method. On the other hand, among the 8 shared cat-
egories, those more conditioned on the scene semantics are
improved by an obvious margin similar to the results in Ta-
ble 1. The exception is the bookshelf category partially due
to the scarcity of library scenes (1.9%) in SUN-RGBD [41].
Moreover, the novel categories such as refrigerator and sink
are improved by +14.9% and +11.1% respectively. The de-
tails can be found in supplementary pages.

Incorporation of scene labels: An interesting ques-
tion is, what if we utilize the groundtruth scene label as
an additional supervision? To this end, we added a clas-
sification(Cls.) branch to the bottleneck of the backbone
in GF3D, and finetuned the whole network for 100 epochs
based on the GF3D pretrained model. The ScanNet results

Table 6. Comparison with Multi-task classification (Cls.) baseline.
HyperDet3D GF3D GF3D+Cls.

mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5 mAP@0.25 mAP@0.5
70.9 57.2 69.1 52.8 69.4 54.3

in Table 6 suggest the additional branch with scene type
labels improves the detection performance, but is still in-
ferior to HyperDet3D. Note that our HyperDet3D achieves
the best results without any supervision on the scene type
classification. We expect better detection performance by
training a unique detector for each type of scene. However,
this may limit the generality of the method and is less com-
putationally friendly for real-world applications.

4.4. Limitations

As we focus on the scene-level information, we can ob-
serve some failure cases on detailed local geometries. For
example, in the second example of Figure 4, HyperDet3D
misdetects 2 closely connected objects as a whole. A pos-
sible solution is to incorporate more detailed representation
of scene query, which may require SDF [29] to exquisitely
model the geometries in the scene. Moreover, another im-
portant work Mix3D [26] proposes to reduce the scene-level
variation by enriching the scene-level data with object-level
information, while HyperDet3D aims to utilize such scene-
specific variation by endowing object representation with
scene-prior knowledge. We expect a future solution might
combine the advantages of both methods.

5. Conclusion
In this paper we have introduced HyperDet3D: a new

framework to explore scene-conditioned prior for 3D ob-
ject detection. Our HyperDet3D simultaneously learns the
scene-agnostic knowledge which explores the sharable ab-
stracts from various 3D scenes, and scene-specific knowl-
edge which adapts the detector to the given scene. Hyper-
Det3D achieves state-of-the-art results on the 3D object de-
tection benchmark of 2 widely-used datasets, and demon-
strates effectiveness when faced with domain gap.

Potential Impact: Our method aims to improve the re-
searches on 3D object detection, which is critical for the
safety of robotic systems. Similar to many deep learning
methods, one potential negative impact is that it still lacks
theoretical guarantees. To improve the applicability in this
domain, the community might consider challenges of ex-
plainability and transparency.
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